No CrossRef data available.
Published online by Cambridge University Press: 11 January 2016
This paper examines the moduli spaces of log Hodge structures introduced by Kato and Usui. This moduli space is a partial compactification of a discrete quotient of a period domain. This paper treats the following two cases: (A) where the period domain is Hermitian symmetric, and (B) where the Hodge structures are of the mirror quintic type. Especially it addresses a property of the torsor.