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ON THE BOUNDARY OF THE MODULI SPACES OF
LOG HODGE STRUCTURES: TRIVIALITY OF

THE TORSOR

TATSUKI HAYAMA

Abstract. This paper examines the moduli spaces of log Hodge structures
introduced by Kato and Usui. This moduli space is a partial compactification

of a discrete quotient of a period domain. This paper treats the following two

cases: (A) where the period domain is Hermitian symmetric, and (B) where

the Hodge structures are of the mirror quintic type. Especially it addresses a
property of the torsor.

§1. Introduction

Let ϕ : (Δ∗)n → Γ\D be a period map arising from a variation of Hodge
structures with unipotent monodromies on the n-fold product of the punc-
tured disk. Here Γ is the image of π1((Δ∗)n) ∼= Zn by the monodromy repre-
sentation; that is, Γ is a free Z-module. By Schmid’s nilpotent orbit theorem
[S], the behavior of the period map around the origin is approximated by a
“nilpotent orbit.” Then we add the set of nilpotent orbits to Γ\D as bound-
ary points and extend the period map satisfying the following diagram:

(Δ)n

∪

Γ\D ∪ {nilpotent orbits}

∪

(Δ∗)n
ϕ

Γ\D

Here Γ\D is an analytic space and ϕ is an analytic morphism. But, except
in some cases, we have no way to endow the upper right one with an analytic
structure.
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174 T. HAYAMA

In [KU] Kato and Usui endow it with a geometric structure as a “loga-
rithmic manifold,” and they treat the above diagram as a diagram in the
category of logarithmic manifolds. Moreover, they define “polarized loga-
rithmic Hodge” (PLH) structures, and they show that the upper right one
is the moduli space of PLH. The result here is for the geometric structure
of the moduli spaces of PLH in the following two cases:
(A) D is a Hermitian symmetric space;
(B) polarized Hodge structures (PH) are of weight w = 3 and Hodge num-

ber hp,q = 1 (p + q = 3, p, q ≥ 0), and logarithms of the monodromy
transformations are of type Nα in [KU, §12.3] (or type II1 in [GGK]).

Case (A) corresponds to degenerations of algebraic curves or K3 surfaces.
This case is classical and well known. Case (B) corresponds to degenerations
of certain Calabi-Yau threefolds, for instance, those occurring in the mirror
quintic family. This case was studied recently. For example, Green, Griffiths,
and Kerr ([GGK]) describe “Néron models” for VHS (variation of Hodge
structure) of this type. Usui ([U]) shows a logarithmic Torelli theorem for
this quintic mirror family.

Construction of a moduli space of PLH
To explain this result, this paper describes Kato and Usui’s construction

of the moduli space of PLH roughly (see Section 3 for details). Steps of the
construction are given as follows.
Step 1. Define the nilpotent cone σ and the set Dσ of nilpotent orbits.
Step 2. Define the toric variety toricσ and the space Eσ.
Step 3. Define the map Eσ → Γ\Dσ, and endow Γ\Dσ with a geometric

structure by this map.
First, fix a point s0 ∈ (Δ∗)n, and let (Hs0 , Fs0 , 〈 , 〉s0) be the corresponding

PH structure. The period domain D is a homogeneous space for the real Lie
group G = Aut(Hs0,R, 〈 , 〉s0) and also an open G-orbit in the flag manifold
Ď (see Section 2 for details).

Step 1. Take the logarithms N1, . . . ,Nn of the monodromy transforma-
tions, and make the cone σ in g generated by them, which is called a nilpotent
cone. By Schmid’s nilpotent orbit theorem, there exists the limiting Hodge
filtration F∞. We call the orbit exp(σC)F∞ in Ď a nilpotent orbit. Dσ is the
set of all nilpotent orbits generated by σ.

Step 2. Take the monoid Γ(σ) := Γ ∩ exp(σ). It determines the toric
variety toricσ := Spec(C[Γ(σ)∨])an. Section 3.4 defines the subspace Eσ of
toricσ × Ď.
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Step 3. Section 3.5 defines the map Eσ → Γ\Dσ (here Γ = Γ(σ)gp). By
[KU, Theorem A], Eσ and Γ\Dσ are logarithmic manifolds. Moreover, the
map is a σC-torsor in the category of logarithmic manifolds; that is, there
exists a proper and free σC-action on Eσ, and Eσ → Γ\Dσ is isomorphic to
Eσ → σC\Eσ in the category of logarithmic manifolds.

