We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We classify minimal irregular surfaces of general type X with Kx ample and such that the canonical map is 2-to-l onto a canonically embedded surface.
[AK]Ashikaga, T. and Konno, K., Algebraic surfaces of general type withTohôku Math. J., 42 (1990), 517–536.Google Scholar
[Ba]
[Ba]Barlow, R., A simply connected surface of general type with pg = 0, Invent, math., 79 (1985), 293–301.CrossRefGoogle Scholar
[Bel]
[Bel]Beauville, A., L’application canonique pour les surfaces de type général. Invent. math., 55 (1979), 121–140.CrossRefGoogle Scholar
[Be2]
[Be2]Beauville, A., Sur le nombre maximum des points doubles d’une surface dans P3 (μ(5) = 31), Journeés de Géométrie algebrique d’Angers1979, Beauville, A. ed., 207–215.Google Scholar
[BPV]
[BPV]Barth, W., Peters, C. and de Ven, A. Van, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 4, Springer-Verlag, Berlin (1984).Google Scholar
[BS]
[BS]Bayer, D. and Stillman, M., Macaulay: a computer algebra system.Google Scholar
[Cal]
[Cal]Catanese, F., Babbage’s conjecture, contact of surfaces, symmetric determinantal varieties and applications, Invent, math., 63 (1981), 433–465.CrossRefGoogle Scholar
[Ca2]
[Ca2]Catanese, F., Canonical rings and “special” surfaces of general type, Proc. of Symposia in Pure Math., 46 (1987), 175–194.CrossRefGoogle Scholar
[Ci]
[Ci]Ciliberto, C., Superficie algebriche complesse: idee e metodi della classificazione, Atti del convegno di Geometria Algebrica, Genova -Nervi, 2-17 aprile 1984, 39–158.Google Scholar
[GH]
[GH]Griffiths, P. and Harris, J., Principles of algebraic geometry, John Wiley &; Sons, New York, 1978.Google Scholar
[Ha]
[Ha]Harris, J., A bound on the geometric genus of projective varieties, Ann. Sc. Norm. Sup. Pisa, IV serie, VIII (1981), 35–68.Google Scholar
[Ho2]
[Ho2]Horikawa, E., Algebraic surfaces with small, II, Invent, math., 37 (1976), 121–155.CrossRefGoogle Scholar
[Ho4]
[Ho4]Horikawa, E., Algebraic surfaces with small, IV, Invent, math., 50 (1979), 103–128.CrossRefGoogle Scholar
[Ko]
[Ko]Konno, K., Even canonical surfaces with small K2, I, Nagoya Math. J., 129 (1993), 115–146.CrossRefGoogle Scholar
[LB]
[LB]Lange, H. and Birkenhake, C., Complex abelian varieties, Grundlehren der mathematischen Wissenschaften, Vol. 302, Springer-Verlag, Berlin (1992).Google Scholar
[Mi]
[Mi]Miranda, R., On canonical surfaces of general type with K2 = 3χ − 10, Math. Z., 198 (1988), 82–93.CrossRefGoogle Scholar
[Se]
[Se]Serrano, F., Fibrations on algebraic surfaces, Geometry of Complex Projective Varieties, Cetraro (Italy), June 1996, Lanteri, A., Palleschi, M., Struppa, D. eds., 89–102.Google Scholar
[VZ]
[VZ]Geer, G. Van der and Zagier, D., The Hilbert modular group for the field(), Invent, math., 42 (1978), 93–134.CrossRefGoogle Scholar