To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Tropical cyclones (TCs) cause severe coastal flooding in the middle latitudes. While the IPCC Fifth Assessment Reports (AR5, 2013) have focused on mean sea-level rise, recent advances (e.g., IPCC Sixth Assessment Reports, AR6, 2021) have shown the importance of storm surges and wave changes in extreme water levels causing coastal flooding. Both TC intensity and track changes are linked to future changes in extreme storm surges and wave climates in middle latitudes. This brief review summarizes historical and future long-term changes in extreme water levels, the contribution of increased storm surges, and wave height by the monitoring data and climate projections. In addition, several examples of impact assessment of storm surges and extreme wave changes are presented.
We summarize what we assess as the past year's most important findings within climate change research: limits to adaptation, vulnerability hotspots, new threats coming from the climate–health nexus, climate (im)mobility and security, sustainable practices for land use and finance, losses and damages, inclusive societal climate decisions and ways to overcome structural barriers to accelerate mitigation and limit global warming to below 2°C.
Technical summary
We synthesize 10 topics within climate research where there have been significant advances or emerging scientific consensus since January 2021. The selection of these insights was based on input from an international open call with broad disciplinary scope. Findings concern: (1) new aspects of soft and hard limits to adaptation; (2) the emergence of regional vulnerability hotspots from climate impacts and human vulnerability; (3) new threats on the climate–health horizon – some involving plants and animals; (4) climate (im)mobility and the need for anticipatory action; (5) security and climate; (6) sustainable land management as a prerequisite to land-based solutions; (7) sustainable finance practices in the private sector and the need for political guidance; (8) the urgent planetary imperative for addressing losses and damages; (9) inclusive societal choices for climate-resilient development and (10) how to overcome barriers to accelerate mitigation and limit global warming to below 2°C.
Social media summary
Science has evidence on barriers to mitigation and how to overcome them to avoid limits to adaptation across multiple fields.
Climate change is affecting archaeological sites and landscapes around the world. Increased rainfall, more frequent extreme weather events, higher temperatures and rising seas not only create new risks but also exacerbate existing vulnerabilities and threats. Building on an earlier Antiquity article that explored climate change and arctic archaeology (Hollesen et al.2018), this special section provides a global perspective on the impact of climate change on archaeological sites and landscapes and how archaeologists and cultural heritage managers are responding. This article introduces the following three contributions, outlining their main findings to provide an overview of the various challenges around the world, and highlighting current gaps in knowledge and future research opportunities.
This article uses historical-ecological insights for a re-reading of two little-known mid-twentieth-century Australian plays, Oriel Gray’s The Torrents and Eunice Hanger’s Flood, which highlight developments relevant to the environmental disasters of today. In particular, the article focuses on the significance of key cultural assumptions embedded in the texts – and a revival of The Torrents in 2019 – including those to do with land use in a period of accelerating development. This approach offers new insights into the dominance of mining, irrigation, and dam-building activities within the Australian ethos, landscape, and economy. One of these insights is the framing of development as progressive. The article thus also examines how development projected as progressive takes place amid the continuing denial of prior occupation of the land by First Nations peoples and of knowledge systems developed over thousands of years. The intersectional settler-colonialist-ecocritical approach here seeks to capture the compounding ecosystem that is modern Australian theatre and its critique. The intention is not to apply revisionist critiques of 1950s plays but to explore the historical relationship between humans, colonialism, and the physical environment over time. Denise Varney is Professor of Theatre Studies in the School of Culture and Communication at the University of Melbourne. Her research is in modern and contemporary theatre and performance, with published work in the areas of ecocriticism, feminism, and Australian theatre. Her most recent book is Patrick White’s Theatre: Australian Modernism on Stage 1960–2018 (Sydney University Press, 2021).
The top priority in addressing climate change is to reduce net emissions of greenhouse gases to zero as swiftly as possible. Among the policy instruments for achieving this goal: carbon markets and carbon taxes; subsidies and incentives for energy conservation and for developing renewable energy technologies; building a new network of advanced nuclear reactors to provide carbon-free energy; imposing restraints on deforestation and planting large numbers of new trees; developing powerful new technologies for removing carbon dioxide from the atmosphere; incentivizing private citizens to reduce the carbon footprint of their lifestyles; and introducing new governmental policies for decarbonizing national economies. By combining all these strategies, humankind could realistically reach net zero emissions by the middle years of this century. From that point forward, it can start actively removing existing accumulations of carbon dioxide, eventually bringing global warming to a halt and reversing some of the damage that’s already been done.