Main result
The main result is for properties of the torsor Eσ → Γ\Dσ.

• In case (A), the torsor is trivial (Theorem 5.6).
• In case (B), the torsor is nontrivial (Proposition 5.8).

In case (A), Γ\Dσ is just a toroidal partial compactification of Γ\D intro-
duced by [AMRT]. To show the triviality, Section 4 reviews the theory
of bounded symmetric domains. Realization of D as the Siegel domain of
the third kind (4.2) is a key of the proof. This induces the triviality of
B(σ) → B(σ) (Lemma 5.1). By the triviality of this torsor, we show the
triviality of Eσ → Γ\Dσ. We also describe a simple example (Example 5.7).

In case (B), D is not a Hermitian symmetric domain; that is, isotropy
subgroups are not maximally compact. Fix a point F0 ∈ D, and take a max-
imally compact subgroup K as in (5.2). Then KF0 is a compact subvariety
of D. Existence of such a variety (of positive dimension) is a distinction
between the cases where the period domain is Hermitian symmetric and
otherwise. The compact subvariety plays an important role in the proof.

§2. Polarized Hodge structures and period domains

Recall the definition of PH structures and of period domains. A Hodge
structure of weight w and of Hodge type (hp,q) is a pair (H,F ) consisting of a
free Z-module of rank

∑
p,q hp,q and of a decreasing filtration on HC := H ⊗ C

satisfying the following conditions:
(H1) dimC F p =

∑
r≥p hr,w−r for all p;

(H2) HC =
⊕

p+q Hp,q(Hp,q := F p ∩ Fw−p).
A polarization 〈 , 〉 for a Hodge structure (H,F ) of weight w is a nonde-

generate bilinear form on HQ := H ⊗ Q, symmetric if w is even and skew-
symmetric if w is odd, satisfying the following conditions:

(P1) 〈F p, F q 〉 = 0 for p + q > w;
(P2) The Hermitian form

HC × HC → C, (x, y) �→ 〈CF (x), ȳ〉
is positive definite.
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Here 〈 , 〉 is regarded as the natural extension to C-bilinear form, and CF

is the Weil operator, which is defined by CF (x) := (
√

−1)p−qx for x ∈ Hp,q.
Fix a PH structure (H0, F0, 〈 , 〉0) of weight w and of Hodge type (hp,q).

Define the set of all Hodge structures of this type

D :=
{

F
(H0, F, 〈 , 〉0) is PH
of weight w and of Hodge type (hp,q)

}
.

D is called a period domain. Moreover, we have the flag manifold

Ď :=
{

F
(H0, F, 〈 , 〉0) satisfy the conditions

(H1), (H2), and (P1)

}
.

Ď is called the compact dual of D. D is contained in Ď as an open subset.
D and Ď are homogeneous spaces under the natural actions of G and GC,
respectively, where G := Aut(H0,R, 〈 , 〉0) and GC is the complexification of
G. G is a classical group such that

G ∼=
{

Sp(h,R)/{±1} if w is odd,

SO(hodd, heven) if w is even,

where 2h = rankH0, hodd =
∑

p:odd hp,q, and heven =
∑

p:even hp,q. The isotro-
py subgroup of G at F0 is isomorphic to

{∏
p≤m U(hp,q) if w = 2m + 1,∏
p<m U(hp,q) × SO(hm,m) if w = 2m.

They are compact subgroups of G but not maximal compact in general; D

is a Hermitian symmetric domain if and only if the isotropy subgroup is a
maximally compact subgroup, that is, one of the following is satisfied:

(1) w = 2m + 1, hp,q = 0 unless p = m + 1,m;
(2) w = 2m,hp,q = 1 for p = m + 1,m − 1, hm,m is arbitrary, hp,q = 0 oth-

erwise;
(3) w = 2m,hp,q = 1 for p = m + a,m + a − 1,m − a,m − a + 1 for some

a ≥ 2, hp,q = 0 otherwise.

