Hostname: page-component-cb9f654ff-qc88w Total loading time: 0 Render date: 2025-08-24T14:42:41.481Z Has data issue: false hasContentIssue false

Complications of Middle Meningeal Artery Embolization for Chronic Subdural Hematoma: A Systematic Literature Review

Published online by Cambridge University Press:  15 July 2025

Gunjan Jindal
Affiliation:
Departments of Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary and Foothills Medical Centre, Calgary, AB, Canada
Yekta Sharafaddin-Zadeh
Affiliation:
Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
Omar Bukhari
Affiliation:
Department of Diagnostic Imaging, Foothills Medical Centre, University of Calgary, Calgary, AB, Canada
Mayank Goyal
Affiliation:
Departments of Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary and Foothills Medical Centre, Calgary, AB, Canada Department of Diagnostic Imaging, Foothills Medical Centre, University of Calgary, Calgary, AB, Canada
Johanna M. Ospel*
Affiliation:
Departments of Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary and Foothills Medical Centre, Calgary, AB, Canada Department of Diagnostic Imaging, Foothills Medical Centre, University of Calgary, Calgary, AB, Canada
*
Corresponding author: Johanna M. Ospel; Email: johannaospel@gmail.com

Abstract

Background:

Chronic subdural hematoma (cSDH) is a common condition, especially in the older population, and causes considerable morbidity. Recently, middle meningeal artery embolization (MMAE) has shown promise as a minimally invasive intervention for cSDH by disrupting the flow to the hematoma neomembranes and thus reducing recurrence.

Methods:

We performed a systematic review of the literature using PubMed/Medline and Google Scholar to identify studies reporting on MMAE for cSDH over the past 30 years. After screening 4103 articles and reviewing 600 full-text studies, 176 studies were selected, including case reports, case series, retrospective and prospective studies and randomized controlled trials. Patient demographics, embolic agents used, frequency, type and severity of complications, hematoma recurrence and need for repeat surgery were extracted from the included studies.

Results:

Our analysis included 9780 patients (75.9% male), with mean/median ages ranging from 62.1 to 82.5 years. MMAE-related complications were reported in approximately 3%. Procedure-related neurological complications were the most frequent, followed by systemic complications, access site, non-procedure-related neurological complications, procedure-linked vascular complications specific to MMA and miscellaneous complications. Hematoma recurrence was reported in 6%, and repeat or rescue surgery was necessary in 6.1%. These results are consistent with major clinical trials evaluating MMAE safety and efficacy in cSDH.

Conclusion:

Based on current published literature, MMAE appears to be an effective and overall safe treatment option for cSDH. Complications, although infrequent, can occur, and some of these are disabling. Meticulous pre-procedural planning and imaging are essential to reduce the risk of complications.

Résumé

RÉSUMÉ

Complications de l’embolisation de l’artère méningée moyenne dans l’hématome sous-dural chronique : revue systématique de la documentation médicale.

Contexte :

Les hématomes sous-duraux chroniques (HSDC) sont des formations sanguines fréquentes, surtout chez les personnes âgées, et ils causent une morbidité importante. L’embolisation de l’artère méningée moyenne (EAMM) s’est révélée, au cours des dernières années, une intervention à effraction minimale prometteuse dans les HSDC en perturbant le flux sanguin vers les pseudomembranes et en réduisant ainsi les récidives.

Méthode :

Il s’agit d’une revue systématique de la documentation, réalisée à l’aide de PubMed et Medline ainsi que de Google Scholar, qui visait à relever les études portant sur l’EAMM dans le contexte des HSDC au cours des 30 dernières années. À la suite d’une présélection de 4103 articles et d’un examen de 600 documents en version intégrale, 176 études ont été retenues, qui comprenaient des exposés de cas, des séries de cas, des études rétrospectives et prospectives ainsi que des essais comparatifs à répartition aléatoire. De ceux-ci ont été tirés différents renseignements : données démographiques; médicaments d’embolisation; fréquence et gravité des complications et leur type; récidives d’hématome et nécessité d’une reprise chirurgicale.

