Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Gabbay, Frances H.
Wynn, Gary H.
Georg, Matthew W.
Gildea, Sarah M.
Kennedy, Chris J.
King, Andrew J.
Sampson, Nancy A.
Ursano, Robert J.
Stein, Murray B.
Wagner, James R.
Kessler, Ronald C.
and
Capaldi, Vincent F.
2023.
Toward personalized care for insomnia in the US Army: development of a machine-learning model to predict response to pharmacotherapy.
Journal of Clinical Sleep Medicine,
Vol. 19,
Issue. 8,
p.
1399.
Sheu, Yi-han
Magdamo, Colin
Miller, Matthew
Das, Sudeshna
Blacker, Deborah
and
Smoller, Jordan W.
2023.
AI-assisted prediction of differential response to antidepressant classes using electronic health records.
npj Digital Medicine,
Vol. 6,
Issue. 1,
Chiang, Chia‐Chun
Schwedt, Todd J.
Dumkrieger, Gina
Wang, Liguo
Chao, Chieh‐Ju
Ouellette, Heather A.
Banerjee, Imon
Chen, Yi‐Chieh
Jones, Brandon M.
Burke, Krista M.
Wang, Han
Murray, Ann M.
Montenegro, Monique M.
Stern, Jennifer I.
Whealy, Mark
Kissoon, Narayan
and
Cutrer, Fred M.
2024.
Advancing toward precision migraine treatment: Predicting responses to preventive medications with machine learning models based on patient and migraine features.
Headache: The Journal of Head and Face Pain,
Vol. 64,
Issue. 9,
p.
1094.
Gabbay, Frances H.
Wynn, Gary H.
Georg, Matthew W.
Gildea, Sarah M.
Kennedy, Chris J.
King, Andrew J.
Sampson, Nancy A.
Ursano, Robert J.
Stein, Murray B.
Wagner, James R.
Kessler, Ronald C.
and
Capaldi, Vincent F.
2024.
Toward personalized care for insomnia in the US Army: a machine learning model to predict response to cognitive behavioral therapy for insomnia.
Journal of Clinical Sleep Medicine,
Vol. 20,
Issue. 6,
p.
921.
Ahmed, Nahida
Reagu, Shuja
Alkhoori, Samia
Cherchali, Amina
Purushottamahanti, Pradeep
and
Siddiqui, Urooj
2024.
Improving Mental Health Outcomes in Patients with Major Depressive Disorder in the Gulf States: A Review of the Role of Electronic Enablers in Monitoring Residual Symptoms.
Journal of Multidisciplinary Healthcare,
Vol. Volume 17,
Issue. ,
p.
3341.
Cui, Sheng-wei
Pei1, Pei
and
Yang, Wen-ming
2024.
Application Value of a Machine Learning Model in Predicting Mild Depression Associated with Migraine without Aura.
British Journal of Hospital Medicine,
p.
1.
Pozuelo, Julia R.
Lahiri, Anuja
Singh, Rahul S. P.
Kushwah, Arvind
Khanduri, Mimansa
Shukla, Akanksha
Khan, Azaz
G., Sruthi
Shende, Varun
Parashar, Yashika
Mehra, Yashwant K.
Bhan, Anant
Kessler, Ronald C.
Singla, Daisy R.
Naslund, John A.
Choi, Karmel W.
Cuijpers, Pim
DeRubeis, Robert
Herzallah, Mohammad M.
Lu, Chunling
Smoller, Jordan W.
VanderWeele, Tyler J.
Rozatkar, Abhijit R.
Modak, Tamonud
Joel, Michelle Melwyn
Biswas, Debasis
Atal, Shubham
Kulsum, Umay
Hollon, Steven D.
and
Patel, Vikram
2025.
Optimizing treatment for depression in primary care using psychotherapy versus antidepressant medication in a low-resource setting: protocol for the OptimizeD randomized controlled trial.
BMC Psychiatry,
Vol. 25,
Issue. 1,
Curtiss, Joshua
and
DiPietro, Christopher
2025.
Machine learning in the prediction of treatment response for emotional disorders: A systematic review and meta-analysis.
Clinical Psychology Review,
Vol. 120,
Issue. ,
p.
102593.
Ostinelli, Edoardo G.
Jaquiery, Matt
Liu, Qiang
Elgarf, Rania
Haque, Nyla
Potts, Jennifer
Li, Zhenpeng
Efthimiou, Orestis
Markham, Sarah
Ede, Roger
Wainwright, Laurence
Fernandes, Karen Barros Parron
Fernandes, Bianca Barros Parron
Dalaqua, Paulo Victor Carpaneze
Tomlinson, Anneka
Smith, Katharine A.
Zangani, Caroline
De Crescenzo, Franco
Liboni, Marcos
Mulsant, Benoit H.
and
Cipriani, Andrea
2025.
Personalising Antidepressant Treatment for Unipolar Depression Combining Individual Choices, Risks and big Data: The PETRUSHKA Tool: Personnalisation du traitement antidépresseur de la dépression unipolaire associant choix individuels, risques et mégadonnées: l’outil PETRUSHKA.
The Canadian Journal of Psychiatry,