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ON A FUNCTION ANALOGOUS TO log7(z)
LARRY GOLDSTEIN* AND PILAR DE LA TORRE
1. Introduction
Let us denote by 7(2) the classical y-function of Dedekind defined by
n(2) = e [ (1 — ey, Tm(2) > 0.
n=1
o b

If ¢= ( ¢ d) e SL(2,Z), then the classical law of transformation of
log »(2) asserts that if ¢(2) = (az + b)/(cz + d), then

log 7(a(2)) = log () + T2 (¢ = 0)
12 (1)

= log () + _l_log(cz + d)+m:“ + 4 _ risd,e) (¢>0)
2 7 12¢

where all logarithms are taken with respect to the principal branch and

o= 2, (L)

and where

(@) =2 —[x] — if z is not an integer,
0 otherwise.

The sum s(d, ¢) is called a Dedekind sum, and appears in many number-
theoretic investigations.

In [1], we have introduced a generalization of the function »(z) as-
sociated to a totally real algebraic number field K. Our generalization
arose from a generalization of Kronecker’s second limit formula. More-
over, we showed in [1] that a classical conjecture of Hecke concerning
class numbers of algebraic number field could be reduced to determining
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170 LARRY GOLDSTEIN AND PILAR DE LA TORRE

how the generalized y-function transforms under the Hilbert modular
group—that is, to find a generalization of formula (1). It is the purpose
of this paper to find such a generalization.

Throughout this paper, let K be a totally real algebraic number
field of degree » and let f,m,n be integral K-ideals, b = the (absolute)
different of K. Further, let I'; denote the group of all totally positive
K-units = 1 (mod f). Finally, let u,v be elements of K having denomi-
nators dividing 5f. Associated to the this data, we define the following
generalized »-function on the product H” of n complex upper half-planes

H:
e21riTt (vp) .
logy(z; u,0) = AN + S* £ 5 gmincrmmm,
fen ]N(‘B)l nem—1p—1
B#0 (z+u)p>0
rs
where

N(m) ldkll/z X 21 Ir (ua)
@)™ eem N[
{rg}

2

A(u) =

2=1(2, ,2)€eH", N2) =224 Tr(y2) =72, + .-+ + r"2, (y € K),

and where 7y > 0 denotes that y e K is totally positive and > * denotes
{re}

a sum over a complete set of elements non-associated with respect to
I';, dx = the discriminant of K. The function A(w) should be regarded
as a generalized Bernoulli polynomial, since in case K = Q, A(u) is,
essentially, the Bernoulli polynomial B,(u).

In case u=v =0, K= Q, the above function is, apart from a
constant factor, the function log#(z). In case K = a real quadratic
field, v = v = 0, the above function was studied by Hecke [3], who com-
puted its transformation formula under the transformation z,— —1/z;
t=1,2). In case K= Q, u,v arbitrary, the above function is well-
known [6] in connection with Kronecker’s second limit formula.

Let G = GL*(2,K) denote the set of all 2 X 2 matrices over K with
totally positive determinant and let G act on H” via

o2 — ( a(l)zl _I_ b(l) a(’n)zn + b(n) ) 2 (z 2 ) 0. (u b)
= y "ty ’ = %1 ' y%n) = .
c(l)z1 + d(l) c(n)zn + d(n) C d

Let ¢ denote the ring of integers of K and let SL(2,0) denote the
subgroup of G consisting of those elements of G with integral coefficients and

https://doi.org/10.1017/50027763000016871 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000016871

FUNCTION ANALOGOUS T log () 171

determinant +1. Then SL(2,0), with the above action is just the
Hilbert modular group. Let

e = {oe SLE,0) | ¢ = mod ), I = ((1) ;’)} ,
where congruences are interpreted elementwise.

The main purpose of this paper is to compute log y(¢z; u,v) for
gel'(f). In case K = Q, our formula will generalize (1). Our proof
is modelled precisely on the proof of (1) given in [2]. In fact, in
so far as is possible, we have modelled our notation on the notation
used in that paper in order to facilitate easy comparison.

The formula which we derive in this paper has applications to our
theory of relative class number formulas, but in order to keep the
length of this paper reasonable, we will reserve presenting the applica-
tions for a subsequent paper.

In order to keep the details of our computations as simple as pos-
sible, we will make two technical assumptions throughout the paper:

ASSUMPTION 1: { and b are principal ideals.

ASSUMPTION 2: m=n=40.

Our derivation of the transformation law for logx(z; u,v) can be
best formulated in terms of a general Mellin transform theorem which
we present in Section 2. We begin our study of the generalized »-func-
tion in Section 3. Section 4 is devoted to the functional equations of
certain zeta functions which arise. Section 5 reduces the calculation of
the transformation law to the calculation of certain residues. Section
6 computes the residues and completes the derivation of the transforma-
tion law.

2. Mellin Transforms

Let V be a locally compact, abelian group under multiplication and
let v be a generic element of V. Let V* denote the Pontrjagin dual of
V and let v* be a typical element of V*. Further, let I' be a discrete
subgroup of V. Let y be a typical element of I". OQur goal in this
section is to write down the Fourier inversion formula for the group
V/I' and apply it to a special function on V/I.
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172 LARRY GOLDSTEIN AND PILAR DE LA TORRE
Let I't = {v*e V*|v*(y) =1 for all yeI'}. Then by duality theory,
we have natural isomorphisms
I't=w/nN*,
I'*=V*/Irt,

Let us fix a Haar measure dv on V/I" and let d,v* denote the Haar
measure on (V/I)* which is dual to d,v. We will make a specific choice
of dv later. Let &#(V/I') denote the space of Schwartz-Bruhat functions
on V/I'. Then, if fe#(V/I'), let f* denote its Fourier transform:

FH*) = jm fov@do  @*e (VI ,

where we view v* as a character on V which is trivial on I. More-
over, we have the Fourier inversion formula

J@) = I( - SE*¥)v*@)de*  (weV/D).

v/

Suppose that ¢: V — V, X V, is an isomorphism of locally compact
abelian groups such that () € V, X {1}. Then let us identify V (resp.
I with V, X V, (resp. (")) with respect to the isomorphism +». Then,

VIIP=(V,/I)XV,,

so that Haar measures d,v, on V,/I" and d,v, on V, can be chosen so
that d,v = dv, X dw, holds. If dw¥ and dv¥ are the respective dual
measures to d,v, and d,v,, then we have

do* = dwf X dof¥ .
Moreover,
V|0 = (V,/I)* X V¥ .