Résultats :

L’analyse comptait 9780 patients (hommes : 75,9 %), et les âges moyen et médian variaient de 62,1 ans à 82,5 ans. Des complications liées à l’EAMM ont été signalées dans environ 3 % des cas. Les complications neurologiques étaient les plus fréquentes, suivies des complications générales, à l’exclusion des précédentes; les points d’accès; les complications neurologiques non liées à l’intervention; les complications liées à l’intervention mais propres à la MMA et d’autres types de complications. Des récidives d’hématome ont été relevées dans 6 % des cas, et 6,1 % des patients ont dû subir une reprise chirurgicale ou une chirurgie de rattrapage. Ces résultats vont dans le même sens que ceux de grands essais cliniques visant à évaluer l’innocuité et l’efficacité de l’EAMM dans le contexte des HSDC.

Conclusion :

D’après la documentation publiée à l’heure actuelle, l’EAMM semble une intervention efficace et généralement sûre dans le traitement des HSDC. Bien qu’elles soient peu fréquentes, les complications sont toujours possibles, et certaines d’elles peuvent même être invalidantes. Aussi faut-il faire preuve d’une grande minutie dans la planification de l’intervention et les examens par imagerie afin de réduire les risques de complications.

Information

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Neurological Sciences Federation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Sim, YW, Min, KS, Lee, MS, Kim, YG, Kim, DH. Recent changes in risk factors of chronic subdural hematoma . J Korean Neurosurg Soc. 2012;52:234. doi: 10.3340/jkns.2012.52.3.234.Google Scholar
Rauhala, M, Helén, P, Huhtala, H, et al. Chronic subdural hematoma—incidence, complications, and financial impact. Acta neurochir (Wien). 2020;162:20332043. doi: 10.1007/s00701-020-04398-3.Google Scholar
Balser, D, Farooq, S, Mehmood, T, Reyes, M, Samadani, U. Actual and projected incidence rates for chronic subdural hematomas in United States Veterans administration and civilian populations. J Neurosurg. 2015;123:12091215. doi: 10.3171/2014.9.JNS141550.Google Scholar
Edlmann, E, Giorgi-Coll, S, Whitfield, PC, Carpenter, KL, Hutchinson, PJ. Pathophysiology of chronic subdural haematoma: inflammation, angiogenesis and implications for pharmacotherapy . J Neuroinflammation. 2017;14:108. doi: 10.1186/s12974-017-0881-y.Google Scholar
Hashimoto, T, Ohashi, T, Watanabe, D, et al. Usefulness of embolization of the middle meningeal artery for refractory chronic subdural hematomas . Surg Neurol Int. 2013;4:104. doi: 10.4103/2152-7806.116679.Google Scholar
Natali, AL, Reddy, V, Leo, JT. Neuroanatomy, Middle meningeal arteries. In: Treasure Island: StatPearls; 2025.Google Scholar
Martínez, JL, Domingo, RA, Sattur, M, et al. The middle meningeal artery: branches, dangerous anastomoses, and implications in neurosurgery and neuroendovascular surgery. Oper Neurosurg. 2022;22:13. doi: 10.1227/ONS.0000000000000010.Google Scholar
Shotar, E, Premat, K, Lenck, S, et al. Angiographic anatomy of the middle meningeal artery in relation to chronic subdural hematoma embolization. Clin Neuroradiol. 2022;32:1. doi: 10.1007/s00062-021-00996-5.Google Scholar
Geibprasert, S, Pongpech, S, Armstrong, D, Krings, T. Dangerous extracranial-intracranial anastomoses and supply to the cranial nerves: vessels the neurointerventionalist needs to know. AJNR. 2009;30:14591468. doi: 10.3174/ajnr.A1500.Google Scholar
Tubbs, RS, Walker, AM, Demerdash, A, Matusz, P, Loukas, M, Cohen-Gadol, AA. Skull base connections between the middle meningeal and internal carotid arteries. ChNS. 2015;31:15151520. doi: 10.1007/s00381-015-2763-x.Google Scholar
Pilawska, SA, Dębicka, M, Krzyżewski, RM, et al. Distribution of the middle meningeal artery variants in patients undergoing embolization for chronic subdural hematoma. World Neurosurg. 2024;192:e468e473. doi: 10.1016/j.wneu.2024.09.137.Google Scholar
