Nearly fifty years ago, Roberts (1978) postulated that the Earth’s magnetic field, which is generated by turbulent motions of liquid metal in its outer core, likely results from a subcritical dynamo instability characterised by a dominant balance between Coriolis, pressure and Lorentz forces (requiring a finite-amplitude magnetic field). Here, we numerically explore subcritical convective dynamo action in a spherical shell, using techniques from optimal control and dynamical systems theory to uncover the nonlinear dynamics of magnetic field generation. Through nonlinear optimisation, via direct-adjoint looping, we identify the minimal seed – the smallest magnetic field that attracts to a nonlinear dynamo solution. Additionally, using the Newton-hookstep algorithm, we converge stable and unstable travelling wave solutions to the governing equations. By combining these two techniques, complex nonlinear pathways between attracting states are revealed, providing insight into a potential subcritical origin of the geodynamo. This paper showcases these methods on the widely studied benchmark of Christensen et al. (2001, Phys. Earth Planet. Inter., vol. 128, pp. 25–34), laying the foundations for future studies in more extreme and realistic parameter regimes. We show that the minimal seed reaches a nonlinear dynamo solution by first approaching an unstable travelling wave solution, which acts as an edge state separating a hydrodynamic solution from a magnetohydrodynamic one. Furthermore, by carefully examining the choice of cost functional, we establish a robust optimisation procedure that can systematically locate dynamo solutions on short time horizons with no prior knowledge of its structure.