Therefore, the Fourier inversion formula for V/I" may be written

s = ([ resone: o) den)dor
i o/T 2
= [, ([, e THC7 00 WE@) g Jor ) dt >

where (v, 7)) and (v¥,v¥) are elements of V/I"' = (V,/I") X V, and (V/I)*
= (V,/I* x V¥, respectively.
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Let us now apply formula (2) to a specific situation. Let » be a
positive integer and let V = R*, where R, = the group of positive real
numbers under multiplication. Further, let I” be a discrete subgroup of
V. For v =@, ---,v,)eV, set Nw) =2, ---v, and

Vo={veV|Nw) =1},
Vi={v=@w,v,---,v)eV|v,eR,}.

Then V =V, X V,. In fact a natural way of realizing this isomorphism
is as follows: If v eV, then v may be written in the form

v = YW (0) , Y eV,, @ eV,

where

_ v, v, LV
Vo(v) = ( o W e )
(@) = (N@)m, - - ., Ny .

Let us now restrict ourselves to I" such that " € V,. Then formula
(2) shows that for fe #(V/I'), we have

7@ = [ ([ e 75 VOG0t Jo o) a0t (3)
where the measures d,vf and d,vf are as chosen above. Let us make
the further assumption that I" is free of rank # — 1. Then in this case,
it is easy to describe a suitable normalization for the measures: For
Vo/I' is then compact and (V,/[)* is discrete. Thus, for d,v, let us
choose the measure which gives V,/I" the measure 1. For d,v¥, let us
choose the measure which gives each point of (V,/I)* the measure 1.
Then dwf and dw, are dual to one another. In any case, V,=R,,
so that V¥ ~ R, = R. Let us identify (v, ---,v) eV, with v, e R, and
the character y,(w) = w*"(weR,) of V, with the real number ¢ In
this way, we explicitly realize the isomorphisms V, =~ R,, V¥ =~ R. With
respect to this identification, let us write f*(v¥,t) instead of f*(v¥, x.).
Moreover, from the classical formulas for the Mellin transform, we see
that we may choose

dx

dw, = , v, =(,---,2), dr= Lebesgue measure on R,
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dvf = =-dt, v¥=y;, dt = Lebesgue measure on R.

Then (8) may be rewritten

r@y =7 ([, e e o Jutn @) de

=5 ) (I S, ho (\ko(v))_ldl’va")N(v)—itdt .
(Vo/I')*

T 2=

Since we assume that I" is free of rank » — 1, (V,/I)* is a discrete
group and (V,/IN* = Z*'. Let y, -+, xs-1 be a basis of (V,/I)*. Then
a typical character of V,/I" is of the form

Am = X1 AnPit m=(m, - -, My_) e Z" ",

Therefore, by the way in which we normalized our measures, we have

5@ == (3 O DGR N@ A, (4)
where

for any fe L (V/I).
Let us derive from (4) and (5) the final formulas which will be of
use to us. Let ge (V). Then, since I' is discrete, the function

J) = § g(vy) = L g(vy)dy

belongs to S(V/I). Applying (4) to f(v), we have

Soen =" (3 dm OrCr@) NGO, (6)
where
o= [ (], (5 st

Il

(.. (5 pevsoan)one

J 0 (J Vo g(””o)xm(vo)dvo)xu gxg ’

l
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where dv, is the Haar measure on V, defined by dv, = d,v, X dy. There-

fore, if dv is the Haar measure, dv, X dz on V=7V,xV, we have
x

ﬂmﬁ=£ﬁ@m%@MW@M% (7)

where y,, is regarded as a character of V,, trivial on /. Thus, regarding

v 28 GG (0)
as a character of V, we see that §(xn.,t) is just the value of the Fourier
transform of g (on V) at the character (y,t) of V.

Formulas (6) and (7) are the final formulas which will be of use
to us. These formulas were used in a special case by Hecke [3, p. 399],
although the general principle explained above was not clear. Note that
we could develop similar formulas for I" of rank <n — 1, but these will
not be required in what follows.

Let us now introduce the class of I' to which we apply (6) and (7).
Let K be a totally real algebraic number field of degree n and let | be
a K-modulus (not necessarily free of infinite primes). Let us map K*
into V = R* via the map

e
x —> (2D, -, 2™,

where z®, ...,x™ are the conjugates of x over Q. Let f’f denote the
group of all K-units which are =1 (modf{) and take for I" the group
O'). It is clear that I'C V, since I'; consists of units; and I" is free
of rank n — 1 by the Dirichlet unit theorem. Thus, I" satisfies our
hypothesis for (6) and (7). Let us write (6) and (7) somewhat more ex-
plicitly (if less neatly) for this class of I'.

By the Dirichlet unit theorem, there exist units ¢, ---,e,.;, of K
such that

) {<D;
Fr=1 or xcedx v X end s
C£1)

where (x> denotes the multiplicative group generated by x e K. Then

I'=0") =<6, -+, 60(n_)) .
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We may exhibit the characters y,(m e Z"™") of V,/I' as follows: Define
the numbers ¢! 1 <j<n, 1<k<n—1) by the condition

11 1 h
L. 1 1log[ef”] - - - log [eS

n n n

6} e% e }z =

er-len=1... gn-1 1log|ef™| - - - log |e&,]

If (y, - -,y) eV, and xe(V,/I)*, then y is a character of V, such that
y is trivial on I' (duality), so that there exist real numbers 4, ---,48,
such that

2@y -5 Yn)) = Y70 -y

and
=1 (Gel).