Hung, A, Das, O, Kalluri, A, et al. Cost savings on inpatient hospitalization for middle meningeal artery embolization in the setting of increased case volume and low complications rate. World Neurosurg. 2024;190:e868e873.Google Scholar
O’Gorman, J, Geevarghese, R, Bodard, S, et al. Embolization of middle meningeal arteries for symptomatic subacute subdural hematoma in patients with cancer. Acad Radiol. 2024;31(10):41964200.Google Scholar
Liebert, A, Voit-Höhne, H, Ritter, L, et al. Embolization of the middle meningeal artery vs. second surgery—treatment response and volume course of recurrent chronic subdural hematomas. Acta Neurochir. 2023;165(7):19671974.Google Scholar
Filo, J, Salih, M, Alwakaa, O, et al. Factors associated with extended hospitalization in patients who had adjuvant middle meningeal artery embolization after conventional surgery for chronic subdural hematomas. World Neurosurg. 2024;189:e168e176.Google Scholar
Campos, JK, Meyer, BM, Zarrin, DA, et al. Immediate procedural safety of adjunctive proximal coil occlusion in middle meningeal artery embolization for chronic subdural hematomas: experience in 137 cases. Interv Neuroradiol. 2024:15910199231224003.Google Scholar
Golub, D, McBriar, JD, Donnelly, BM, et al. Internal hematoma architecture predicts subdural hematoma responsiveness to standalone middle meningeal artery embolization. Neuroradiol. 2024:13.Google Scholar
Salah, WK, Baker, C, Scoville, JP, et al. Middle meningeal artery embolization as a perioperative adjunct to surgical evacuation of nonacute subdural hematomas: an multicenter analysis of safety and efficacy. Interv Neuroradiol. 2023:15910199231162665.Google Scholar
Ng, S, Derraz, I, Boetto, J, et al. Middle meningeal artery embolization as an adjuvant treatment to surgery for symptomatic chronic subdural hematoma: a pilot study assessing hematoma volume resorption. J NeuroInterventional Surg. 2020;12(7):695699.Google Scholar
Orscelik, A, Senol, YC, Bilgin, C, et al. Middle meningeal artery embolization without surgical evacuation for chronic subdural hematoma: a single-center experience of 209 cases. Front Neurol. 2023;14:1222131. doi: 10.3389/fneur.2023.1222131.Google Scholar
Lee, S, Srivatsan, A, Srinivasan, VM, et al. Middle meningeal artery embolization for chronic subdural hematoma in cancer patients with refractory thrombocytopenia. J Neurosurg. 2021;136(5):12731277.Google Scholar
Abdelsalam, A, Sanikommu, S, Ramsay, I, et al. LB-013 Middle meningeal artery embolization for chronic subdural hematoma using n-BUTYL cyanoacrylate with D5W push technique: a multicentric North American study of 269 patients; 2024.Google Scholar
Majidi, S, Matsoukas, S, De Leacy, RA, et al. Middle meningeal artery embolization for chronic subdural hematoma using n-butyl cyanoacrylate with D5W push technique. Neurosurg. 2022;90(5):533537.Google Scholar
Kan, P, Maragkos, GA, Srivatsan, A, et al. Middle meningeal artery embolization for chronic subdural hematoma: a multi-center experience of 154 consecutive embolizations. Neurosurg. 2021;88:268277. doi: 10.3171/2021.5.JNS21109.Google Scholar
Krothapalli, N, Patel, S, Fayad, M, et al. Outcomes of particle versus liquid embolic materials used in middle meningeal artery embolization for the treatment of chronic subdural hematoma. World neurosurgery. 2023;173:e27e36.Google Scholar
Salem, MM, Kuybu, O, Nguyen Hoang, A, et al. Middle meningeal artery embolization for chronic subdural hematoma: predictors of clinical and radiographic failure from 636 embolizations. Radiology. 2023;307:e222045.Google Scholar
Dzaye, O, Brahmbhatt, A, Abajian, A, et al. Middle meningeal artery embolization using cone-beam computed tomography augmented guidance in patients with cancer. Diagnostic and interventional imaging. 2023;104(7–8):368372.Google Scholar
Weinberg, JH, Akhter, A, Zakeri, A, et al. Middle meningeal artery embolization for membranous versus nonmembranous subdural hematomas: a retrospective and multicenter cohort study. World Neurosurg. 2023;177:e680e685.Google Scholar
