Hostname: page-component-54dcc4c588-5q6g5 Total loading time: 0 Render date: 2025-10-02T10:57:14.938Z Has data issue: false hasContentIssue false

CORONA RIGIDITY

Published online by Cambridge University Press:  30 June 2025

ILIJAS FARAH*
Affiliation:
DEPARTMENT OF MATHEMATICS AND STATISTICS YORK UNIVERSITY 4700 KEELE STREET NORTH YORK, ON M3J 1P3, CANADA and MATEMATIV̧KI INSTITUT SANU KNEZA MIHAILA 36 BELGRADE 11001 SERBIA URL: https://ifarah.mathstats.yorku.ca
SAEED GHASEMI
Affiliation:
DEPARTMENT OF MATHEMATICS AND STATISTICS YORK UNIVERSITY 4700 KEELE STREET NORTH YORK, ON M3J 1P3, CANADA Current Address: DEPARTMENT OF MATHEMATICAL SCIENCES LAKEHEAD UNIVERSITY 955 OLIVER ROAD THUNDER BAY, ON P7B 5E1, CANADA E-mail: sghasem2@lakeheadu.ca URL: https://www.lakeheadu.ca/users/G/sghasem2/node/201808
ANDREA VACCARO
Affiliation:
MATHEMATISCHES INSTITUT FACHBEREICH MATHEMATIK UND INFORMATIK DER UNIVERSITÄT MÜNSTER EINSTEINSTRASSE 62 48149 MÜNSTER GERMANY E-mail: avaccaro@uni-muenster.de URL: https://sites.google.com/view/avaccaro
ALESSANDRO VIGNATI
Affiliation:
INSTITUT DE MATHÉMATIQUES DE JUSSIEU (IMJ-PRG) UNIVERSITÉ PARIS CITÉ AND INSTITUT UNIVERSITAIRE DE FRANCE BÂTIMENT SOPHIE GERMAIN 8 PLACE AURÉLIE NEMOURS 75013 PARIS FRANCE E-mail: vignati@imj-prg.fr URL: https://www.automorph.net/avignati
*

Abstract

We give a unified overview of the study of the effects of additional set theoretic axioms on quotient structures. Our focus is on rigidity, measured in terms of existence (or rather non-existence) of suitably non-trivial automorphisms of the quotients in question. A textbook example for the study of this topic is the Boolean algebra $\mathcal {P}({\mathbb N})/\operatorname {\mathrm {Fin}}$, whose behavior is the template around which this survey revolves: Forcing axioms imply that all of its automorphisms are trivial, in the sense that they are induced by almost permutations of ${\mathbb N}$, while under the Continuum Hypothesis this rigidity fails and $\mathcal {P}({\mathbb N})/\operatorname {\mathrm {Fin}}$ admits uncountably many non-trivial automorphisms. We consider far-reaching generalisations of this phenomenon and present a wide variety of situations where analogous patterns persist, focusing mainly (but not exclusively) on the categories of Boolean algebras, Čech–Stone remainders, and $\mathrm {C}^{*}$-algebras. We survey the state of the art and the future prospects of this field, discussing the major open problems and outlining the main ideas of the proofs whenever possible.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alperin, J. L., Covington, J., and Macpherson, D., Automorphisms of quotients of symmetric groups , Ordered Groups and Infinite Permutation Groups , volume 354 of Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, 1996, pp. 231247.Google Scholar
Argyros, S. A. and Haydon, R. G., A hereditarily indecomposable $\mathcal{L}_{\infty }$ -space that solves the scalar-plus-compact problem . Acta Mathematica , vol. 206 (2011), no. 1, pp. 154.Google Scholar
Aschenbrenner, M., van den Dries, L., and van der Hoeven, J., Filling gaps in Hardy fields. Journal für die Reine und Angewandte Mathematik , vol. 815 (2024), pp. 107172.Google Scholar
Aschenbrenner, M., van den Dries, L., and van der Hoeven, J., Maximal Hardy fields, preprint, 2023, arXiv:2304.10846.Google Scholar
Asperó, D. and Schindler, R., Martin’s Maximum ${}^{++}$ implies Woodin’s axiom (*). Annals of Mathematics , vol. 193 (2021), no. 3, pp. 793835.Google Scholar
Balcar, B. and Frankiewicz, R., To distinguish topologically spaces ${m}^{\ast }$ . II. Bulletin de l’Académie Polonaise des Sciences , vol. 26 (1978), no. 6, pp. 521523.Google Scholar
Bartoszynski, T. and Judah, H., Set Theory: On the Structure of the Real Line , A K Peters, Ltd., Wellesley, 1995.Google Scholar
Baudier, F., Braga, B., Farah, I., Vignati, A., and Willett, R., Embeddings of von Neumann algebras into uniform Roe algebras and quasi-local algebras. Journal of Functional Analysis , vol. 286 (2024), no. 1, Article no. 110186.Google Scholar