It is easy to see that these last two conditions imply that y is of the
form

2 Wy -+ o5 Un)) = jfjl it Tt med
for m = (my, - -+, m,_,) € Z*'. Therefore, let us set
a,(m) = 2 kz'i Mt .
Then a typical character y, (me Z*) of V,/I" is of the form
(W -5 00) = [ 99 (8)

Note that y, is just a grossencharacter of K defined modulo | (See [4].)
We now wish to use (8) to write the formulas (6) and (7) more ex-

plicitly. In order to do this, let us replace the measure d,v, X dz on
x

Vo X V.=V with a measure which is easier to calculate with. Let D
be a fundamental domain for V,/I". Then d,v, has been chosen so that

f dv,=1.
D

Moreover, if we set ¥ =D x[1,e] €V, X V,, then
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j do, x 3 1.
dv, . dv,

v (23
uniqueness of Haar measure, we have

It is clear that is a Haar measure on V, so that by the

dv,  dv, _ dx

! Vn

for some C > 0. Moreover, it is clear from above that

C = J d”l...

E

Let us evaluate C explicitly: Let us change variables in the integral by
setting w = (v, - - - v,)V?. Then it is easy to see that

I dw olv1 dv,_,
o ,
b’ Vn-1

where
n-1
D= {(vl, e va) e R0, = exp 3w log ], 0< ;< 1} .
i=1

But then a simple calculation shows that
= |Rf| ’
where
R; = det (log [/ )1, j<n-1 -

Thus R; is just the regulator of the units ¢, ---¢,_,, and we see that

dv, . ti : IRfldlvoxﬂ. (9)

Thus, by (6), (7) and (9) and the fact that y_,, = y»!, we finally derive:

THEOREM 2-1: Let gc #(V) and I' = @(f‘f) for some K-modulus f.
Then

o0

5000 = o= " (3 Grm Ol )N@)
7eT 2r mEZn—1

where
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gl(Xm’ t) = |Rf|_1 J‘°° L JW g(?))xm(lll‘o(’l)))—lxlfl('l))“ ﬂl_ N %_ .
0 0 v

1 Uy,

3. The Generalized y-Function
Let

I'() = {oeSL@,0)|o = I (mod )},

where I = ((1) (1)) Our main goal, which is finally achieved in Section

6, is to determine the law of transformation of log y(z; u,v) under the
transformations of I'(f). We will assume throughout that assumptions
1 and 2 hold. Let us suppose that { = f0, b = 30, @ = the ring of in-
tegers of K. Then, since u,v have denominators dividing {d, we see
that fou and fov are K-integers, % and k, respectively. Then we have

h
o’

K
fa

Suppose that ¢ = (Z 2) eI'(f). We will treat the cases ¢ =0 and

¢ #+ 0 separately.
If ¢ =0, then gz = &2 + 2 where ¢ is a totally positive unit of K
such that e=1(mod{) and 2= 0 (mod ). An easy argument shows that

log n(e*2; u, v) = log n(z;u,v) , (10)
log 7(z + 2; u,v) = log 5(z; u,v) + AWN(z + 2) — N(2)) a1
= log n(z; u,v) + AW) 2524, + -+ 2, A%+0 - 20,
where the last sum is over all permutations {i, ---,4,} of {1,--.,n},

excluding the identity permutation. Equations (10) and (11) completely
settle the case ¢ = 0.

Henceforth, let us assume that ¢ = 0. Let us introduce a new vari-
able w e C" by setting w = —i(cz + d)sgn(c), where sgn(c) = ¢/|c|]. Then
Re (w) > 0 and

p=—d L =0 12)
c le] ¢ [ew|

In terms of the variable w, we may write
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log (2 ; u,v) — A(u)N( % + W>

exp {2m‘ Tr ((,u + u)ﬂ(—% + —»}

eZni Tr (v8)

= * £
be IN(B)|  wép—t

(p+u) 0

= ﬂ%—f}")W ,; exp {27:@ Tr( B (¢ + h)( - -+ lﬂ))} (13)

Af(p+h)B>0

= Y* _h_emh(vﬁ) exp {27:@ Tr(‘B‘“< i _w))}
pEG IN(B)| #=p CGaod 1) ¢ le]

= 1 > >, exp { 27t Tr (—(qd — ck))} 2,(W) ,

[F M F ] p (mod ¢f) ¢ (mod cf)
f ef =
g=h (mod f)

g2t Ir (v8)

—nl

where

1 (B
Gr,a(w) = b= P;ijdcp IN@)| »= a%‘:’dm { 2 Tr ([c|f8)}

(I'ci}

Let # be a typical signature character of K, i.e. a funetion
0: K* — {+1} of the form

0(x) = (ﬂ)al e (ﬂ)a” s a; = 0 orl.

B &
Then for z e K*, we have
;0(90) =2 if >0
0 otherwise,

where the summation ranges over all 2" signature characters of K.
Then from our calculations above, we see that

Gy (w) =277 ZO: Gp,q,s(W) , (14)

where

Granlto) = 00 b= ’%‘:‘t‘“f) |Z€7(53))| #= Q(;Emcf) b exp{——Zn Tr(’ciﬁa—'w)}
{Tep) (15)

= Z gp,q,ﬂ(ew) ’
e€T ¢t

where cw = (f) ({)w and
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Fp.00w) = 0(f3) >* o) 2 O(wexp {—2vrTr(l c“fﬂa ’“’)} (16)

B= p(modcf) ‘N(ﬁ)l p= q(modcf)
(Pcﬂ {I‘cf}

Let w = (wy, -+, w,), w; >0. We will apply Theorem 2-1 to the
function

9:(W) = gp q,s(W)N(w)* x>1.

It is easy to see that the condition z > 1 guarantees that g,e L (V).
Then Theorem 2-1 implies that

00

NWw)y 3 gpqocw) = El— ( > .cil(xm,t)xmwo(w)))N(w)-"dt amn
e€T ¢f T meEZn—1

where

dw,
Wr

j T NN N - dw,
s = 1Bl [ [ 0 tntetao) 00022

00 o —agj(m)
= |Rci|—1 J\o N Io gp,q,o(fw“ ceey, fwn) n <W7u)i___) 7 N(w)zt+x
1 'u