In case (1), D is a Hermitian symmetric domain of type III. In case (2)
or (3), an irreducible component of D is a Hermitian symmetric domain of
type IV.
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§3. Moduli spaces of polarized log Hodge structures

This section reviews some basic facts in [KU]. First, it introduces DΣ,
a set of nilpotent orbits associated with a fan Σ consisting of nilpotent
cones. Second, for some subgroup Γ in GZ, we endow Γ\DΣ with a geometric
structure. Finally, we see some fundamental properties of Γ\DΣ, which are
among the main results of [KU].

3.1. Nilpotent orbits
A nilpotent cone σ is a strongly convex and finitely generated rational

polyhedral cone in g := LieG whose generators are nilpotent and commute
with each other. For A = R,C, denote by σA the A-linear span of σ in gA.

Definition 3.1. Let σ =
∑n

j=1 R≥0Nj be a nilpotent cone, and let F ∈ Ď.
Exp(σC)F ⊂ Ď is a σ-nilpotent orbit if it satisfies the following conditions:

(1) Exp(
∑

j iyjNj)F ∈ D for all yj � 0;
(2) NF p ⊂ F p−1 for all p ∈ Z and for all N ∈ σ.

Condition (2) says the map Cn → Ď given by (zj) �→
∑

j exp(zjNj)F is
horizontal. Let Σ be a fan consisting of nilpotent cones. Define the set of
nilpotent orbits

DΣ :=
{
(σ,Z) | σ ∈ Σ,Z is a σ-nilpotent orbit

}
.

For a nilpotent cone σ, the set of faces of σ is a fan, and we abbreviate
D{faces of σ} as Dσ.

3.2. Subgroups in GZ compatible with a fan
Let Γ be a subgroup of GZ, and let Σ be a fan of nilpotent cones. Say Γ

is compatible with Σ if

Ad(γ)(σ) ∈ Σ,

for all γ ∈ Γ and for all σ ∈ Σ. Then Γ acts on DΣ if Γ is compatible with
Σ. Moreover, we say Γ is strongly compatible with Σ if it is compatible with
Σ and for all σ ∈ Σ there exists γ1, . . . , γn ∈ Γ(σ) := Γ ∩ exp(σ) such that

σ =
∑

j

R≥0 log(γj).
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3.3. Varieties toricσ and torusσ

Let Σ be a fan, and let Γ be a subgroup of GZ which is strongly compatible
with Σ. We have toric varieties associated with the monoid Γ(σ) such that

toricσ := Spec
(
C[Γ(σ)∨]

)
an

∼= Hom
(
Γ(σ)∨,C

)
,

torusσ := Spec
(
C[Γ(σ)∨gp]

)
an

∼= Hom
(
Γ(σ)∨gp,Gm

) ∼= Gm ⊗ Γ(σ)gp,

where C is regarded as a semigroup via multiplication and the above homo-
morphisms are of semigroups. As in [F, §2.1], we choose the distinguished
point

xτ : Γ(σ)∨ → C; u �→
{

1 if u ∈ Γ(τ)⊥,

0 otherwise,

for a face τ of σ. Then toricσ can be decomposed as

toricσ =
⊔
τ ≺σ

(torusσ · xτ ).

For q ∈ toricσ, there exists σ(q) ≺ σ such that q ∈ torusσ · xσ(q). By the
surjective homomorphism

(3.1) e : σC → torusσ
∼= Gm ⊗ Γ(σ)gp; w log(γ) �→ exp(2π

√
−1w) ⊗ γ,

q can be written as

(3.2) q = e(z) · xσ(q).

Here ker(e) = log(Γ(σ)gp), and z is determineduniquelymodulo log(Γ(σ)gp)+
σ(q)C.

3.4. Spaces Ěσ and Eσ

Define the analytic space Ěσ := toricσ × Ď, and endow Ěσ with the loga-
rithmic structure MEσ by the inverse image of canonical logarithmic struc-
ture on toricσ (see [K]). Define the subspace of Ěσ as

Eσ :=
{
(q,F ) ∈ Ěσ

∣∣ exp(σ(q)C) exp(z)F is σ(q)-nilpotent orbit
}
,

where z is an element such that q = e(z) · xσ(q). The set Eσ is well defined.
The topology of Eσ is the “strong topology” in Ěσ, which is defined in [KU,
§3.1], and OEσ (resp., MEσ ) is the inverse image of OĚσ

(resp., MĚσ
). Then
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Eσ is a logarithmic local ringed space. Note that Eσ is not an analytic space
in general.