Yaacov, I. Ben, Berenstein, A., Henson, C. W., and Usvyatsov, A., Model theory for metric structures , Model Theory with Applications to Algebra and Analysis (Chatzidakis, Z., et al., editors), vol. II, number 350 in London Mathematical Society Lecture Note Series, London Mathematical Society, Cambridge University Press, Cambridge, 2008, pp. 315427.Google Scholar
Berg, I. D., An extension of the Weyl-von Neumann theorem to normal operators . Transactions of the American Mathematical Society , vol. 160 (1971), pp. 365371.Google Scholar
Blackadar, B., K-Theory for Operator Algebras , volume 5 of MSRI Publications, Cambridge University Press, Cambridge, 1998.Google Scholar
Blackadar, B., Operator Algebras: Theory of ${\boldsymbol{C}}^{\ast}$ -algebras and von Neumann algebras, Operator Algebras and Non-commutative Geometry, III , volume 122 of Encyclopaedia of Mathematical Sciences, Springer-Verlag, Berlin, 2006.Google Scholar
Braga, B. M., Baudier, F., Farah, I., Khukhro, A., Vignati, A., and Willett, R., Uniform Roe algebras of uniformly locally finite metric spaces are rigid . Inventiones Mathematicae , vol. 230 (2022), no. 3, pp. 10711100.Google Scholar
Braga, B. M., Farah, I., and Vignati, A.. Uniform Roe coronas . Advances in Mathematics , vol. 389 (2021), p. 107886.Google Scholar
Brian, W., Universal flows and automorphisms of $P\left(\omega \right)$ /fin . Israel Journal of Mathematics , vol. 233 (2019), no. 1, pp. 453500.Google Scholar
Brian, W., The isomorphism class of the shift map . Topology and its Applications , vol. 283 (2020), 107343.Google Scholar
Brian, W., Does $\left(\mathbb{N}\right)/ Fin$ know its right hand from its left? preprint, 2024. arXiv preprint arXiv:2402.04358.Google Scholar
Brian, W. and Farah, I., Conjugating trivial automorphisms of $\left(\mathbb{N}\right)/ Fin$ . Transactions of the American Mathematical Society , to appear 2024, arXiv:2410.08789.Google Scholar
Brown, L. G., Determination of $A$ from $M(A)$ and related matters . Comptes Rendus Math´ematiques de l’Acad´emie des Sciences , vol. 10 (1988), no. 6, 273278.Google Scholar
Brown, L. G., Douglas, R. G., and Fillmore, P. A., Unitary equivalence modulo the compact operators and extensions of ${C}^{\ast }$ -algebras , Proceedings of a Conference on Operator Theory , volume 345 of Lecture Notes in Mathematics, Springer, Berlin and New York, 1973, pp. 58128.Google Scholar
Brown, L. G., Douglas, R. G., and Fillmore, P. A., Extensions of ${C}^{\ast }$ -algebras and K-homology . Annals of Mathematics , vol. 105 (1977), pp. 265324.Google Scholar
Brzdek, J., Popa, D., Raşa, I., and Xu, B., Ulam Stability of Operators , Mathematical Analysis and Its Applications, Academic Press, London, 2018.Google Scholar
Burger, M., Ozawa, N., and Thom, A., On Ulam stability . Israel Journal of Mathematics , vol. 1 (2013), pp. 121.Google Scholar
Carlson, K., Cheung, E., Farah, I., Gerhardt-Bourke, A., Hart, B., Mezuman, L., Sequeira, N., and Sherman, A., Omitting types and AF algebras . Archive for Mathematical Logic , vol. 53 (2014), pp. 157169.Google Scholar
Chang, C. C. and Keisler, H. J., Model Theory , third ed., volume 73 of Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam, 1990.Google Scholar
Chodounský, D., Dow, A., Hart, K. P., and de Vries, H., The Katowice problem and autohomeomorphisms of ${\omega}_0^{\ast }$ . Topology and its Applications , vol. 213 (2016), pp. 230237.Google Scholar
Choi, M.-D. and Christensen, E., Completely order isomorphic and close ${C}^{\ast }$ -algebras need not be *-isomorphic . Bulletin of the London Mathematical Society , vol. 15 (1983), no. 6, pp. 604610.Google Scholar
Christensen, E., Sinclair, A. M., Smith, R. R., White, S. A., and Winter, W., Perturbations of nuclear ${C}^{\ast }$ -algebras . Acta Mathematica , vol. 208 (2012), no. 1, pp. 93150.Google Scholar
Coskey, S. and Farah, I., Automorphisms of corona algebras, and group cohomology . Transactions of the American Mathematical Society , vol. 366 (2014), no. 7, pp. 36113630.Google Scholar
Davidson, K. R., Essentially normal operators , A Glimpse at Hilbert Space Operators , volume 207 of Operator Theory: Advances and Applications, Birkhäuser Verlag, Basel, 2010, pp. 209222.Google Scholar
