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IRREGULAR CANONICAL DOUBLE SURFACES

MARGARIDA MENDES LOPES AND RITA PARDINI1

Abstract. We classify minimal irregular surfaces of general type X with Kx
ample and Kx = 6pg —14 such that the canonical map is 2-to-l onto a canon-
ically embedded surface.

§0. Introduction

Let X be a minimal surface of general type of geometric genus pg,

let Σ C P ^ " 1 be the canonical image of X and let φ : X —» Σ be the

canonical map. If Σ is a surface but φ is not birational, then by Theorem

3.1 of [Bel] either i) pg(Σ,) = 0 or ii) Σ is the canonical image of a surface

of general type 5 whose canonical map is birational (and then, of course,

pg(Σ) = pg). Recall (cf. [Ho2], Lemma 1.1 or [Bel], Theorem 5.5) that

the Castelnuovo inequality K2 > 3pg — 7 holds for surfaces of general type

with birational canonical map; so in case ii) 5 satisfies i f | > 3pg — 7, and

K\ > 6pg — 14, with equality holding if and only if the canonical system of

X is base point free and the minimal resolution 5 of Σ is a minimal surface

on the Castelnuovo line Kg = 3pg — 7 (cf. Proposition 2.3 and proof).

Case ii) of the theorem quoted above was thought to be impossible for

a long time. In fact only very few examples are known, and all but one

series due to Beauville (cf. Section 3, Example 4) have bounded invariants.

The examples in this infinite series satisfy: K\ = 6p9 — 14, deg φ = 2 and

q(X):=h°(X,Ω1

χ) = 2.
The main purpose of this paper is to show that these are almost the

only examples satisfying K\ — 6pg — 14 and q(X) > 2. Therefore we make

the following:

ASSUMPTION 0.1. Let X be a minimal surface of general type of ge-

ometric genus pg, with K\ — 6pg — 14, q(X) > 0 and Kx ample, let
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2 0 4 M. MENDES LOPES AND R. PARDINI

Σ C Pps~1 be the canonical image of X and let φ : X —> Σ be the canonical

map: assume that Σ is a canonical surface and that φ is not birational.

Moreover, if pg = 5,7 assume that Σ is isomorphic to a divisor with at

most rational double points in a P2-bundle over P1, such that the fibres F

of the projection Σ —* P 1 are plane quartics.

If the above assumption is satisfied, then the minimal desingularization

5 of Σ is a minimal surface satisfying Kg = 3pg — 7. Surfaces with these

numerical invariants have been described by Ashikaga and Konno in [AK]:

under our assumptions one shows (cf. Proof of Proposition 2.3) that pg = 4

cannot occur and that for pg = 6 or pg > 8 Σ is isomorphic to a divisor

with at most rational double points in a P2-bundle over P 1 , such that the

fibres F of the projection Σ —» P 1 are plane quartics. (This accounts for

the somewhat funny-looking final part of Assumption 0.1.) We divide the

surfaces X in types / and //, according to whether, for a generic fibre .F,

φ*F is connected or not. Surfaces of type / are the "general case", and,

if q{X) > 2, they correspond to Beauville's examples; more precisely, we

prove the following:

THEOREM 0.2. Assume that 0.1 holds, that q(X) > 2 and that X is

of type I: then pg(X) = 1 (mod 4), q(X) = 2, the Albanese surface A of

X has an irreducible principal polarization, and X can be constructed as in

Example 4 of Section 3, with n — (pg(X) + 3)/4.

Let us remark that we do not know any example of type I surfaces with

q(X) = 1. To establish whether such surfaces exist, and in case of existence

whether they have bounded invariants is an interesting problem.