3.5. The structure of Γ\DΣ

We define the canonical map

Eσ → Γ(σ)gp\Dσ,

(q,F ) �→
(
σ(q), exp(σ(q)C) exp(z)F

)
mod Γ(σ)gp,

where q = e(z) · xσ(q) as in (3.2). This map is well defined. Endow Γ\DΣ with
the strongest topology for which the composite maps πσ : Eσ → Γ(σ)gp\
Dσ → Γ\DΣ are continuous for all σ ∈ Σ. Endow Γ\DΣ with OΓ\DΣ

(resp.,
MΓ\DΣ

) as follows:

OΓ\DΣ
(U) (resp., MΓ\DΣ

(U))

:=
{
mapf : U → C

∣∣f ◦ πσ ∈ OEσ(π−1
σ (U))

(resp., MEσ(π−1
σ (U))) (∀σ ∈ Σ)

}
for any open set U of Γ\DΣ. As for Eσ, note that Γ\DΣ is a logarithmic
local ringed space but is not an analytic space in general. Kato and Usui
introduce “logarithmic manifolds” as generalized analytic spaces (see [KU,
§3.5]), and they show the following geometric properties of Γ\DΣ.

Theorem 3.2. ([KU, Theorem A]) Let Σ be a fan of nilpotent cones, and
let Γ be a subgroup of GZ which is strongly compatible with Σ. Then we have
the following.

(1) Eσ is a logarithmic manifold.
(2) If Γ is neat (i.e., the subgroup of Gm generated by all the eigenvalues

of all γ ∈ Γ is torsion free), Γ\DΣ is also a logarithmic manifold.
(3) Let σ ∈ Σ, and define the action of σC on Eσ over Γ(σ)gp\Dσ by

a · (q,F ) :=
(
e(a)q, exp(−a)F

)
(a ∈ σC, (q,F ) ∈ Eσ).

Then Eσ → Γ(σ)gp\Dσ is a σC-torsor in the category of logarithmic
manifold.

(4) Γ(σ)gp\Dσ → Γ\DΣ is open and locally an isomorphism of logarithmic
manifold.
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In [KU, §2.4], Kato and Usui introduce “polarized log Hodge structures”
and show that Γ\DΣ is a fine moduli space of PLH structures if Γ is neat
([KU, Theorem B]).

§4. The structure of bounded symmetric domains

In this section we recall some basic facts on Hermitian symmetric domains
(for more detail, see [AMRT, Chapter III], [N, appendix]). We define Satake
boundary components and show that a Hermitian symmetric domain is
a family of tube domains parametrized by a vector bundle over a Satake
boundary component. This domain is called a Siegel domain of the third
kind.

4.1. Satake boundary components
Let D be a Hermitian symmetric domain. Then Aut(D) is a real Lie

group, and the identity component G of Aut(D) acts on D transitively. Fix
a base point o ∈ D. The isotropy subgroup K at o is a maximally compact
subgroup of G. Let so be a symmetry at o, and let

g := Lie(G), k := Lie(K),

p := the subspace of g where so = −Id.

Then we have a Cartan decomposition

g = k ⊕ p.

p is isomorphic to the tangent space to D at o. Let J be a complex structure
on p, and let

p+ :=
√

−1-eigenspace for J in pC,

p− := −
√

−1-eigenspace for J in pC.

Here p+ and p− are abelian subalgebras of gC. Then we have the Harish-
Chandra embedding map D → p+ whose image is a bounded domain.

Definition 4.1. A Satake boundary component of D is an equivalence
class in D, the topological closure of D in p+, under the equivalence relation
generated by x ∼ y if there exists a holomorphic map

λ :
{
z ∈ C | |z| < 1

}
−→ p+

such that Im(λ) ⊂ D and x, y ∈ Im(λ).
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It is known that Satake boundary components are also Hermitian sym-
metric domains. Let S be a Satake boundary component. Define

N(S) := {g ∈ G | gS = S},

W (S) := unipotent radical of N(S),

U(S) := center of W (S).