De Bondt, B., Farah, I., and Vignati, A., Saturation of reduced products, preprint, 2023, arXiv:2401.12539.Google Scholar
De Bondt, B., Farah, I., and Vignati, A., Trivial automorphisms of reduced products. Israel Journal of Mathematics , to appear, 2023, arXiv:2307.06731.Google Scholar
De Bondt, B. and Thom, A., On automorphism groups of metric reduced products of symmetric groups. preprint, 2024. arXiv preprint arXiv:2412.10802.Google Scholar
De Bondt, B., Vaccaro, A., Veličković, B., and Vignati, A., Games on AF-algebras . International Mathematics Research Notices , vol. 313 (2022), pp. 1999620038.Google Scholar
De Bondt, B. and Vignati, A., A metric lifting theorem. Comptes Rendus de l'Académie des Sciences. Série I. Mathématique , to appear, 2024, arXiv:2411.11127.Google Scholar
De Chiffre, M., Ozawa, N., and Thom, A., Operator algebraic approach to inverse and stability theorems for amenable groups . Mathematika , vol. 65 (2019), no. 1, pp. 98118.Google Scholar
de Cornulier, Y., Near actions. preprint, 2019. arXiv preprint arXiv:1901.05065.Google Scholar
van Douwen, E. K., Prime Mappings, Number of Factors and Binary Operations , volume 199 of Dissertationes Mathematicae, Instytut Matematyczny Polskiej Akademii Nauk, Warszawa, 1981.Google Scholar
Dow, A., A non-trivial copy of $\beta N\setminus N$ . Proceedings of the American Mathematical Society , vol. 142 (2014), no. 8, pp. 29072913.Google Scholar
Dow, A., Automorphisms of $P\left(\omega \right)/\textit{fin}$ and large continuum . Annals of Pure and Applied Logic , vol. 176 (2025), no. 10, p. 103627.Google Scholar
Dow, A. and Hart, K. P., ${\omega}^{\ast }$ has (almost) no continuous images . Israel Journal of Mathematics , vol. 109 (1999), pp. 2939.Google Scholar
Dow, A. and Hart, K. P., The Čech–Stone compactifications of $\mathbb{N}$ and of $\mathbb{R}$ , Encyclopedia of General Topology (Hart, K. P., Nagata, J., and Vaughan, J.E., editors), Elsevier Science Publishers B.V., Amsterdam, 2004, 213217.Google Scholar
Dow, A. and Hart, K. P., Applications of another characterization of $\beta N\setminus N$ . Topology and its Applications , vol. 122 (2002), nos. 1–2, pp. 105133.Google Scholar
Dranishnikov, A. and Ferry, S., On the Higson-Roe corona . Russian Mathematical Surveys , vol. 52 (1997), no. 5, 10171028.Google Scholar
Eagle, C. and Vignati, A., Saturation and elementary equivalence of ${C}^{\ast }$ -algebras . Journal of Functional Analysis , vol. 269 (2015), no. 8, pp. 26312664.Google Scholar
Elliott, G. A., Towards a theory of classification . Advances in Mathematics , vol. 223 (2010), no. 1, 3048.Google Scholar
Elliott, G. A., Derivations of matroid ${C}^{\ast }$ -algebras. II . Annals of Mathematics , vol. 100 (1974), no. 2, pp. 407422.Google Scholar
Engel, A., Index theorems for uniformly elliptic operators . New York Journal of Mathematics , vol. 24 (2018), pp. 543587.Google Scholar
Erdös, P., My Scottish Book “problems” , The Scottish Book (Mauldin, D., editor), Birkhäuser, Boston, 1981, pp. 3544.Google Scholar
Ewert, E. and Meyer, R., Coarse geometry and topological phases . Communications in Mathematical Physics , vol. 366 (2019), no. 3, pp. 10691098.Google Scholar
Farah, I., Approximate homomorphisms . Combinatorica , vol. 18 (1998), pp. 335348.Google Scholar
Farah, I., Analytic quotients: theory of liftings for quotients over analytic ideals on the integers . Memoirs of the American Mathematical Society , vol. 148 (2000), no. 702, pp. xvi+177.Google Scholar
Farah, I., Approximate homomorphisms II: Group homomorphisms . Combinatorica , vol. 20 (2000), pp. 4760.Google Scholar
Farah, I., Liftings of homomorphisms between quotient structures and Ulam stability , Logic Colloquium ’98 , volume 13 of Lecture Notes in Logic, A K Peters, Ltd., Wellesley, 2000, pp. 173196.Google Scholar
Farah, I., Dimension phenomena associated with $\beta \mathbb{N}$ -spaces . Topology and its Applications , vol. 125 (2002), pp. 279297.Google Scholar
Farah, I., How many Boolean algebras  $\left(\mathbb{N}\right)/$ are there? Illinois Journal of Mathematics , vol. 46 (2003), pp. 9991033.Google Scholar
Farah, I., Luzin gaps . Transactions of the American Mathematical Society , vol. 356, pp. 21972239.Google Scholar