Krothapalli, N, Fayad, M, Patel, S, et al. Use of reverse angle guide catheter with trans-radial approach in patients undergoing middle meningeal artery embolization. Front Neurol. 2022;13:990722.Google Scholar
Yamamoto, M, Fujiwara, G, Takezawa, H, Uzura, Y, Yokoya, S, Oka, H. Transradial versus transfemoral access for middle meningeal artery embolization: Choice of the access route considering delirium in the elderly. Surgical Neurology International. 2024;15:276.Google Scholar
Catapano, JS, Karahalios, K, Srinivasan, VM, et al. Chronic headaches and middle meningeal artery embolization. J Neurointerventional Surg. 2022;14(3):301303.Google Scholar
Khorasanizadeh, M, Shutran, M, Garcia, A, et al. Middle meningeal artery embolization for treatment of chronic subdural hematomas: does selection of embolized branches affect outcomes? J Neurosurg. 2022;138(6):14941502.Google Scholar
Martinez-Gutierrez, JC, D’Amato, SA, Zeineddine, HA, et al. Middle meningeal artery embolization of septated chronic subdural hematomas. Interv Neuroradiol. 2023:15910199231184521.Google Scholar
Martinez-Gutierrez, JC, Dawes, BH, Zeineddine, HA, et al. Middle meningeal artery embolization reduces recurrence following surgery for septated chronic subdural hematomas. Clin Neurol Neurosurg. 2024;240:108252.Google Scholar
Shotar, E, Meyblum, L, Premat, K, et al. Middle meningeal artery embolization reduces the post-operative recurrence rate of at-risk chronic subdural hematoma. J Neurointerv Surg. 2020;12:12091213. doi: 10.1136/neurintsurg-2020-016048.Google Scholar
Imai, N, Kato, T, Ito, Y, Morishima, R, Aki, T, Shirakami, SI. Timing of chronic subdural hematoma treatment affects middle meningeal artery embolization outcome. Surg Neurol Int. 2024;15:214. doi: 10.25259/SNI_293_2024.Google Scholar
Carpenter, A, Rock, M, Dowlati, E, et al. Middle meningeal artery embolization with subdural evacuating port system for primary management of chronic subdural hematomas. Neurosurg Rev. 2022;45:439449. doi: 10.1007/s10143-021-01553-x.Google Scholar
Sioutas, GS, Shekhtman, O, Dagli, MM, et al. Middle meningeal artery patency after surgical evacuation for chronic subdural hematoma. Neurosurgical Review. 2024;47(1):145.Google Scholar
Khorasanizadeh, M, Maroufi, SF, Mukherjee, R, Sankaranarayanan, M, Moore, JM, Ogilvy, CS. Middle meningeal artery embolization in adjunction to surgical evacuation for treatment of subdural hematomas: a nationwide comparison of outcomes with isolated surgical evacuation. Neurosurgery. 2023;93(5):10821089.Google Scholar
Joyce, E, Bounajem, MT, Scoville, J, et al. Middle meningeal artery embolization treatment of nonacute subdural hematomas in the elderly: a multiinstitutional experience of 151 cases. Neurosurg Focus. 2020;49(4):E5.Google Scholar
Enriquez-Marulanda, A, Gomez-Paz, S, Salem, MM, et al, Thomas AJ. Middle meningeal artery embolization versus conventional treatment of chronic subdural hematomas. Neurosurg. 2021;89(3):486495.Google Scholar
Sila, D, Casnati, FL, Vojtková, M, Kirsch, P, Rath, S, Charvát, F. Middle meningeal artery embolization versus surgery in patients with chronic subdural hematoma—no more fence sitting?. Neurol International. 2023;15(4):14801488.Google Scholar
Dicpinigaitis, AJ, Al-Mufti, F, Cooper, JB, et al. Nationwide trends in middle meningeal artery embolization for treatment of chronic subdural hematoma: A population-based analysis of utilization and short-term outcomes. J Clin Neurosci. 2021;94:7075.Google Scholar
Scoville, JP, Joyce, E, Tonetti, DA, et al. Radiographic and clinical outcomes with particle or liquid embolic agents for middle meningeal artery embolization of nonacute subdural hematomas. Interv Neuroradiol. 2023;29(6):683690.Google Scholar
Catapano, JS, Ducruet, AF, Srinivasan, VM, et al. Radiographic clearance of chronic subdural hematomas after middle meningeal artery embolization. J Neurointerventional Surg. 2022;14(12):12791283.Google Scholar