18
JOw, | dw, a8

w, W,
- dw dw

— |Ry| lf f Goa.o@sy « -, Wn) n wimesm QW01 AW,
w, Wa

where s = « + it and where we have used the fact that Zn] ay(m) = 0.
=1

Therefore, by inserting (16) in (18), we see that

G.0m D) = |Ra 07 > 0B s g

=7 mod of) IN(B)| »= 2 (mod e
{rap {ren

. r' L j“” [ﬁ e IHDBDBY D T DI D ypps a,(m)] dw, dw,
0 o Li=1 w, Wy

= Rq70) >x B s g

p=r mod of) IN(B)| »= ¢ (med of}
(Fcf) {I'ci}

. ﬁ Iw e—Z:rly(!)p(l)w‘//c(!)f(l)a(!)]w;—a/(m) dwj 19)
Jj=1 u)j

= 01(1']208)[ @)™ I(s, xm)xm(cf0) ! N(c ) [*
cf

p=p Gmod of) IN@PY u= d@edeh  [N(p)f ’

{Tef} (Fcﬂ
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I8, tm) = z I'(s — a,(m)) . (20)

Formula (19) suggests that we introduce a new kind of zeta func-
tion as follows: Let y be a character of K* which is trivialon I", =T,
for some re€ @, r + 0. Further, let pe@®. Then let us define the zeta
function

T I
£, 250,71 ﬂzpégm IN@F
(I'y}

This Dirichlet series is well-defined since y is trivial on I',. Moreover,
the series converges absolutely and uniformly on compact subsets of the
half-plane Re(s) > 1. Usually, it is too much to hope that {(s,y; »,7)
has an analytic continuation and a functional equation. However, in
case x(B) = A(P)I(B), where 1 is a grossencharacter defined modulo (r) and
6 is a signature character of K, then ¢(s,x; »,7) can be analytically
continued and has a functional equation involving gamma factors of
customary type (See Section 4). The functional equation to be proven
in the next section will involve the function

2"
|N(r9)|

Fpo..(8) = x(ra)“< )_SF(s, WS, x5 M6 + L,y 0,7) ,

where y = x,0 and I'(s,y) = I'(s, x»). A simple calculation shows that

. 1
gl(Xm’ 1) = |—R;I*Fp,q,z,cf(s) ) X = Xme .
Since the value of r in the remainder of this paper will always be cf,
we will omit the value of r in {(s,x; p,7) and F, ,, ,(s), writing instead
¢(s,x;») and F,, .(3), respectively.
From equations (15) and (17), we see that for we R*, x > 1,

Gp0,0(W) = X3 Gp,q,0(cw)

= 1 i g -z—1t
= j S )iy N () o1
1

- ST () L: F, o ()Nw)-*ds .

2n; | Rl .

In concluding this section, let us make a few remarks about formula
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21). Incase K=Q, n=1, = (1), there are precisely two signature
characters. Moreover, the only character y, is the trivial character.
Moreover, it is always possible to arrange things so that ¢ > 0. (Take
—g in place of ¢), so that 6(c) = 1 for any signature character 6. The
zeta functions in this case are of the form

6(m)

m=p (mod ¢) lmls
m30
mezZ

£(s,0;p0,1) = )
where 6(m) = 1 or 6(m) = sgn (m). Moreover,

Fppoos) = (%)‘*F(s)as,a; 0,00 +1,0;p,0) ,

GpaoW) = 2] oGm) >, 6(n)exp (—2:7:‘ mn Iw) (w=w).
mspmfgé)d ¢) |ml nsqn(glgd ¢) C
mezZ

Moreover, formula (21) is just the Mellin inversion formula

z + i
Gp,q,0(W) = el Ny Fyq®wds .

Ty Jz-

These last three formulas should be compared with equations (6), (5)
and (8 of [2] to see how the present proof is a precise generalization
of the proof [2] for the 1-dimensional case.

4. Functional Equations

Let us now summarize the basic facts concerning zeta functions of
the type {(s,x; »,7). Throughout this section, let y = y,60, where y,, is a
grossencharacter of K defined modulo () and 4 is a signature character of K.

THEOREM 4.1. The zeta function C(s,x;p,7) can be analytically
continued to a wmeromorphic function in the whole s-plane. The only
possible singularity is at s = 1, which occurs only when y =1 and p =0
(mod r). In case the pole is present, its residue is 2" '¢|N(r)N(@)*|™,
where R is the regulator of K and e ts the index of the group of all
totally positive K-units = 1 (modr) in the group of all K-units. More-
over, {(s,x; D, 7) satisfies the functional equation

A™SPT*(s, (S, 15 D 1)

— (— )% (rd) A-a-9r% (] _ g % T Do/ F(] — g % o, 1
VNGO ( ,x)p(mZm]m &( s X3 057) s
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where A = 7"/|dxN(r)|, dg = the discriminont of K, a = i“ a; and
=1

e = [l r(2+ 8 et ),

Moreover, the only possible poles of the function &(s,y; v, r) = A=2'*(s,y)
(s, 3 0,7) are at the points s =1, s = 0.

The proof of Theorem 4.1 parallels Hecke’s proof for the functional
equation for zeta functions with grossencharacters [4] and will be given
in detail elsewhere.

Let us now use Theorem 4.1 to derive a functional equation for
F, ... Take the functional equation of Theorem 4.1 at s,q and s + 1,
p and multiply the two. We then derive

A%, 0™ (s + 1, 0808, x5 @M + 1,5 0, 7)

O L () VPO
=N A% (— s, p*(L — s, 7

>, exp {Zml Tr (%’%‘B—p)}c(l — 8%, 1E(—8,7; 8,7) .

a,p (mod r)

By using the duplication formula for the gamma function, we see that
I*(s, PT*(s + 1, ) = 272204-92-2'(s, ) - [] (s — at;(m))es
j=1
I'*(U — s, pI™*(—s,y) = a™22r0492-¢"(—s,3) - ﬁ (—s + a(m))s .
ji=1

Therefore, by an elementary computation, we deduce

COROLLARY 4.2.

1 . ap + Bq )}
F, .. () = {2 Tr(“Fa_~s.
p,lI,x( ) IN(’}")I “f (;E)d " eXP {amt 70 8, ,x( )
Theorem 4.1 is a generalization of equation (4) of [2], whereas
Corollary 4.2 is a generalization of equation (7) of [2].
Implicit in our proof of Corollary 4.2 is the following useful re-
lationship between &(s,y;»,7) and F,,, ,(s):

PROPOSITION 4.3.

a—n -1
Fp,tl,z,'r(s) = 2 1(r9)

S ’ ; s 1, ; ’ .
INGDE  [[7r (s — at(m))™ (8,434, MEB + 1,15 0,7)
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5. Proof of the Transformation Law—First Step

Let us begin the proof of the transformation law for logy(z; u, v)
using formula (21). Let us first note that although (21) was proven
only for w = (w,, ---,w,) e R*, we may actually assume that w is any
complex number such that Re(w) > 0. For such w, let us define the
power w* (a ¢ C) via the formula w* = e*'°¢¥, where log w is the principal
branch. Then w* is an analytic function in the region Re (w) > 0.
Using this definition of w*, we can define y,(w) and N(w)=* for any w
such that Re (w) > 0. By analytic continuation, the formula (21) remains
valid for w = (w,, - - -, w,) €C", Re(w;) >0 A< j<n).