One of the most critical ecosystem functions provided by shallow coastal habitats is as nurseries for the juveniles of fish. Many of the studies that have assessed the nursery function of structurally complex coastal habitats have compared seagrass with unstructured sand and mud and as such, seagrass has emerged as the most important coastal nursery habitat for juvenile fishes. Although considerably less work has focussed on the nursery provision of structurally complex macroalgae within coastal nursery seascapes, recent work has started to highlight that the nursery provision of canopy-forming macroalgae may in fact be comparable with that of seagrass. This review collates research published on the important nursery role of macroalgae within both tropical and temperate coastal seascapes and highlights the importance of smaller canopy-forming brown algae from the Fucalean genera (particularly Sargassum spp.) as core nursery areas for juvenile fishes, particularly emperors (Lethrinidae), rabbitfishes (Siganidae), wrasse and parrotfishes (Labridae), goatfishes (Mullidae), groupers (Serranidae), surgeonfish (Acanthuridae) and damselfish (Pomacentridae) within tropical back-reef systems. Similarly, in temperate nursery seascapes, fucoid (Cystoseira spp.) and macroalgae-dominated reefs were important nursery habitats for damselfish (Chromis chromis), groupers and numerous species of wrasse and sparids (Sparidae). Although the overall density of juvenile fish was not shown to be higher in kelp relative to other temperate nursery habitats, kelp was important in the recruitment of Notolabrus celiodotus (wrasse), Paralabrax clathrus (Serranidae), Brachyistius frenatus (Embiotocidae), Heterostichus rostratus (Clinidae) and Sebastes spp. (Scorpaenidae). Although not interchangeable (fish communities were often different), the nursery function of structurally complex macroalgae was found to be similar to that of seagrass in both temperate and tropical seascapes.
Chapter 1 introduces the book's key concepts: utopianism, speculative fiction and the Anthropocene. I start by defining utopianism in terms of the "education of a desire for alternative ways of being." The chapter then shows that the current climate crisis necessitates a fundamental reorientation of our cognitive and affective frameworks. This can only be achieved, I maintain, with the help of various kinds of social dreaming, spurred by theory building and storytelling. In a second step, I discuss the background against which my analysis proceeds – the Anthropocene. In a concise fashion, different interpretations of, and objections to, the basic premise of a "human planet" are reviewed. Third, the chapter outlines the disciplinary perspectives informing this approach: political theory, utopian studies and the environmental humanities. Another section covers the book’s methodology and explains two central ideas behind my case selection: constellation and plot line. The chapter concludes with a synopsis of the ensuing argument.
Ongoing sea-level rise has brought renewed focus on terrestrial sediment supply to the coast because of its strong influence on whether and how long beaches, marshes and other coastal landforms may persist into the future. Here, we summarise findings of sediment discharge from several coastal rivers, revealing that infrequent, large-magnitude events have disproportionate influence on the morphodynamics of coastal landforms and littoral cells. These event-dominated effects are most pronounced for small, steep mountainous rivers that supply beach and wetland sediment along the world’s active tectonic margins, although infrequent events are important drivers of sediment discharge for rivers worldwide. Additionally, extreme events (recurrence intervals of decades to centuries) that follow wildfires, earthquakes, volcanic eruptions, extreme precipitation or – most notably – combinations of these factors can redefine coastal sediment budgets and morphology. Some of these extreme events (e.g., wildfires plus rainfall) are increasing in magnitude and frequency under modern climate warming, with the likely result of increasing sediment flux to affected coastlines. Climate change is also altering watershed processes in both high latitudes and high altitudes, resulting in increased sediment supply to downstream catchments. We conclude that sediment inputs to coastal systems are highly variable with time, and that the variability and trends in sediment input are as important to characterise as long-term averages.
An accomplished dancer, acrobat, and physical theatre performer, Hanna Cormick became ill in 2014 with a trifecta of rare genetic conditions that make her severely allergic to pollutants in the air — smoke, detergents, and food particles — and her bones and internal organs prone to dislocation. In January 2020, during Australia’s summer of unprecedented bushfires, Cormick staged The Mermaid, risking her life to make a performance about the climate emergency and how we are all vulnerable bodies at risk in a changing environment.
