To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We give a unified overview of the study of the effects of additional set theoretic axioms on quotient structures. Our focus is on rigidity, measured in terms of existence (or rather non-existence) of suitably non-trivial automorphisms of the quotients in question. A textbook example for the study of this topic is the Boolean algebra $\mathcal {P}({\mathbb N})/\operatorname {\mathrm {Fin}}$, whose behavior is the template around which this survey revolves: Forcing axioms imply that all of its automorphisms are trivial, in the sense that they are induced by almost permutations of ${\mathbb N}$, while under the Continuum Hypothesis this rigidity fails and $\mathcal {P}({\mathbb N})/\operatorname {\mathrm {Fin}}$ admits uncountably many non-trivial automorphisms. We consider far-reaching generalisations of this phenomenon and present a wide variety of situations where analogous patterns persist, focusing mainly (but not exclusively) on the categories of Boolean algebras, Čech–Stone remainders, and $\mathrm {C}^{*}$-algebras. We survey the state of the art and the future prospects of this field, discussing the major open problems and outlining the main ideas of the proofs whenever possible.