Farah, I., Rigidity conjectures , Logic Colloquium 2000 , volume 19 of Lecture Notes in Logic, Association for Symbolic Logic, Urbana, IL (R. Cori, A. Razborov, S. Todorčević, and C. Wood, editors), A K Peters, Ltd., Wellesley, 2005, pp. 252271.Google Scholar
Farah, I., All automorphisms of all Calkin algebras . Mathematical Research Letters , vol. 18 (2011), pp. 489503.Google Scholar
Farah, I., All automorphisms of the Calkin algebra are inner . Annals of Mathematics , vol. 173 (2011), no. 2, pp. 619661.Google Scholar
Farah, I., Combinatorial Set Theory and ${\boldsymbol{C}}^{\ast}$ -algebras , Springer Monographs in Mathematics, Springer-Verlag, New York, 2019.Google Scholar
Farah, I., Between reduced powers and ultrapowers . Journal of the European Mathematical Society , vol. 25 (2023), no. 11, pp. 43694394.Google Scholar
Farah, I., Biba’s trick, with applications . Israel Journal of Mathematics , to appear.Google Scholar
Farah, I., Calkin algebra, Kazhdan’s property (T), strongly self-absorbing ${C}^{\ast }$ -algebras . Proceedings of the London Mathematical Society , to appear.Google Scholar
Farah, I, Gannon, K., and Touchard, P., Coordinate recognition: General theory, groups, and other surprises. preprint, 2025. arXiv preprint arXiv:2506.13673.Google Scholar
Farah, I. and Hart, B., Countable saturation of corona algebras . Comptes Rendus Math´ematiques de l’Acad´emie des Sciences , vol. 35 (2013), pp. 3556.Google Scholar
Farah, I., Hart, B., Lupini, M., Robert, L., Tikuisis, A., Vignati, A., and Winter, W., Model theory of ${C}^{\ast }$ -algebras . Memoirs of the American Mathematical Society , vol. 271 (2021), no. 1324, pp. viii+127.Google Scholar
Farah, I., Hart, B., and Sherman, D., Model theory of operator algebras II: Model theory . Israel Journal of Mathematics , vol. 201 (2014), pp. 477505.Google Scholar
Farah, I., Hirshberg, I., and Vignati, A., The Calkin algebra is ${\aleph}_1$ -universal . Israel Journal of Mathematics , vol. 237 (2020), pp. 287309.Google Scholar
Farah, I. and McKenney, P., Homeomorphisms of Čech–Stone remainders: the zero-dimensional case . Proceedings of the American Mathematical Society , vol. 146 (2018), no. 5, pp. 22532262.Google Scholar
Farah, I., McKenney, P., and Schimmerling, E., Some Calkin algebras have outer automorphisms . Archive for Mathematical Logic , vol. 52 (2013), nos. 5–6, pp. 517524.Google Scholar
Farah, I. and Shelah, S., A dichotomy for the number of ultrapowers . Journal of Mathematical Logic , vol. 10 (2010), pp. 4581.Google Scholar
Farah, I. and Shelah, S., Trivial automorphisms . Israel Journal of Mathematics , vol. 201 (2014), pp. 701728.Google Scholar
Farah, I. and Shelah, S., Rigidity of continuous quotients . Journal of the Institute of Mathematics of Jussieu , vol. 15 (2016), no. 1, pp. 128.Google Scholar
Farah, I. and Szabó, G., Coronas and strongly self-absorbing ${C}^{\ast }$ -algebras. preprint, 2024. arXiv preprint arXiv:2411.02274.Google Scholar
Farah, I., Toms, A. S., and Törnquist, A., The descriptive set theory of ${C}^{\ast }$ -algebra invariants . International Mathematics Research Notices , vol. 22 (2013), pp. 51965226. Appendix with C. Eckhardt.Google Scholar
Farah, I. and Vignati, A., Obstructions to countable saturation in corona algebras . Proceedings of the American Mathematical Society , vol. 151 (2023), no. 03, pp. 12851300.Google Scholar
Feferman, S. and Vaught, R., The first order properties of products of algebraic systems . Fundamenta Mathematicae , vol. 47 (1959), no. 1, pp. 57103.Google Scholar
Frolík, Z., Sums of ultrafilters . Bulletin of the American Mathematical Society , vol. 73 (1967), pp. 8791.Google Scholar
Geschke, S., The shift on $P\left(\omega \right)/$ fin. preprint, 2010. https://www.math.uni-hamburg.de/home/geschke/papers/ShiftvsInverseQuotientsOfSymGroup.pdf Google Scholar
Ghasemi, S., Isomorphisms of quotients of FDD-algebras . Israel Journal of Mathematics , vol. 209 (2015), no. 2, pp. 825854.Google Scholar
Ghasemi, S., SAW* algebras are essentially non-factorizable . Glasgow Mathematical Journal , vol. 57 (2015), no. 1, 15.Google Scholar
