Hostname: page-component-54dcc4c588-sdd8f Total loading time: 0 Render date: 2025-10-06T11:51:43.254Z Has data issue: false hasContentIssue false

Precise Determination of Extinction Corrections and Plasma Diagnostics

Published online by Cambridge University Press:  06 October 2025

Toshiya Ueta*
Affiliation:
Department of Physics and Astronomy, University of Denver, USA
Masaaki Otsuka
Affiliation:
Okayama Observatory, Kyoto University, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Extinction correction is the quintessence of astronomy. To achieve precision astrophysics in plasma diagnostics as in the theme of the present Proceedings, one must perform extinction correction properly before executing any line diagnostics of line-emitting objects including planetary nebulae. By making use of the inseparable relationship between extinction correction and plasma diagnostics, we establish a novel method to determine the physical conditions of a line-emitting target and the extinction characteristics along the line of sight toward the target simultaneously and self-consistently. This approach is made possible by the exact analytical expressions for the extinction parameters in terms of the emission properties of the target and by statistical optimization of the extinction parameters to find the robust physical conditions of the target.

Information

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Astronomical Union

References

Aller, L. H. 1999, ApJ, 525C, 265.Google Scholar
Moraga Baez, P., Kastner, J. H., Balick, B., Montez, R., Bublitz, J. 2023, ApJ, 942, 15.CrossRefGoogle Scholar
Cardelli, J. A., Clayton, G. C., Mathis, J. S. 1989, ApJ, 345, 245.CrossRefGoogle Scholar
Gordon, K. D., Clayton, G. C., Decleir, M., Fitzpatrick, E. L., Massa, D., Misselt, K. A., Tollerud, E. J. 2023, ApJ, 950, 86.CrossRefGoogle Scholar
Hummer, D. G., Storey, P. J. 1987, MNRAS, 224, 801.CrossRefGoogle Scholar
Kewley, L. J., Nicholls, D. C., Sutherland, R. S. 2019, ARA&A, 57, 511.Google Scholar
Osterbrock, D. E. 1989, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei. (Sausalito, CA: University Science Books).CrossRefGoogle Scholar
Osterbrock, D. E., Ferland, G. J. 2006, Astrophysics of gaseous nebulae and active galactic nuclei, 2nd. ed. (Sausalito, CA: University Science Books).Google Scholar
Otsuka, M. 2022, MNRAS, 511, 4774.CrossRefGoogle Scholar
Peimbert, M., Peimbert, A., Delgado-Inglada, G. 2017, PASP, 129, 082001.CrossRefGoogle Scholar
Pradhan, A. K., Nahar, S. N. 2011, Atomic Astrophysics and Spectroscopy (Cambridge, UK: Cambridge University Press).CrossRefGoogle Scholar
Salim, S., Narayanan, D. 2020, ARA&A, 58, 529.Google Scholar
Savage, B. D., Mathis, J. S. 1979, ARA&A, 17, 73.Google Scholar
Seaton, M. J. 1979, MNRAS, 187, 785.CrossRefGoogle Scholar
Storey, P. J., Hummer, D. G. 1995, MNRAS, 272, 41.CrossRefGoogle Scholar
Storey, P. J., Sochi, T. 2014, MNRAS, 446, 1864.CrossRefGoogle Scholar
Ueta, T., Otsuka, M. 2021, PASP, 133, 093002.CrossRefGoogle Scholar
Ueta, T., Otsuka, M. 2022, A&A, 667, L8.Google Scholar