The Cambrian Explosion saw the widespread development of mineralized skeletons. At this time, nearly every major animal phylum independently evolved strategies to build skeletons through either agglutination or biomineralization. Although most organisms settled on a single strategy, Salterella Billings, 1865 employed both strategies by secreting a biocalcitic exterior shell that is lined with layers of agglutinated sediments surrounding a central hollow tube. The slightly older fossil, Volborthella Schmidt, 1888, shares a similar construction with agglutinated grains encompassing a central tube but lacks a biomineralized exterior shell. Together these fossils have been grouped in the phylum Agmata Yochelson, 1977, although no phylogenetic relationship has been suggested to link them with the broader metazoan tree, which limits their contribution to our understanding of the evolution of shells in early animals.
To understand their ecology and place them in a phylogenetic context, we investigated Salterella and Volborthella fossils from the Wood Canyon and Harkless formations of Nevada, USA, the Illtyd Formation of Yukon, Canada, and the Shady Formation of Virginia, USA. Thin-section petrography, acid maceration, scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and X-ray tomographic microscopy were used to provide new insights into these enigmatic faunas. First, morphological similarities in the aperture divergence angle and ratio of central tube diameter to agglutinated layer thickness suggest Salterella and Volborthella are related. Second, both fossils exhibit agglutinated grain compositions that are distinctive from their surrounding environments and demonstrate selectivity on the part of their producers. Finally, the calcitic shell composition and simple layers of blocky prismatic shell microstructure in Salterella suggest a possible cnidarian affinity. Together these data point to these organisms being sessile, semi-infaunal filter or deposit feeders and an early experimentation in cnidarian biomineralization chronicling a hypothesized transition from an organic sheath in Volborthella to a biomineralized shell in Salterella.