Let us apply formula (21) with z = 3/2 and let us shift the line of
integration to Re(s) = —3/2, adding the residues of the poles of the
integrand at points having real parts between 3/2 and —3/2. Among
the possible poles are s = 0,1, —1, as well as the poles of I'(s,y). The
validity of shifting the line of integration is easily checked using
straightforward estimates and the Phragmen-Lindelof Theorem. The

result is
G 1 —3/2+imF N -sd
) = g 2,100 [ P N ds
+ 1S ya@) 3] ResF, . (Nw).
[Ry| 2=ime ~3/2<Re ()<3/2

Therefore, by Corollary 4.2, we see that

Gp,q,a(w) =

1 {2 i T (ap + ‘3(1)}
ST B IV 120 T s Gy T2 T (5

—8/2+ 100
: j F,..(—9N@w) *ds

~38/2~100

L s y@w) 3 ResF,g (Nw)

|Re;l 25amo ~3/2<Re () <3/2

- [N(%:f)| ap (ggd e exp {Zﬂi Tr (ﬁp-c%aﬁl)} G007

L 5 ym@) 3 ResF,, (N@)* .

[ Res| 25xme ~3/2<he (s)<3/2

+

+

Therefore, by this last equation and equations (13)-(15), we have

log 7(z; u, v) — A(u)N(_ % N 3|_ch)
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; {2 Te( 2 )}
S R— —2n1 Tr(———(qd — ck) )G
20 Iyl p(mZot:icf) q‘éﬁ%ﬂ)ﬂ Z;. exp mr cfo (¢ ck) .0,0(0)
. 1
2°[I;: I';1|IN(ef)| p(mzotjicf) ;a,ﬁ<§dcr>
PR e (22)
X exp {27[75 TI‘( ap + Bq + kep — pqd )}Gﬂ )
cfo "
n 1

(w) ex
2" |Ry|[I;: T gg,,“:‘z,g:‘g;fe) x:Lx'—:nﬂ xm P

_2 'Tr(i d— k)}

{ 72} ofo (q ck)
Res F), , . (s)N(w)~* .

—3/2<Re (8)<3/2

Let us evaluate the first triple sum on the right hand side of equa-
tion (22). Since (‘; b

d) el'§), we have a=d=1(modf), b=c=0
(modf), ad — bc=1. In particular d and { are relatively prime and
ad =1 (modf). Next, note that

2 5P (201 T (LI )| N

if « + ¢k — qd =0 (modcy),
0 otherwise.

However, a + ck — gd = 0 (mod ¢f) if and only if ¢ = ala + ck) (mod cf),
since ad = 1 (mod c¢f). Therefore,

K 5;“%:;0%”;) exp {Zm' Tx (c_‘i?a_)} » (;n;;:cn exp {27:2' r (a—t%%_—gd—p»
— |N(ef)| exp {Zm' Tr (ﬂ(‘z];;—c’“))} it a(e + ck) = h (mod ) ,
0

otherwise.
However, since (f) =, ¢=0(mod{), d =1 (modf), we see that if

(e + ck) = h (mod f) ,
then « = h (mod §), so that

: kp — pad
> > ex 2mTr(“p+/3q+c
gg’;?nggdcfi)) @, (mod cf) P {

= |N(c)| zg‘h‘%%;?) exp {2m' Tr (fi(?c]jfa_c’“))}c;ﬁ,,,,,(w-l) =
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On the other hand, since ¢ = 1 (mod f), we see that

Bak _ Bk _ Bk (4 _1yeprorc o,
7o 7o fa

Therefore, Tr (Bak/f3) — Tr (Bk/f3) € Z and (23) equals

INCep)| > exp {2m Tr( f« (aer + ck))} sea(w) . 24)

a, ﬁ (mod cf)
a=h d §)

Thus, by equation (22), we have

log 7z u,9) — A@N(~Z + ’I—”’l)
C C

— 1 { . ( B8 )} .
= ST 2ei Tr (£ _(aar + e)) Gy
B Tl T gy 0 U oga T D)y G

1

(W
+ 2% |Rei| [ : I 5] P,Q(%):dcf) zf;nvx (w)

gq=h (mod §)

X exp {—2n:i Tr (_g%(qd — ck))} ST ResFy . (9N@w)~

—3/2<Re (5)<3/2

(5 ) a3 )

1
(W
+ 2”,R0f|[1_’f Cf] :nq(anodcf) Z%ax ( )

g=h (

X exp {—Zm' Tr (a%—(qd - ck))} > ResF,, (Nw)~ .

—3/2<Re (5)<8/2

Let us set
1
H(s) = m(W)
2" |[Res| 2 Il ’%:”a 2, q,%]c;:gdeff) x

X exp {—2m' Tr (c—fa—(qd - ck))}F,,,q,z(s) .

Then we may summarize our results so far in

a b
c d

1o (az-{—b’ ’)= - 24, ) — _ (az+b)
ogr(-EE05 u,0) = logyte; 0, 0) A(u){N(z) N__cz+d}

THEOREM 5.1. Let o —( )em) Then

— > Res H(s)N(w)~* .

—3/2<Re (5)<3/2
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In essence, we have accomplished the goal of the paper. All that
remains to be done is to compute the residues on the right hand side
and we will have derived the law of transformation of our generalized
p-function. Unfortunately, this last task is exceedingly messy and will
be the principal subject of the next section.