These groups have the following properties.

Proposition 4.2. (1) N(S) acts on D transitively.
(2) There exists an abelian Lie subalgebra v(S) ⊂ g such that LieW (S) =

v(S) + LieU(S).
(3) W (S)/U(S) is an abelian Lie group which is isomorphic to V (S) :=

expv(S).

Here S is called rational if N(S) is defined over Q. If S is rational, then
V (S) and U(S) are also defined over Q.

4.2. Siegel domain of third kind
Define a subspace of Ď

D(S) := U(S)C · D =
⋃

g∈U(S)C

g · D,

where U(S)C := U(S) ⊗ C. By Proposition 4.2(1) and the fact that U(S)
is a normal subgroup, N(S)U(S)C acts on D(S) transitively. Choose the
base point oS as in [AMRT, §4.2]. The isotropy subgroup I of G at oS is
contained in N(S). Then we have a map

ΨS : D(S) ∼= N(S)U(S)C/I → N(S)U(S)C/N(S) ∼= U(S),

where the last isomorphism takes imaginary part. By [AMRT, §4.2, Theo-
rem 1], we have an open homogeneous self-adjoint cone C(S) ⊂ U(S) such
that Ψ−1

S (C(S)) = D.

Theorem 4.3. (1) U(S)C acts freely on D(S). D(S) → U(S)C\D(S) is
a trivial principal homogeneous bundle.

(2) V (S) acts freely on U(S)C\D(S). V (S)\(U(S)C\D(S)) ∼= S, and the
quotient map D(S) → S is a complex vector bundle (although V (S) is real).
Moreover, it is trivial.
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(3) By (1) and (2), we have a trivialization

(4.1) D(S) ∼= S × Ck × U(S)C.

In this product representation, we have

ΨS(x, y, z) = Imz − hx(y, y),

where hx is a real-bilinear quadratic form Ck × Ck → U(S) depending real-
analytically on x.

Thus we have

(4.2) D ∼=
{
(x, y, z) ∈ S × C(g−k)k × U(S)C

∣∣ Imz ∈ C(S) + hx(y, y)
}
.

§5. Main result

5.1. The case where Eσ → Γ(σ)gp\Dσ is trivial
In this section, assume that D is a period domain and also a Hermitian

symmetric domain. The purpose is to show Theorem 5.6. The main theorem
for the case where D is the upper half-plane is described in Example 5.7.

Let S be a Satake rational boundary component of D, and let σ be a
nilpotent cone included in Lie(U(s)). First, let us show the triviality of the
torsor for such a cone. Set

B(σ) := exp(σC) · D ⊂ Ď, B(σ) := exp(σC)\B(σ).

Here B(σ),B(σ) are defined by Carlson, Cattani, and Kaplan ([CCK]) from
the point of view of mixed Hodge theory.

Lemma 5.1. B(σ) → B(σ) is a trivial principal bundle with fiber exp(σC).

Proof. Here exp(σC) is a sub-Lie group of U(S)C, and U(S)C is abelian.
By Theorem 4.3(1), D(S) → exp(σC)\D(S) is a trivial principal bundle.
Furthermore, the following diagram is commutative:

D(S)

∪

exp(σC)\D(S)

∪

B(σ) B(σ)

Then B(σ) → B(σ) is trivial.
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Now let us describe a trivialization of B(σ) over B(σ) explicitly. Take a
complementary sub-Lie group Zσ of exp(σC) in U(S)C. By (4.1), we have a
decomposition of D(S) as D(S) ∼= S × Ck × Zσ × exp(σC). Here

(5.1) exp(σC)\D(S) ∼= S × Ck × Zσ,

and the decomposition of D(S) makes a trivialization of D(S) over exp(σC)\
D(S). Via (5.1), we have Y ⊂ S × Ck × Zσ satisfying the following commu-
tative diagram:

exp(σC)\D(S)

∪

∼= S × Ck × Zσ

∪

B(σ) ∼= Y

In fact, Y is the image of D via the projection D(S) → S × Ck × Zσ. Then
B(σ) ∼= exp(σC) × Y is a trivialization of B(σ) over B(σ).