Ghasemi, S., Reduced products of metric structures: a metric Feferman–Vaught theorem . The Journal of Symbolic Logic , vol. 81 (2016), no. 3, pp. 856875.Google Scholar
Ghasemi, S. and Koszmider, P., An extension of compact operators by compact operators with no nontrivial multipliers . Journal of Noncommutative Geometry , vol. 12 (2018), no 4, pp. 15031529.Google Scholar
Gowers, W. T. and Hatami, O., Inverse and stability theorems for approximate representations of finite groups . Sbornik: Mathematics , vol. 208 (2017), no. 12, p. 1784.Google Scholar
Gromov, M., Asymptotic invariants of infinite groups . In Geometric Group Theory , vol. 2, (Niblo, Graham and Roller, Martin, editors), Cambridge University Press, Cambridge, 1993.Google Scholar
Halmos, P. R., Ten problems in Hilbert space . Bulletin of the American Mathematical Society , vol. 76 (1970), pp. 887933.Google Scholar
Hart, K. P., The Čech-Stone Compactification of the Real Line , Recent Progress in General Topology (Prague, 1991) , (M. Hušek and J. van Mill, editors), North-Holland, Amsterdam, 1992, pp. 317352.Google Scholar
Hausdorff, F., Summen von ${\aleph}_1$ Mengen. Fundamenta Mathematicae , vol. 26 (1936), pp. 241255.Google Scholar
Higson, N. and Roe, J., Analytic K-Homology , Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000.Google Scholar
Hjorth, G., Borel equivalence relations , Handbook of Set Theory , vol. 1 , (Foreman, M. and Kanamori, A., editors), Springer, Dordrecht, 2010, pp. 297332.Google Scholar
Jonsson, B. and Olin, P., Almost direct products and saturation . Compositio Mathematica , vol. 20 (1968), pp. 125132.Google Scholar
Just, W., Nowhere dense $P$ -subsets of ${\omega}^{\ast }$ . Proceedings of the American Mathematical Society , vol. 106 (1989), pp. 11451146.Google Scholar
Just, W., The space ${\left({\omega}^{\ast}\right)}^{n+1}$ is not always a continuous image of ${\left({\omega}^{\ast}\right)}^n$ . Fundamenta Mathematicae , vol. 132 (1989), pp. 5972.Google Scholar
Just, W., Repercussions on a problem of Erdös and Ulam about density ideals . Canadian Journal of Mathematics , vol. 42 (1990), pp. 902914.Google Scholar
Just, W., A modification of Shelah’s oracle chain condition with applications . Transactions of the American Mathematical Society , vol. 329 (1992), pp. 325341.Google Scholar
Just, W., A weak version of AT from OCA . MSRI Publications , vol. 26 (1992), pp. 281291.Google Scholar
Just, W. and Krawczyk, A., On certain Boolean algebras $\mathcal{P}(\omega )/I$ . Transactions of the American Mathematical Society , vol. 285 (1984), pp. 411429.Google Scholar
Kadison, R. V. and Kastler, D., Perturbations of von Neumann algebras. I. Stability of type . American Journal of Mathematics , vol. 94 (1972), pp. 3854.Google Scholar
Kanamori, A.. The Higher Infinite: Large Cardinals in Set Theory From Their Beginnings , Perspectives in Mathematical Logic, Springer, Berlin, 1995.Google Scholar
Kanovei, V. and Reeken, M., On Ulam’s problem concerning the stability of approximate homomorphisms . Trudy Matematicheskogo Instituta imeni VA Steklova , vol. 231 (2000), pp. 249283.Google Scholar
Kanovei, V. and Reeken, M., New Radon–Nikodym ideals . Mathematika , vol. 47 (2002), pp. 219227.Google Scholar
Kazhdan, D., On $\varepsilon$ -representations . Israel Journal of Mathematics , vol. 43 (1982), no. 4, pp. 315323.Google Scholar
Kechris, A. S., Classical Descriptive Set Theory , volume 156 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1995.Google Scholar
Kellerhals, J., Monod, N., and Rørdam, M., Non-supramenable groups acting on locally compact spaces . Documenta Mathematica , vol. 18 (2013), pp. 15971626.Google Scholar
Kellner, J. and Shelah, S., Nowhere trivial automorphisms of $\mathcal{P}(\lambda )/{[\lambda ]}^{<\lambda }$ , for $\lambda$ inaccessible. preprint, 2024. arXiv preprint arXiv:2411.11577.Google Scholar
Kellner, J., Shelah, S., and Tănasie, A. R., On automorphisms of $\mathcal{P}(\lambda )/{[\lambda ]}^{<\lambda }$ . The Journal of Symbolic Logic , vol. 4 (2024), pp. 137.Google Scholar
Kunen, K., $\left\langle \unicode{x3ba}, {\unicode{x3bb}}^{\ast}\right\rangle$ -gaps under MA, handwritten notes, preprint, 1976.Google Scholar