Paleontological remains retrieved from permafrost represent the most informative records of Pleistocene ecosystems. Different levels of past microbial activity affecting fossil material preservation are presented for two selected bone samples—an almost intact Bison sp. metacarpus (45.0 ± 5.0 14C ka BP) and a weathered Equus sp. metacarpus (37.8 ± 1.7 14C ka BP) from the recently exposed cryogenic geo-contexts in the Yana River basin, NE Yakutia. Diagenetic changes in bone porosity and chemical composition as a result of the past microbial activity were investigated by multiple analytical methods. In the bison bone, which was permafrost-sealed shortly after death of the animal and conserved for ca. 45 ka in a frozen state in a cryolithic formation, only superficial microbial degradation processes were detected. Progressive microbial attacks characterize the horse bone, which was exposed to MIS 3 sub-aerial biogenic decay and modern surficial weathering. This is evidenced by extensive bacterial micro-boring with the typical focal destructions, an increase in microbial porosity, and de-mineralized osseous zones due to waterlogged and poorly oxygenated past depositional conditions. New information contributes to better understanding of the diagenesis particularities and the associated chemical and biological agents of the fossil osteological assemblages with respect to their taphonomic and paleoenvironmental implications.
Sustaining productivity of the rice-based cropping systems in the Eastern Indo-Gangetic Plain (EIGP) requires practices to reverse declining soil fertility resulting from excessive tillage and crop residue removal, while decreasing production costs and increasing farm profits. We hypothesize that the adoption of conservation agriculture (CA), involving minimum tillage, crop residue retention and crop rotation, can address most of these challenges. Therefore, the effects of crop establishment methods – strip planting (SP), bed planting (BP) and conventional tillage (CT); and levels of crop residue retention – high residue (HR) and low residue (LR) on individual crop yield, system yield and profitability were evaluated in a split-plot design over three cropping seasons in two field experiments (Alipur and Digram sites) with contrasting crops and soil types in the EIGP. The SP and BP of non-rice crops were rotated with non-puddled rice establishment; CT of non-rice crops was rotated with puddled transplanted rice. In the legume-dominated system (rice-lentil-mung bean), lentil yields were similar in SP and CT, while lower in BP in crop season 1. A positive effect of high residue over low residue was apparent by crop season 2 and persisted in crop season 3. In crop season 3, the lentil yield increased by 18–23% in SP and BP compared to CT. In the cereal-dominated system (rice-wheat-mung bean), significant yield increases of wheat in SP and BP (7–10%) over CT, and of HR (1–3%) over LR, were detected by crop season 3 but not before. Rice yields under CA practices (non-puddled and HR) were comparable with CT (puddled and LR) in both systems. Improved yield of lentil and wheat with CA was correlated with higher soil water content. The net income of SP increased by 25–28% for dry season crops as compared to CT and was equal with CT for rice cropping systems. Conservation agriculture practices provide opportunities for enhancing crop yield and profitability in intensive rice-based systems of the EIGP of Bangladesh.
Climate change presents two types of risks: those we can adapt to or try to counteract and those beyond our power to cope. The first group includes (1) sea level rise, which threatens much of our infrastructure and cultural patrimony; (2) extreme weather, particularly storm events; (3) climate alterations harmful to agriculture; (4) loss of biodiversity; (5) ocean acidification that interferes with shell production and threatens marine food chains; and (6) threats to human health from disease and especially extreme heat. The second group, which encompasses an unmanageable intensification of all of the first, is the risk of runaway climate change. This can arise if elevated atmospheric carbon concentrations trigger positive feedback mechanisms, like stored methane releases, widespread forest die-offs, reduction of the Earth’s albedo, or changes in prevalent cloud formations that amplify initial warming effects, resulting in a “hothouse Earth.” The tools of standard welfare economics, like calculation of a social cost of carbon and its use in cost–benefit analysis, are unhelpful. Their basis in marginal effects is contradicted by the scale of climate impacts, and their deference to consumer judgment tells us little about the political judgments that must guide policy trade-offs.
Description: Life on Earth is not always safe and pleasant. History has recorded many pandemics, famines, and national disasters, while at the same time the progress created by the Industrial Revolution led to an increase in life expectancy. Epidemics and pandemics become less frequent in recent centuries, but recently have reappeared, because of increased contacts among people, and more contacts with animals.
The chapter provides brief descriptions of past disasters, including plagues, such as the Attic Plague, the Plague of Antoninus, the Justinian Flea, the Black Plague or Bubonic Plague, and the Great Influenza. It discusses the possible relationship of these plagues to climate changes, caused by major volcanic eruptions. It also discusses some changes that the major plagues may have generated, such as the Renaissance and some government policies. The lack of power by governments to do anything in earlier years is stressed.