Let Γ be a subgroup of GZ which is strongly compatible with σ. Let us
think about a quotient trivial bundle Γ(σ)gp\B(σ) → B(σ). Its fiber is the
quotient of exp(σC) by the lattice Γ(σ)gp. Since exp(σC) is a unipotent and
abelian Lie group, σC

∼= exp(σC). Via this isomorphism, the lattice action
on exp(σC) is equivalent to the lattice action on σC by log(Γ(σ)gp). Then
the fiber is isomorphic to

σC/ log
(
Γ(σ)gp

)
= σC/ker(e) ∼= torusσ

by (3.1). By the canonical torus action, Γ(σ)gp\B(σ) → B(σ) is also a prin-
cipal torusσ-bundle whose trivialization is given by

torusσ × Y
∼→ Γ(σ)gp\B(σ);

(
e(z), F

)
�→ exp(z)F mod Γ(σ)gp,

where we regard Y as a subset of Ď via (4.1). By the definition of Eσ, we
have the following.

Lemma 5.2. The following diagram is commutative:

Γ(σ)gp\B(σ)

∪

∼= torusσ × Y

∪

Γ(σ)gp\D ∼= (torusσ × Y ) ∩ Eσ
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By the torus embedding torusσ ↪→ toricσ, we can construct the associated
bundle (

Γ(σ)gp\B(σ)
)
σ

:=
(
Γ(σ)gp\B(σ)

)
×torusσ toricσ

and define

(
Γ(σ)gp\D

)
σ

:= interior of the closure of Γ(σ)gp\D in
(
Γ(σ)gp\B(σ)

)
σ
.

This is a toroidal partial compactification associated with σ.

Lemma 5.3. The following diagram is commutative:

(
Γ(σ)gp\B(σ)

)
σ

∪

∼= toricσ × Y

∪(
Γ(σ)gp\D

)
σ

∼= (toricσ × Y ) ∩ Eσ

Proof. For (q,F ) ∈ toricσ × Y , (q,F ) ∈ Eσ if and only if exp(σ(q)C) ×
exp(z)F is a σ(q)-nilpotent orbit, where q = exp(z)xσ(q) as in (3.2). Since D

is Hermitian symmetric, the horizontal tangent bundle of D coincides with
the tangent bundle of D. Then the condition of Definition 3.1(2) is trivially
satisfied. Let {Ni} be a set of rational nilpotent elements generating σ(q).
Then (q,F ) ∈ Eσ if and only if exp(

∑
j yjNj) exp(z)F ∈ D; that is,

(
e
(∑

j

yjNj + z
)
, F

)
∈ (torusσ × Y ) ∩ Eσ

for all yj such that Im(yj) � 0. In toricσ,

lim
Im(yj)→∞

e
(∑

j

yjNj + z
)

= e(z)xσ(q) = q.

Then (q,F ) is in the interior of the closure of (torusσ × Y ) ∩ Eσ.

The map (toricσ × Y ) ∩ Eσ ↪→ Eσ → Γ(σ)gp\Dσ is bijective. By [KU,
Remark 8.2.7], Eσ is an open set in Ěσ. Then Eσ → Γ(σ)gp\Dσ is a σC-
torsor in the category of analytic spaces, and

(toricσ × Y ) ∩ Eσ
∼= σC\Eσ

∼= Γ(σ)gp\Dσ.
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Thus (toricσ × Y ) ∩ Eσ ↪→ Eσ gives a section of the torsor Eσ → Γ(σ)gp\Dσ;
that is, Eσ → Γ(σ)gp\Dσ is trivial.

Next let us show that Eσ → Γ(σ)gp\Dσ is trivial for all nilpotent cones σ.
Let Γ = GZ. By [AMRT, Chapter II], there exists a Γ-admissible collection
of fans Σ = {Σ(S)}S where Σ(S) is a fan in C(S) for every Satake rational
boundary component S. Taking the logarithm, we identify Σ with the col-
lection of fans in g which are strongly compatible with Γ. We show that Σ
is large enough to cover all nilpotent cones; that is, Σ is a complete fan.