Kunen, K., Set Theory: An Introduction to Independence Proofs , North–Holland, Amsterdam, 1980.Google Scholar
Larson, P., The Stationary Tower . volume 32 of University Lecture Series, American Mathematical Society, Providence, RI, 2004. Notes on a course by W.H.Woodin.Google Scholar
Larson, P. and McKenney, P., Automorphisms of $\mathcal{P}(\lambda )/{}_{\kappa }$ . Fundamenta Mathematicae , vol. 233 (2016), pp. 271291.Google Scholar
H. . O . AH CCCP, ., vol. 11 (1947), pp. 714722.Google Scholar
Mazur, K., ${F}_{\sigma }$ -ideals and ${\omega}_1{\omega}_1^{\ast }$ -gaps in the Boolean algebra $\left(\omega \right)/I$ . Fundamenta Mathematicae , vol. 138 (1991), pp. 103111.Google Scholar
McKenney, P., Reduced products of UHF algebras under forcing axioms, preprint, 2013, arXiv:1303.5037.Google Scholar
McKenney, P. and Vignati, A., Ulam stability for some classes of ${C}^{\ast }$ -algebras . Proceedings of the Royal Society of Edinburgh Section A: Mathematics , vol. 149 (2019), no. 1, pp. 4559.Google Scholar
McKenney, P. and Vignati, A., Forcing axioms and coronas of ${C}^{\ast }$ -algebras . Journal of Mathematical Logic , vol. 21 (2021), no. 2, p. 2150006. 7.Google Scholar
van Mill, J., An introduction to   $\beta \omega$ , Handbook of Set-Theoretic Topology (Kunen, K. and Vaughan, J., editors), North-Holland, Amsterdam, 1984, pp. 503560.Google Scholar
Moore, J. T., The proper forcing axiom , Proceedings of the International Congress of Mathematicians , vol. 2, (R. Bhatia, A. Pal, G. Rangarajan, V. Srinivas and M. Vanninathan, editors), Hindustan Book Agency, New Delhi, 2010, pp. 329.Google Scholar
Moore, J.T., Some remarks on the open coloring axiom . Annals of Pure and Applied Logic , vol. 172 (2021), no. 5, p. 102912.Google Scholar
Motakis, P., Separable spaces of continuous functions as Calkin algebras . Journal of the American Mathematical Society , vol. 37 (2024), no. 1, pp. 137. Google Scholar
Neeman, I., Inner models in the region of a Woodin limit of Woodin cardinals . Annals of Pure and Applied Logic , vol. 116 (2002), nos. 1–3, pp. 67155.Google Scholar
Oliver, M. R., Continuum-many boolean algebras of the form $\mathcal{P}(\omega )\mathcal{I}/\mathcal{I}$ , Borel . The Journal of Symbolic Logic , vol. 69 (2004), no. 3,pp. 799816.Google Scholar
Palmgren, E., A direct proof that certain reduced products are countably saturated. U.U.D.M. Report, 27, 1994.Google Scholar
Palyutin, E. A., Categorical Horn classes I . Algebra Logika , vol. 19 (1980), pp. 582614.Google Scholar
Palyutin, E. A., Categorical Horn classes II . Algebra Logika , vol. 49 (2010), pp. 782802.Google Scholar
Parovičenko, I. I., A universal bicompact of weight $\aleph$ . Soviet Mathematics Doklady , vol. 4 (1963), pp. 592592.Google Scholar
Pedersen, G. K., SAW*-algebras and corona ${C}^{\ast }$ -algebras, contributions to non-commuttative topology . Journal of Operator Theory , vol. 15 (1986), no. 1, pp. 1532.Google Scholar
Pedersen, G. K., The corona construction , Operator Theory: Proceedings of the 1988 GPOTS-Wabash Conference (Indianapolis, IN, 1988) , volume 225 of the Pitman Research Notes in Mathematics Series, (J. B. Conway and B. B. Morrel, editors), Longman Scientific & Technical, Harlow, 1990, pp. 4992.Google Scholar
Phillips, N. C. and Weaver, N., The Calkin algebra has outer automorphisms . Duke Mathematical Journal , vol. 139 (2007), pp. 185202.Google Scholar
Pillay, A., An Introduction to Stability Theory , Courier Corporation, The Clarendon Press, Oxford University Press, New York, 2008.Google Scholar
Protasov, I. V., Coronas of ultrametric spaces . Commentationes Mathematicae Universitatis Carolinae , vol. 52 (2011), no. 2, pp. 303307.Google Scholar
Rabinovich, V. S., Roch, S., and Roe, J., Fredholm indices of band-dominated operators on discrete groups . Integral Equations Operator Theory , vol. 49 (2004), pp. 221238.Google Scholar
Roe, J., An index theorem on open manifolds. I . Journal of Differential Geometry , vol. 27 (1988), pp. 87113.Google Scholar
Roe, J., Coarse cohomology and index theory on complete Riemannian manifolds . Memoirs of the AMS , vol. 104 (1993), no. 497, x+90 pp.Google Scholar