Salah, WK, Findlay, MC, Baker, CM, et al. The influence of coagulopathy on radiographic and clinical outcomes in patients undergoing middle meningeal artery embolization as standalone treatment for non-acute subdural hematomas. J Neurotrauma. 2024;41(11–12):13751383.Google Scholar
Mir, O, Yaghi, S, Pujara, D, et al. Safety of antithrombotic resumption in chronic subdural hematoma patients with middle meningeal artery embolization: a case control study. J Stroke Cerebrovasc Dis. 2022;31(4):106318.Google Scholar
Perng, PS, Chuang, MT, Wong, CE, et al. Simple coiling of middle meningeal artery embolization for chronic subdural hematoma: An inverse probability of treatment weighting matched cohort study. Interv Neuroradiol. 2024:15910199241234407.Google Scholar
Saway, BF, Roth, W, Salvador, CD, et al. Subdural evacuation port system and middle meningeal artery embolization for chronic subdural hematoma: a multicenter experience. J Neurosurg. 2022;139(1):131138.Google Scholar
Chen, H, Salem, MM, Colasurdo, M, et al. Standalone middle meningeal artery embolization versus middle meningeal artery embolization with concurrent surgical evacuation for chronic subdural hematomas: a multicenter propensity score matched analysis of clinical and radiographic outcomes. J Neurointerventional Surg. 2024;16(12):13131319.Google Scholar
Morsi, RZ, Thind, S, Baskaran, A, et al. Early single-center experience with middle meningeal artery embolization using Zoom™ 45 Catheter. Interv Neuroradiol. 2024:15910199241250078. doi: 10.1177/15910199241250078.Google Scholar
Palmer, B, Campbell, M, Maertz, K, et al. Analysis of middle meningeal artery embolization for the treatment of chronic, acute on chronic, and subacute subdural hematomas. Surg Neurol Int. 2024;15:71.Google Scholar
Salem, MM, Helal, A, Gajjar, AA, et al. Embolic materials’ comparison in meningeal artery embolization for chronic subdural hematomas: multicenter propensity score–matched analysis of 1070 cases. Neurosurg. 2025;96(5):10671079.Google Scholar
Khorasanizadeh, M, Shutran, M, Garcia, A, et al. Middle meningeal artery embolization with isolated use of coils for treatment of chronic subdural hematomas: a case series. World Neurosurg. 2022;165:e581e587.Google Scholar
Duangprasert, G, Sukhor, S, Noiphithak, R, Tantongtip, D. Comparison of adjunctive middle meningeal artery embolization using embosphere particles versus surgical drainage alone for the treatment of chronic subdural hematoma: A prospective study. J Clin Neurosci. 2024;128:110808.Google Scholar
Mohamed, S, Villabona, A, Kennion, O, et al. Middle meningeal artery embolisation for chronic subdural haematomas: the first prospective UK study. Br J Neurosurg. 2022;36:786791. doi: 10.1080/02688697.2022.2097200.Google Scholar
Ma, L, Hoz, SS, Doheim, MF, et al. Nonopacification of Frontal and Parietal Branches After Middle Meningeal Artery Embolization: A Radiographic Benchmark. World Neurosurgery. 2024;192:e513e522.Google Scholar
Fiorella, D, Monteith, SJ, Hanel, R, et al. Embolization of the middle meningeal artery for chronic subdural hematoma. N Engl J Med. 2025;392(9):855864.Google Scholar
Davies, JM, Knopman, J, Mokin, M, et al. Adjunctive middle meningeal artery embolization for subdural hematoma. N Engl J Med. 2024;391:18901900. doi: 10.1056/NEJMoa2313472.Google Scholar
Liu, J, Ni, W, Zuo, Q, et al. Middle meningeal artery embolization for nonacute subdural hematoma. N Engl J Med. 2024;391:19011912. doi: 10.1056/NEJMoa2401201.Google Scholar
Salem, MM, Helal, A, Gajjar, AA, et al. Embolic materials’ comparison in meningeal artery embolization for chronic subdural hematomas: multicenter propensity score-matched analysis of 1070 Cases. Neurosurg. 2022;96:10227. doi: 10.1227/neu.0000000000003218.Google Scholar