Let U(S)Z = U(S) ∩ Γ. To obtain U(S)Z\Dσ, we should confirm the fol-
lowing proposition.

Proposition 5.4. Generators of Zσ can be taken in GZ.

Proof. Γ(σ)gp is saturated in U(S)Z; that is, if g ∈ U(S)Z and gn ∈ Γ(σ)gp

for some n ≥ 1, then g ∈ Γ(σ)gp. Then U(S)Z/Γ(σ)gp is a free module, and
there exists a subgroup Zσ,Z in U(S)Z such that U(S)Z = Γ(σ)gp ⊕ Zσ,Z.
Hence we have U(S)C = expσC ⊕ (Zσ,Z ⊗ C).

Gluing U(S)Z\Dσ = Zσ,Z\(Γ(σ)gp\Dσ) for σ ∈ Σ(S), we have U(S)Z\
DΣ(S) as a toroidal partial compactification in the direction S. Then we
obtain a compact variety Γ\DΣ by [AMRT]. (Take the quotient by N(S)Z/

U(S)Z, and glue neighborhoods of boundaries of (N(S)Z/U(S)Z)\(U(S)Z\
DΣ(S)) with Γ\D.)

On the other hand, we have the following proposition.

Proposition 5.5. ([KU, Proposition 12.6.4]) Let Γ be a subgroup of GZ,
and let Σ be a fan which is strongly compatible with Γ. Assume that Γ\DΣ

is compact. Then Σ is complete.

The precise definition of complete fan is given in [KU]. An important
property of a complete fan Σ is the following: if there exists Z ⊂ Ď such
that (σ,Z) is a nilpotent orbit, then σ ∈ Σ. Now the Γ-admissible collection
of fans Σ is complete since Γ\DΣ is compact. It is to say that a nilpotent
cone σ has a σ-nilpotent orbit if

exp(σ) ⊂ C(S) ⊂ U(S)

for some Satake boundary component S, and σ has no σ-nilpotent orbit
(i.e., Dσ = D) otherwise. Hence we have the following.

https://doi.org/10.1215/00277630-2009-010 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2009-010


186 T. HAYAMA

Theorem 5.6. Let σ be a nilpotent cone in g. Then Eσ → Γ(σ)gp\Dσ is
trivial.

Example 5.7. Let D be the upper half-plane. G = SL(2,R) acts on D by
linear fractional transformation. By the Cayley transformation, D ∼= Δ :=
{z ∈ C | |z| < 1}. Take the Satake boundary component S = {1} ∈ ∂Δ. Then

N(S) =
{(

u v

0 u−1

)
u ∈ R \ {0}, v ∈ R

}
,

W (S) = U(S) =
{(

1 v

0 1

)
v ∈ R

}
,

C(S) =
{(

1 v

0 1

)
v ∈ R≥0

}

(see [N]). Take the nilpotent N =
(

0 1
0 0

)
and the nilpotent cone σ =

R≥0N ⊂ g. Here exp(σC) = U(S)C. The compact dual Ď and the subspace
B(σ) = exp(σC) · D ⊂ Ď are described as

Ď = C � {∞} ∼= P1, B(σ) = C.

Exp(σC)\Bσ = B(σ) is a point, and B(σ) → B(σ) is a trivial principal bundle
over B(σ). Take F0 ∈ B(σ). We have a trivialization

B(σ) = exp(σC) · F0
∼= exp(σC) × {F0}.

For Γ = SL(2,Z),

Γ(σ)gp =
{(

1 v

0 1

)
v ∈ Z

}
= exp(ZN)

is a lattice of exp(σC), and Gm
∼= exp(σC)/Γ(σ)gp. Then we have the trivial

principal Gm-bundle Γ(σ)gp\B(σ) → B(σ). By the torus embedding Gm ↪→
C, we have the trivial associated bundle(

Γ(σ)gp\B(σ)
)

×Gm C ∼= C × {F0}.