Roe, J., Lectures on Coarse Geometry , vol. 31 , American Mathematical Society, Providence, 2003.Google Scholar
Rørdam, M., Larsen, F., and Laustsen, N. J., An Introduction to K-Theory for C ${}^{\ast}$ Algebras , Number 49 in London Mathematical Society Student Texts, Cambridge University Press, Cambridge, 2000.Google Scholar
Rørdam, M. and Sierakowski, A., Purely infinite ${C}^{\ast }$ -algebras arising from crossed products. Ergodic Theory and Dynamical Systems , vol. 32 (2012), pp. 273293.Google Scholar
Rørdam, M. and Størmer, E., Classification of Nuclear   ${\boldsymbol{C}}^{\ast}$ -Algebras. Entropy in Operator Algebras , volume 126 of Encyclopaedia of Mathematical Sciences, Springer-Verlag, Berlin, 2002. Operator Algebras and Non-commutative Geometry, 7.Google Scholar
Rosłanowski, A. and Shelah, S., Norms on Possibilities I: Forcing with Trees and Creatures, volume 671 of Memoirs of the American Mathematical Society, American Mathematical Society, Providence, 1999.Google Scholar
Rudin, W., Homogeneity problems in the theory of Čech compactifications . Duke Mathematics Journal , vol. 23 (1956), pp. 409419.Google Scholar
Sakai, S., Derivations of simple ${C}^{\ast }$ -algebras. Journal of Functional Analysis , vol. 2 (1968), pp. 202206.Google Scholar
Sakai, S., Derivations of simple ${C}^{\ast }$ -algebras. II. Bulletin de la Société Mathématique de France , vol. 99 (1971), pp. 259263.Google Scholar
Sakai, S., Derivations of simple ${C}^{\ast }$ -algebras, III. Tohoku Mathematical Journal , vol. 23 (1971), no. 3, pp. 559564.Google Scholar
Schochet, C. L., A Pext primer: Pure Extensions and   ${\mathbf{lim}^{\boldsymbol{1}}}$ for Infinite Abelian Groups , vol. 1, New York Journal of Mathematics; NYJM Monographs, 2003.Google Scholar
Šemrl, P., Nonlinear perturbations of homomorphisms on $C(X)$ . The Quarterly Journal of Mathematics , vol. 50 (1999), no. 197, pp. 87109.Google Scholar
Shelah, S., Proper Forcing , Lecture Notes in Mathematics 940, Springer, Cham, 1982.Google Scholar
Shelah, S., Vive la différence I: Nonisomorphism of ultrapowers of countable models , Set Theory of the Continuum , (H. Judah, W. Just, and H. Woodin, editors), Springer-Verlag, New York, 1992, pp. 357405.Google Scholar
Shelah, S., Vive la différence II. the Ax–Kochen isomorphism theorem . Israel Journal of Mathematics , vol. 85 (1994), nos. 1–3, pp. 351390.Google Scholar
Shelah, S., Proper and Improper Forcing , Perspectives in Mathematical Logic, Springer, Cham, 1998.Google Scholar
Shelah, S., Vive la différence III . Israel Journal of Mathematics , vol. 166 (2008), no. 1, pp. 6196.Google Scholar
Shelah, S. and Steprāns, J., PFA implies all automorphisms are trivial . Proceedings of the American Mathematical Society , vol. 104 (1988), pp. 12201225.Google Scholar
Shelah, S. and Steprāns, J., Non-trivial homeomorphisms of $\beta \mathbb{N}\setminus \mathbb{N}$ without the continuum hypothesis . Fundamenta Mathematicae , vol. 132 (1989), pp. 135141.Google Scholar
Shelah, S. and Steprāns, J., Somewhere trivial autohomeomorphisms . Journal of the London Mathematical Society , vol. 49 (1994), no. 3, pp. 569580.Google Scholar
Shelah, S. and Steprāns, J., Martin’s axiom is consistent with the existence of nowhere trivial automorphisms . Proceedings of the American Mathematical Society , vol. 130 (2002), no. 7, pp. 20972106.Google Scholar
Shelah, S. and Steprāns, J., Non-trivial automorphisms of $\mathcal{P}(\mathbb{N})/{\left[\mathbb{N}\right]}^{<{\aleph}_0}$ from variants of small dominating number. European Journal of Mathematics , vol. 1 (2015), no. 3, pp. 534544.Google Scholar
Shelah, S. and Steprāns, J., When automorphisms of $\mathcal{P}(\kappa )/{\left[\kappa \right]}^{<{\aleph}_0}$ are trivial off a small set . Fundamenta Mathematicae , vol. 235 (2016), pp. 167181.Google Scholar
Shelah, S. and Steprāns, J., Revised version of “Non-trivial automorphisms of $\mathcal{P}(\mathbb{N})/{\left[\mathbb{N}\right]}^{<{\aleph}_0}$ from variants of small dominating number” . European Journal of Mathematics , vol. 11 (2025), no. 2, pp. 119.Google Scholar
Sikonia, W., The von Neumann converse of Weyl’s theorem . Indiana University Mathematics Journal , vol. 21 (1971/72), pp. 121124.Google Scholar