6. Proof of the Transformation Law—Second Step

Let us recall the function
§(s, x5 0, 1) = AT*(s, C(s, 45 2, 7)

which is mentioned in Theorem 4.1. As we mentioned, this function is
analytic for all s, except possibly for s =0,1. At s =1, there is a
271 Re (1)
IN ()|
the trivial character where e(r) =[I":I',]. At s = 0, there is a simple
pole with residue —2"7' Re (r) which occurs if and only if y =y, and

simple pole with residue which occurs if and only if y =y,

p = 0 (mod 7).
Recall from Proposition 4.3 that for y = .0, we have
a—n -1
Fpg..(8) = 2 1) £(s, %5 9,166 + 1, x;0,7) . (25)

IN@O)[F 3= (8 — a;(m))™
Therefore, we see that F,,,.(s) has possible poles only at the points
§=0,1, —1 and s =s;(x) A<Lj<n), where s,(y) = a;,(m) if y = y.0.
Thus, H(s)N(w)~® can have poles only at these points.
P 1 1

PROPOSITION 6.1. Res;_, H(s)N(w)™* = |N(c)]A(u) N

Proof. Using the fact that &(s,x;»,7) is an entire function for
X ¥ Xo» We see that F, ., () is analytic at s =1 for y # y,. Therefore,

Res,_, H(s)N(w)~*

1
= > am)
28 Bl Ll Dl i, ™ o 2asy

X exp {—2m' Tr (_c%(qd — ck))} Res,_, F, o ()N (w)~*

— 1 5 (26)
2" |Rei| [ : ') prg (mod oy

X exp {—2m’ Tr (%(qd - clc))} Res,_, Fp,q,lo(s)N(w)—s .
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However, by Theorem 4.1,
Res,_.F') 4, (I N(w)~*
_ 2"\ ) ) s
= Res,., (W) TS, 705 @ €)L(S + L, 703 P, ¢F)N(w)
_ Re(nHIN@P

- £, 105 2, eIN(w)™ .
2r

Therefore,

IN@)[ Nw)™

Res,_, HSNw)™* =
HHENG) 2@n)"[Ty: Tof] pafmacn

X exXp {—2m' Tr (%(qd - ck))}C(z, 103Dy ¢F)

In the last sum, let us write ¢ = h 4 af, where « runs modulo ¢. Then
Res;_, H()N(w)~*

_ _IN@P Naw)™ R
Ry ok G| LCE TR

X exp {—2m‘ Tr( i’;‘v‘; )} P {—2m‘ Tr( p;d )}
IN@PN()| N(w)~
Q)" : I'e) » (aod of)

=0 (mod ¢)

X e¥iTr n exp {—2m‘ Tr (M)}C(Z, Xo3 DsCf) .
cfao

Since p =0(mod ¢), €@ =1, Let us set p = wc, where « runs
modulo f. Then a simple computation shows that

L2, 505 05 ¢f) = NP U5 : T 182, 105 @, f)
Therefore,

Res,._, H(S)N(w)~*
= WOFNOING™ 5 exp{—2eiTr (1)@, 15 0, 1)

(211')n a (mod f) fa
E -1 -1
— lN(a)l IZ\;;‘:t))ln N(w) . (D’% . 62:\'12 Tr (au)c(z’ %o s oy f) .

Since d =1(modf), u = h/f3. However, a direct computation shows
that
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S 3 ey = Gl T S
(275)" a (mod f) 0y Ly (27[)" pef}gﬂ(o) IN(ﬁ)IZ
,l:n
=———Au) .
|dxl*

Therefore, since |N(9)| = |dx|, we have

O 1
Res;_, HS)N(w)~* = !N(c)‘/l(u) NGw)

and the proposition is proved.

PROPOSITION 6.2. Res,__, HN@W)™ = — " Aw)N@w).
IN(9)|
Proof. Similar to the proof of Proposition 6.1, except that the
functional equation of Proposition 4.2 is applied to the analogue of (26).
Let us now study the residue at s = 0. Let us write

Res;_ HS)N(w)™* =R, + R, , @7
where
1
R, =
YT2n R, | Ty p;qh(%?,;?)
~ (28)
X exp {2m’ Tr (c_”}a_(-qd + ck))} Res, o Fp.q o (ONw)™* ,
R, = 1 3 e Y
2B Dol | g, ™ sl

" (29)

X exp {2m' Tr <—£5(~qd + ck))} Res,_o F'y ¢ ()N w)~" .

PROPOSITION 6.3. R, = e(u)e(v)- 2139[_% log N(w), where e(a) =1 or
K

0 according as « is or is not in H7L.

Proof. Since F,,,(s) has at most a pole of the first order at s =0
(it equals @7"/|N(cfa)E)E(s, x5 4, 1E(S + 1,25 P, 7)) We see that

1 : D
R = 20 Tr (2 (ad — b))
T R, TAIN@TOP gy exp {2 T (- ad — o)

X Res, o (6(S, %05 @, ¢ES + 1,305 D, cHN(W)™9).
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However, by Theorem 4.1,

1
IN(ef)F p(nécf)

X S(S + 1’X0;p’cf) =$(-3,Xo; —qd + Ck,Cf) .

exp {27:11 Tr (c—%—(—qd + ck))}

Therefore, we have

R — 1
L 2n . 3
2 R Ty Lol 1z g

Res,_, (£(s, %03 a5 ¢))

(mod ¢f)
h (mod f)

-E(—8, %5 —aqd + ck,c)INw)™) .

Since &(s,y; m,r) is regular at s =0, except when m = 0 (mod 1),
we see that the only terms of the sum which can be non-zero are those
for which ¢=0(modc¢f) and ¢q = cke (modcf), since da = 1(mod cf).
However, these two condition can hold for a ¢ counted in the sum if
and only if » = 0 (mod {). However, since u = h/f9, v = k/fo and ¢ =0
(mod ), it follows that in order for there to be a contribution to the
above sum, we must have e b

Assume, for the moment, that ved™'. Let us show that in this
case, the contribution to the above sum is 0. In this case, the terms
corresponding to ¢ =0 and ¢ = cka (mod ¢f) are distinet and their sum
is

Res,_o £(5, 205 0, ¢/)E(—S8, 105 ¢k, cfIN(w)™*

+ Res,_ £(s, xo; a*ke, ¢/)E(—8, %05 0, c/)N(w)~* . ()
But v ¢ b~ implies that &(—s, y,; ck, cf) and &(s,y,; a*ke, cf) are regular
at s =0. Moreover, &(s,1;0,cf) and &(—s,y;0,cf) have simple poles
at s = 0 with residues —2"* Re (¢f) and 2! Re (¢f), respectively. Thus,
the sum (%) equals

