We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Let us denote by η(z) the classical η-function of Dedekind defined by
[1]Goldstein, L. J., On a conjecture of Hecke concerning elementary class number formulas, Manuscripta Math.9 (1973), pp. 245–305.CrossRefGoogle Scholar
[2]
[2]Goldstein, L. J. and de la Torre, P., On the transformation of log η(τ), Duke Math. J., 41 (1974), pp. 291–297.CrossRefGoogle Scholar
[3]
[3]Hecke, E., Analytische Funktionen und algebraische Zahlen, I, II, Math. Werke, pp. 336–360, 381–404.Google Scholar
[4]
[4]Hecke, E., Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen, I, II, Math. Werke, pp. 215–234, 249–289.Google Scholar
[5]
[5]Meyer, C., Die Berechnung der Klassenzahl abelscher Körper Uber Quadratischen Zahlkörpern, Berlin, Akademie-Verlag, 1957.Google Scholar
[6]
[6]Siegel, C. L., Advanced analytic number theory, Tata Institute of Fundamental Research, Bombay, 1961.Google Scholar