Silveira Salles, T., On quotients of   $\boldsymbol{\omega}$ * and automorphisms of P( $\boldsymbol{\omega}$ )/fin that preserve or invert the shift . PhD thesis, Universitäts-und Landesbibliothek Bonn, 2016.Google Scholar
Solecki, S., Analytic ideals . The Bulletin of Symbolic Logic , vol. 2 (1996), pp. 339348.Google Scholar
Špakula, J., Uniform $K$ -homology theory. Journal of Functional Analysis , vol.~257 (2009), no. 1, pp. 88121.Google Scholar
Steinhorn, C. I., Borel structures and measure and category logics , Model-Theoretic Logics (Barwise, J. and Feferman, S., editors), Perspectives in Mathematical Logic, Springer, New York, 1985, pp. 579595.Google Scholar
Steprāns, J., Topological invariants in the Cohen model . Topology and its Applications , vol. 45 (1992), no. 2, pp. 85101.Google Scholar
Steprāns, J., The autohomeomorphism group of the čech–stone compactification of the integers . Transactions of the American Mathematical Society , vol. 355 (2003), no. 10, pp. 42234240.Google Scholar
Talagrand, M., Maharam’s problem . Annals of Mathematics , vol. 168 (2008), no. 3, pp. 9811009.Google Scholar
Todorcevic, S., Partition Problems in Topology , volume 84 of Contemporary mathematics, American Mathematical Society, Providence, 1989.Google Scholar
Truss, J. K., On recovering structures from quotients of their automorphism groups . Ordered Groups and Infinite Permutation Groups , (W. C. Holland, editor), Kluwer Academic Publishers Group, Dordrecht, 1996, pp. 6395.Google Scholar
Tryba, J., Different kinds of density ideals . Journal of Mathematical Analysis and Applications , vol. 498 (2021), no. 1, p. 124930.Google Scholar
Ulam, S.M., Problems in Modern Mathematics , John Wiley & Sons, New York, 1964.Google Scholar
Vaccaro, A., Trivial endomorphisms of the Calkin algebra . Israel Journal of Mathematics , vol. 247 (2022), no. 2, pp. 873903.Google Scholar
van Douwen, E. K. and van Mill, J., Parovičenko’s characterization of $\beta \omega -\omega$ implies CH . Proceedings of the American Mathematical Society , vol. 72 (1978), no. 3, pp. 539541.Google Scholar
Veličković, B., OCA and automorphisms of $\mathcal{P}(\omega )/ Fin$ . Topology and its Applications , vol. 49 (1992), pp. 113.Google Scholar
Veličković, B., Definable automorphisms of $\mathcal{P}(\omega )/ Fin$ . Proceedings of the American Mathematical Society , vol. 96 (1986), pp. 130135.Google Scholar
Viale, M., Category forcings, MM ${}^{+++}$ , and generic absoluteness for the theory of strong forcing axioms. Journal of the American Mathematical Society , vol. 29 (2016), no. 3, pp. 675728.Google Scholar
Vignati, A., Rigidity of Higson coronas. arXiv:2502.10073.Google Scholar
Vignati, A., Nontrivial homeomorphisms of Čech-Stone remainders . Münster Journal of Mathematics , vol. 10 (2017), no. 1, pp. 189200.Google Scholar
Vignati, A., Rigidity conjectures for continuous quotients . Annales scientifiques de l’Ecole normale supérieure (4) , vol. 55 (2022), no. 6, pp. 16871738.Google Scholar
Vignati, A. and Yilmaz, D., The weak extension principle . The Journal of Symbolic Logic , appear in arXiv:2407.20791.Google Scholar
Von Neumann, J., Charakterisierung des spektrums eines integraloperators . Revue de Métaphysique et de Morale , vol. 42 (1935), no. 4.Google Scholar
Weyl, H., Über beschränkte quadratische formen, deren differenz vollstetig ist . Rendiconti del Circolo Matematico di Palermo (1884-1940) , vol. 27 (1909), no. 1, pp. 373392.Google Scholar
White, S., Abstract classification theorems for amenable ${C}^{\ast }$ -algebras , ICM—International Congress of Mathematicians , vol. 4 , Sections 5–8 (D. Beliaev and S. Smirnov, editors), EMS Press, Berlin, 2023, pp. 33143338.Google Scholar
Willett, R., Band-Dominated Operators and the Stable Higson Corona . PhD thesis, The Pennsylvania State University, 2009.Google Scholar
Zapletal, J., Descriptive set theory and definable forcing . Memoirs of the American Mathematical Society , vol. 167 (2004), no. 793, pp. viii+141.Google Scholar
Zapletal, J., Forcing Idealized , Cambridge University Press, Cambridge, 2008.Google Scholar