The physical and socioeconomic environments in which we live are intrinsically linked over a wide range of time and space scales. On monthly intervals, the price of many commodities produced predominantly in tropical regions covary with the dominant mode of climate variability in this region, namely the El Niño Southern Oscillation (ENSO). Here, for the spot prices returns of vegetable oils produced in Asia, we develop autoregressive (AR) models with exogenous ENSO indices, where for the first time these indices are generated by a purpose-built state-of-the-art general circulation model (GCM) climate forecasting system. The GCM is a numerical simulation which couples together the atmosphere, ocean, and sea ice, with the initial conditions tailored to maximize the climate forecast skill at multiyear timescales in the tropics. To serve as additional benchmarks, we also test commodity forecasts using: (a) no ENSO information as a lower bound; (b) perfect future ENSO knowledge as a reference upper bound; and (c) an econometric AR model of ENSO. All models adopting ENSO factors outperform those that do not, indicating the value here of incorporating climate knowledge into investment decision-making. Commodity forecasts adopting perfect ENSO factors have statistically significant skill out to 2 years. When adopting the GCM-ENSO factors, there is predictive power of the commodity beyond 1 year in the best case, which consistently outperforms commodity forecasts adopting an AR econometric model of ENSO.
Residential energy efficiency programs play an important role in combating climate change. More precise quantification of the magnitude and timing of energy savings would bring large system benefits, allowing closer integration of energy efficiency into resource adequacy planning and balancing variable renewable electricity. However, it is often difficult to quantify the efficacy of an energy efficiency intervention, because doing so requires consideration of a hypothetical counterfactual case in which there was no intervention, and randomized control trials are often implausible. Although quasi-experimental econometric evaluation sometimes works well, we find that for a set of energy efficiency rebate programs in Northern California, a naïve interpretation of econometric measurement finds that rebate participation is associated with an average increase in electricity consumption of 7.2% [4.5%, 10.1%], varying in magnitude and sign depending on the type of appliance or service covered by the rebate. A subsequent household survey on appliance purchasing behavior and analysis of utility customer outreach data suggest that this regression approach is likely measuring the gross impact of buying a new appliance but fails to adequately capture a counterfactual comparison. Indeed, it is unclear whether it is even possible to construct a suitable counterfactual for econometric analyses of these rebate programs using data generally available to electric utilities. We view these results as an illustration of a limitation of econometric methods of program evaluation and the importance of weighing engineering modeling and other imperfect methods against one another when attempting to provide useful evaluations of real-world policy interventions.
Modeling dependencies between climate extremes is important for climate risk assessment, for instance when allocating emergency management funds. In statistics, multivariate extreme value theory is often used to model spatial extremes. However, most commonly used approaches require strong assumptions and are either too simplistic or over-parameterized. From a machine learning perspective, generative adversarial networks (GANs) are a powerful tool to model dependencies in high-dimensional spaces. Yet in the standard setting, GANs do not well represent dependencies in the extremes. Here we combine GANs with extreme value theory (evtGAN) to model spatial dependencies in summer maxima of temperature and winter maxima in precipitation over a large part of western Europe. We use data from a stationary 2000-year climate model simulation to validate the approach and explore its sensitivity to small sample sizes. Our results show that evtGAN outperforms classical GANs and standard statistical approaches to model spatial extremes. Already with about 50 years of data, which corresponds to commonly available climate records, we obtain reasonably good performance. In general, dependencies between temperature extremes are better captured than dependencies between precipitation extremes due to the high spatial coherence in temperature fields. Our approach can be applied to other climate variables and can be used to emulate climate models when running very long simulations to determine dependencies in the extremes is deemed infeasible.
Given the growing use of Artificial intelligence (AI) and machine learning (ML) methods across all aspects of environmental sciences, it is imperative that we initiate a discussion about the ethical and responsible use of AI. In fact, much can be learned from other domains where AI was introduced, often with the best of intentions, yet often led to unintended societal consequences, such as hard coding racial bias in the criminal justice system or increasing economic inequality through the financial system. A common misconception is that the environmental sciences are immune to such unintended consequences when AI is being used, as most data come from observations, and AI algorithms are based on mathematical formulas, which are often seen as objective. In this article, we argue the opposite can be the case. Using specific examples, we demonstrate many ways in which the use of AI can introduce similar consequences in the environmental sciences. This article will stimulate discussion and research efforts in this direction. As a community, we should avoid repeating any foreseeable mistakes made in other domains through the introduction of AI. In fact, with proper precautions, AI can be a great tool to help reduce climate and environmental injustice. We primarily focus on weather and climate examples but the conclusions apply broadly across the environmental sciences.