And we have

Eσ =
{

(q,F ) ∈ C × B(σ)
exp((2πi)−1 log(q)N)F ∈ D if q �= 0
F ∈ B(σ) if q = 0

}
.
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The map

(C × {F0}) ∩ Eσ ↪→ Eσ → Γ(σ)gp\Dσ;

(q,F0) →
{(

{0}, exp((2πi)−1 log(q)N)F0

)
mod Γ(σ)gp if q �= 0,

(σ,C) if q = 0,

is an isomorphism by Lemma 5.3, and we have the following commutative
diagram:

(C × {F0}) ∩ Eσ

∼=

∪ Eσ

Γ(σ)gp\Dσ

Then the torsor Eσ → Γ(σ)gp\Dσ has a section; that is, the torsor is trivial.

5.2. The case where Eσ → Γ(σ)gp\Dσ is nontrivial
Let w = 3, and let hp,q = 1(p + q = 3, p, q ≥ 0). Let H0 be a free module

of rank 4, and let 〈 , 〉0 be a nondegenerate alternating bilinear form on
H0. In this case D ∼= Sp(2,R)/(U(1) × U(1)). Then D is not a Hermitian
symmetric space. Take e1, . . . , e4 as a symplectic basis for (H0, 〈 , 〉0); that
is,

(〈ei, ej 〉0)i,j =
(

0 −I

I 0

)
.

Define N ∈ g as follows:

N(e3) = e1, N(ej) = 0 (j �= 3).

Proposition 5.8. Let σ = R≥0N . Then Eσ → Γ(σ)gp\Dσ is nontrivial.

Proof. Define

(u1, . . . , u4) :=
1√
2
(e1, . . . , e4)

(
I I

iI −iI

)
.

That is,

(〈ui, uj 〉0)i,j =
(

0 iI

−iI 0

)
, (〈ui, uj 〉0)i,j =

(
iI 0
0 −iI

)
.
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Take Fw, F∞ ∈ D (w ∈ C) as follows:

F 3
w = spanC{wu1 + u2}, F 2

w = spanC{wu1 + u2, u3 − wu4},

F 3
∞ = spanC{u1}, F 2

∞ = spanC{u1, u4}.

We have the maximally compact subgroup of G at F0

K =
{

g ∈ G 〈CF0(gv), gw〉0 = 〈CF0(v),w〉0 for v,w ∈ HC

}
(5.2)

=
{(

X 0
0 X

)
X ∈ U(2)

}
,

where matrices in the second equation are expressed with respect to the
basis (u1, . . . , u4). The K-orbit of F0 is given by

K · F0 = KC · F0 = { Fw | w ∈ C } � F∞ ∼= P1.

We assume that Eσ → Γ(σ)gp\Dσ is trivial. Let ϕ be a section of Eσ →
Γ(σ)gp\Dσ. We define a holomorphic morphism Φ : D → C such that

Φ : D
quot.−→ Γ(σ)gp\D ↪→ Γ(σ)gp\Dσ

ϕ−→ Eσ
proj.−→ toricσ

∼= C.

Since KF0
∼= P1, Φ|KF0 is constant.

On the other hand, (σ, exp(σC)F0) is a nilpotent orbit (it is easy to check
the condition of Definition 3.1). Then

lim
x→∞

Φ
(
exp(ixN)F0

)
= 0.(5.3)

Define N ′ ∈ g as follows:

N ′(u3) = u1, N ′(uj) = 0 (j �= 3).

Then we have

exp(ixN)F0 = exp
( x

2 + x
N ′

)
F0,(5.4)

F∞ = exp
( x

2 + x
N ′

)
F∞(5.5)

for x ∈ R\{−2}, and

exp(zN ′)KF0 ⊂ D for |z| < 1.(5.6)

https://doi.org/10.1215/00277630-2009-010 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2009-010


MODULI OF LOG HODGE STRUCTURES 189

Then Φ|exp(zN ′)KF0
is constant for each |z| < 1, again because exp(zN ′)K ×

F0
∼= P1. Finally we have

Φ
(
exp(ixN)F0

)
= Φ

(
exp

( x

2 + x
N ′

)
F0

)
(by (5.4))

= Φ
(

exp
( x

2 + x
N ′

)
F∞

)
(by (5.6) and

∣∣∣ x

2 + x

∣∣∣ < 1)

= Φ(F∞) (by (5.5))

for x > −1. This contradicts condition (5.3), since Φ(F∞) ∈ torusσ if F∞ ∈
D.
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