2"~ Re (¢D{&(0, x5 ake, cf) — &0, xo;5 ¢k, cf)}
which equals 0 since ad = 1 (mod ¢f), so that ack = ck (mod ¢f). Thus,
we see that we may assume that

ued?t, ved!. (30)

Let us assume that (30) holds. Then clearly akc = 0 (mod cf), since
¢=0(modc¢) and k= 0 (mod ). Moreover & = 0 (modf). Thus, there is
a unique non-zero term in the above sum, corresponding to ¢ = 0.
Therefore, since —ck = 0 (mod cf),
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1

R1= $= »Xos Y, —S8 %> Y ).
2 | R 11,2 Lol |d P Res;_o (6(s, %05 0, ¢/)e(—8, 705 0, ¢/IN(w)™)

However, the Laurent expansion of &(s, x,; 0, ¢f) about s = 0 begins

&(8, %03 0,¢f) = _E;‘i}@ + A + D(s), A constant.

Therefore, &(s,x; 0, cf)E(—S8, %3 0,¢f) — M is a regular func-
S

tion at s = 0, and therefore

Re ()
R, = "> _log N(w) ,
hence the Proposition.

Since F, ,,(S)N(w)~* is regular at s = 0, except possibly when y, =
%o We see that

1 : p
R, = exp {2 Tr (P(—qd + b))
C 28R |[Ty: Ty 0;110 ggé%gdcff)) il i cfa( ad + ck)

- Res,_g F'yy 4 o(S)N(w)~*
1

= TR Ty TaNGTap &2 PP B

h (mod f)

o

q

X exp {2m’ Tr (c—?g(-qd + clc))}

a

 Reseeo (245,05 0, 0606 + 1,0, ¢))

1 ,
— Z 2a—ana Z
[Rei| [Is: Lol [die [ o520 Ll eh,

* Ress:o (iv'('g;)__sg(syﬁ; q, Cf)f(—s,ﬁ; —(Id + Ck’ Cf)) ’

where we have applied the functional equation of Theorem 4.1 (see
proof of the preceding Proposition).
Let us define the function
Sy(0,8) = Syla, slu,v,H) = >, &(—s,0; —qd + ke,cf)é(s, 05 q,¢f)

q_(mod cf)

g=h (mod f)

for ¢ = (g 2) € G(f). Although this function is very complicated look-
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ing, it turns out to be a very natural function, closely related to the
theory of Dedekind sums in case K = Q. In case 4 +#6, the trivial
character, S,(c,s) is an entire function of s, so that

1

- ) N(w)—s
R, = 9a-nja R, . Nw)™ ¢ ’
S TR Tl o eSS, 8)
1 Qa-2nga da—l p ~
- (N@)~*Sy(a, 5)),..
BT TTaeF o2 la — DT dger o 07500 Do
= 1 PO (a — 1) _1 N a—1-j
|Reg LT : Il | dg [t 2 (@ —1)! A j (—log N(w))
!

de Sa(o', S)Is:o .

Thus, finally we have

PROPOSITION 6.4. For each signature character 6 and each 7 (0 <
i<a—1, a=a()), define A, 0) by

A _ iaza—m(_l)a—l—j 1 {a -1 d—j 0 .
O =R, Tldgff @—DI\ ) 751000 Dlsno
Then
Res,. HON@w)™* = % log N(w)
+ 5 5 4,6) Gog Ny~ .

In particular, the terms in the above sum which do not depend on w
are just

S) = 2, Aa0) .

(This last sum is the generalization of the classical Dedekind sum to
our setting.)

Propositions 6.1 to 6.4 leave us only the task of computing the re-
sidues at the points s;(x) A <j<n). This can be done generally.
However, for the sake of simplicity in calculations let us make the fol-
lowing assumption:

AsSsUMPTION. Let m # (0, --+,0). Then the complex numbers s,(yx),
- -+, 8,(xm) are all distinct.
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This assumption will be automatic in case » = 1,2,3. In fact, we
conjecture that this assumption always holds.* Roughly, we suspect
this to be true because the numbers s,(y.), - - -, S.(xn) are essentially ele-
ments in one row of a matrix which is the inverse of a regulator
matrix. Therefore, one would suspect » — 1 of them to be algebraically
independent. However, this appears to be a difficult problem in trans-
cendental number theory. Throughout the rest of this paper, the above
assumption will be in effect.

By using reasoning similar to that used above, we can easily see
that for x = yu % 20

1

Res,_;,, HEONw)* = m (W
e8;s_s . H(SIN(w) 2% [Ryf| [I';: T'oil Z,;:X ( )p,_q(;:dcf)
g=h (mod f)

(619)
X exp {—2m' Ty (C_ia—(qd ~ ck))} ReS,_o o Fp 020N w) .

Therefore, by using the definition of F,, ,(s) and the functional equa-
tion of Theorem 4.1, we have for y = yn, m # (0, ---,0),

Res;_;,, , H(S)N(w)~*

== X(Cfa)_l a—2n -1
= R, : TN 32 el ) 2,

g=h (mod f)

. exp {—2m: Tr (é%(qd _ ck))} Res, ., ( mzlz(\;(z_v);(x))ak

&, 20; ¢, eEG + 1,203 D, cf))

1 .
= m aQa-2n R -
AR T T 20 €S, sy

) < N@w)—*
T3z (8 — s())**

1 o N(w)~
= xm (W) 2 122972 Res,_, ,(
|dxl?|Re| [ Ty = PN TTesy (8 — s;())™

e s)) ,

£(s, 405 q,cf)E(—s,x7'07", —qd + ck; Cf))

where, consistent with our previous notation, we have set

S,i(0,8) = ;%cdnﬁ &(s,40; q,cNE(—s,x707"; —qd + ck,cf) .

q
q=

* This co:jecture is actually due to Hecke [4, p. 228-229].
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Since y = gm, m #* (0, ---,0), we see that S,,(s,s) is an entire function
of s. Moreover, our hypothesis above guarantees that the pole of the
function