Abdelsalam, A, Ramsay, IA, Luther, EM, et al. Middle meningeal artery embolization for chronic subdural hematoma using N-butyl cyanoacrylate with a D5W push technique: a multicentric North American study of 269 patients. Oper Neurosurg. 2022;28:10227. doi: 10.1227/ons.0000000000001369.Google Scholar
Ma, L, Hoz, SS, Doheim, MF, et al. Impact of embolisate penetration, type, and technique on results after standalone middle meningeal artery embolization for chronic subdural hematoma. Neurosurg. 2022;95:10227. doi: 10.1227/neu.0000000000003023.Google Scholar
Lambert-Cheatham, NA, Pasmanter, NR, Nagia, L. Oculomotor and facial nerve palsies after middle meningeal artery embolization. J Neuroophthalmol. 2024;44:e447e449. doi: 10.1097/WNO.0000000000001845.Google Scholar
Ferber, A, Zhou, Y, Greenwald, B. Persistent facial nerve palsy after middle meningeal artery embolization for subdural hematoma: a case report. Brain Inj. 2023;37:457460. doi: 10.1080/02699052.2023.2166116.Google Scholar
Shotar, E, Premat, K, Barberis, E, et al. Dural arteriovenous fistula formation following bilateral middle meningeal artery embolization for the treatment of a chronic subdural hematoma: a case report . Acta Neurochir (Wien). 2021;163:10691073. doi: 10.1007/s00701-020-04696-w.Google Scholar
Piergallini, L, Dargazanli, C, Derraz, I, Costalat, V. Immediate development of dural arteriovenous fistula after middle meningeal artery embolization: first angiographic demonstration. World Neurosurg. 2019;128:606610. doi:10.1016/j.wneu.2019.04.246.Google Scholar
Wilseck, ZM, Khan, AA, Chaudhary, N, Gemmete, JJ. Iatrogenic pseudoaneurysm of the middle meningeal artery during embolization of bilateral chronic subdural hematomas. Interv Neuroradiol. 2024;30:782786. doi: 10.1177/15910199221107250.Google Scholar
Housley, SB, Cappuzzo, JM, Waqas, M, Lim, J, Levy, EI. Rescue of inadvertent superior sagittal sinus occlusion during middle meningeal artery embolization. Interv Neuroradiol. 2022;31(4):574577. doi: 10.1177/15910199221138152.Google Scholar
Watchmaker, JM, Sisti, JA, Shigematsu, T. Occult middle meningeal artery to middle cerebral artery anastomosis associated with prior trauma . BMJ Case Rep. 2024;17:e259436. doi: 10.1136/bcr-2023-259436.Google Scholar
Samarage, HM, Harary, M, Morales, J, Kaneko, N, Kim, W. Epidural empyema following nBCA embolization of the middle meningeal artery for the treatment of a chronic subdural hematoma. Br J Neurosurg. 2022;39:14. doi: 10.1080/02688697.2022.2159927.Google Scholar
Raviskanthan, S, Mortensen, PW, Zhang, YJ, Lee, AG. Bilateral Abducens Nerve Palsies After Middle Meningeal Artery Embolization for Chronic Subdural Hematoma. J Neuroophthalmol. 2022;42(2):e505e507. doi: 10.1097/WNO.0000000000001305.Google Scholar
Vilanilam, GK, Pokhylevych, H, Kamran, M, Patro, SN, Vattoth, S. Ischemia of the parotid gland and adjacent muscles of mastication following middle meningeal artery embolization. Neuroradiol J. 2023;36(5):625629. doi: 10.1177/19714009221150857.Google Scholar
Hess, RM, OConnor, TE, Khan, A, Siddiqui, AH, Davies, J. Minimally Invasive Approach to Subdural Hematoma Treatment Using IRRAflow Catheter and Middle Meningeal Artery Embolization. Cureus. 2021;13(3):e13979. doi: 10.7759/cureus.13979.Google Scholar
Fiorella, D, Monteith, SJ, Hanel, R, et al. Embolization of the middle meningeal artery for chronic subdural hematoma. N Engl J Med. 2024;392:855864. doi: 10.1056/NEJMoa2409845.Google Scholar
Debs, LH, Vale, FL, Walker, S, et al. Middle meningeal artery embolization following surgical evacuation of symptomatic chronic subdural hematoma improves outcomes, interim results of a prospective randomized trial . J Clin Neurosci. 2024;128:110783. doi: 10.1016/j.jocn.2024.110783.Google Scholar
Lam, A, Selvarajah, D, San Htike, S, et al. The efficacy of postoperative middle meningeal artery embolization on chronic subdural hematoma-a multicentered randomized controlled trial. Surg Neurol Int. 2023;14:168. doi: 10.25259/SNI_208_2023.Google Scholar