N(w)~*

S,.(0,
i 6 — sy 2

at s = s;(y) is simple with residue

N —3/(1)8 '] ’ : aj
(?/U) 2 (‘7 SJ(X)) %;} (Sj(x) — Sk(X))ak

Therefore, we finally have

PROPOSITION 6.5. For 1<j<mn, set

wj = <w1’ cey Wy yWiyry ',wn) .

w;
N(w)
Then for y = ym» m # (0, ---,0), we have

Res,_,,, HONw)™* = B;())x(w;) ,

where

2e(c)"! .
= e ; S0, 5,0) -
D = R T o0 (@, 5,(0)

In order to state our final transformation formula for log 5(z; u,v),
let us introduce some constants suggested by Proposition 6.4. For 1<

i< n, set
e(we(v) Re (F) ;
B bk o i3 AR A, @O G=1
o] 2k o, A0 0=D
;=

020 A, i 46 G>1).

*0o
a=a(0)>j+1

RS AN
Furthermore, let us set ¢(2); = w;. Then, using this notation, Proposi-
tion 6.1 to 6.5, together with Theorem 5.1, we can at last state the
main result of this paper:

MAIN THEOREM. Let ¢ = (g 2) el'(f), zeH*. Then
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b az + b
1 (_“z_‘l'_;,)=1 ” A {N<m>_N }
ogy 1 d U, v og 7(z; u,v) + A(u) e+ d (€]

(=D 1
NG 1@ { N(ez + d)

— N(ez + d)}

n

~ 5 3B annE@)

meZn—1 j=

— S(o) .

7. Examples

Let us give a few illustrations of special cases of our main theorem.

EXAMPLE 1. K = Q.

Here n=1, R=1, =1, de =1. Without loss of generality, let
us assume that f >0, ¢ > 0. All the assumptions made in our discus-
sion are valid in this case since all Q-ideals are principal and since there
are no non-trivial grossencharacters of conductor 1. There is only one
non-trivial signature character, namely

6,(x) = (I—z—l) (xe Q.

In this case,

eznimv

o
Z ezxﬁ(£+u)mz y

(e+uIm>0

log 7(z; u,v) = AWz + 3.
0

m=—o0 ]
m¥F

| 2
where

1 o eZnium

A(w) =

2n1 m=—o |m|
m0

= —2miB,(u) ,

where B,(u) denotes the second Bernoulli polynomial. In particular,

A0) = — T
0) 5

Also, for u = v = 0, log 5(z; u,v) = —2log »(2), where »(2) is the classical
Dedekind 7-function.
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A simple computation shows that

C, = e(w)e() .
Moreover

S(0) = A6 = —”21 20,6, —qd + ck, cf)C(0,0,; g, ¢f)

However, we showed [2, p.297] that

20, 6,3 t,7) = —z(( :

|
SN—"
N—"

Therefore,

=2 > (;SM + v))

§ (mod ¢)

(=
=2 3 (5 o)

In particular, if ¥ = v =0,

S(g) = —‘Zﬂ?:S(d, C) ,
and our main theorem is just the law of transformation (1). For

general u,v, our main theorem yields

logn( az + b ; u,v) = log 5(z; u, v) — e(w)e(v) log ( i + d)
cz+d 1

a+d
c

+ A(u) + 27iS(u, v, 0)

where

Swv,0)= 5 ((M _ v))((s 4(; u))

is a generalized Dedekind sum. This latter formula is due to Siegel
[6, p. 179] and Meyer [5, p. 102].

EXAMPLE 2. Let K = Q(v/dg) be a real quadratic field of discrimi-
nant dr and fundamental unit ¢. Then, 5 is a principal ideal and
further, assume that | is an arbitrary principal integral ideal. Then all
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assumptions made in the paper are valid. Let ¢ be a generator for the
group of K-units =1 (modf{). Note that

1 1

1 1 ) -1 R -
( og e ) B 5 5
- 1 1 ’
1 loge® —
o8¢ 2Tog e 2log ¢
so that for me Z,
omia(m) = M onig(m) = — T
log e loge

Am Y, Yp) = Y08 ygmimios e,

Notice that for m =+ 0, a,(m) # a,(m), so that the assumption of Section
5 is valid.
In this example, there are four signature characters 4, namely

6 = 6,,6,,0,6, ,
where
6,=1, 6,(x) = sgn (N()) (xe K*),
6,(x) = sgn(x), 6i(x) =sgn (@) (xeK®),

where «+— 2’ denotes the non-trivial conjugation map of K/Q. Im-
mediate computations show that

_ e(we)e(f) log ex e() S (6.0
Ci= 2v/dg 2e(cf)’ log exv/ dx uo 0,
—i e(®) S,.(,0) + S0, 0) + 2i-% 8
S0) = gt D[S0, 0 + 800,00 4 27 S, 9]
Moreover, for 6 + 6,,

Sy(a,0) = PN §0,0; —qd + ke, cf)&0,6; q,cf)
¢ (mod ¢
g=h (mod f)

By applying the functional equation of Theorem 4.1, and letting s — 0
from the left, we see that
£0,0; p,r) = DOV 3 5 OB B
U,y Yy o/t $=0 ﬂﬂe#a({{ |N(‘8)I1+s

{Ir}

b

Thus, we see that £(0,0; p,r) is a generalization of the function (( )),
that is, essentially, the first Bernoulli polynomial, to a real quadratic
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field. Moreover, our above formula for S(s) justifies calling S(@) a
Dedekind sum, at least apart from the anomalous term involving

;zd;s“("’ s,

for which no conceptual explanation is available at this time. For-
tunately, this term does not contribute to the class number formulas in
this case.

Our transformation formula in this example reads

log 77(—‘1‘65—;’:—3; U, v) = log 5(z; u,v) + A(u){N(%Si—S) — N(z)}

1 1
T N© A(“){ Nz 4 o) Ve d)}

— C,log N(sgn(c) f_zi_d)
1

o 7 ’ —2zim/log ¢
- Bl(xm)(sgn(c")w) M
)

Mm=—oo

— > Bz(xm)(SQC(c)M)+2xim/logs - 8@,
1

m=—oo

where z = (2,,%,). The special case of this formula in case (g Z) =

((1) _(1)> is due to Hecke [3, p. 403].
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