On the other hand, surfaces of type // should be regarded as exceptions,

and can be described completely:

THEOREM 0.3. Assume that 0.1 holds and that X is of type II, let

X —> B —> P 1 be the Stein factorization of the pencil φ*\F\ and let g

be the genus of B: then there exist integers 0 < a < 6 < c with c < g

and a + b + c = pg — 3 such that Σ is isomorphic to a divisor in Έ*a,b,c '•—

Proj(Opi(α)Θθpi(δ)0θpi(c)) with the following properties: i) Σ is linearly

equivalent to 4T — (a + b + c — 2)L, where T is the tautological hyperplane

section and L is the fibre of Έ*a,b,c (and F = L\%), ii) the pencil \F\ on Σ

has precisely 2g + 2 double fibres, iii) the only singularities of Σ are nodes

and Σ is smooth outside the double fibres of \F\. The double fibres of \F\

occur at the branch points of B and each contains 8 nodes .
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Conversely, given integers 0 < a < b < c and g, with c<g,ifΣC Pα,6,c

is a divisor satisfying conditions i), ii), iii) above, then Σ has 16# + 16 nodes

and there exists a double cover φ : X —• Σ branched over the nodes such

that X is a surface of type II and φ is the canonical map of X.

The numerical possibilities for the invariants of X are the following:
a ) Pg = 3# + 3, q = g, a = b = c = g, 0 < g < 26;

b) P9 = 3g + 2, q = g + 1, a = g - 1, b = c = g, 0 < # < 17;

c) p g = 3g + l, q = g + 2, a = b = g-l, c = gora = g-2,b = c = g,

0<g<8.

In [Bel] it is also proven that if the canonical map 0 : X —» Σ is
not birational and Σ is a canonically embedded surface then deg φ < 3 for
χ(Cχ) > 14, and if deg^ = 3 then q(X) < 3. Theorems 0.2 and 0.3 imply
in particular that the irregularity q(X) is also bounded under Assumption
0.1. It would be interesting to know whether q(X) is bounded in general
for deg^ = 2. Another interesting problem is to study regular surfaces X
such that the canonical map is not birational and the canonical image is
a canonically embedded surface: only very few examples are known (cf.
Section 3) and, lacking the information given by the Albanese map, their
structure is quite mysterious even when the invariants satisfy the "minimal"
relation K\ = 6pg — 14.

The paper is organized as follows: in Section 1 we set the notation and
recall some facts on double covers that will be used later. In Section 2 we
describe the general set-up and establish various facts about X, S and Σ.
In particular we study the structure of degenerate fibres of φ*F both for
type I and type //. In Section 3 we describe the construction of all the
examples known to us of surfaces of general type with 2-1 canonical map
onto a canonical surface. In Section 4 we look at the surfaces of type /
with q(X) > 2 and we show, using a fine analysis involving the Albanese
map and the Prym variety of φ*F —» F for general F, that these are
exactly Beauville's examples. In Section 5 we describe the surfaces of type
// in detail and determine the possible ranges for their invariants. Section
6 contains a computation with Macaulay that shows that Example 3 of
Section 3 actually exists.

Acknowledgements. We are indebted to several people for useful
conversations; we would like to mention in particular C. Birkenhake, F.
Catanese, M. Manetti, G. Ottaviani, N. Shepherd-Barron, A. Verra.
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§1. Notation and conventions

All varieties are normal projective varieties over the complex numbers.

The n-dimensional projective space is denoted by P n , and its group of

automorphisms by PGL(n). As usual, Oγ is the structure sheaf of the

variety Y, HZ(Y, T) is the i-th cohomology group of a sheaf T on Y, and

hι{Y,T) is the dimension of EP(Y, T); for a line bundle M on Y, we de-

note by \M\ the complete linear system P(H°(Y, M)). When dealing with

smooth varieties, we do not distinguish between line bundles and divisors.

If Y is smooth, then Ky denotes a canonical divisor and Pic(Y) the Picard

group of Y. If Y is a surface, then pg(Y) = h°(Y,Kγ) is the geometric

genus and q(Y) — hι{Y, Oγ) is the irregularity, K\ is the self-intersection

of the canonical divisor; we denote by χ(Y) = 1 — q(Y) + pg(Y) the Euler

characteristic of Oγ and by C2(Y) the second Chern class of the tangent

bundle of Y, or, which is the same, the topological Euler characteristic of

Y. A surface Y is said to be irregular if q(Y) φ 0. The intersection num-

ber of two divisors C, D on a smooth surface is denoted simply by CD,

linear equivalence is denoted by =. A node of a surface is a double point of

type Ai, namely a hypersurface singularity that in suitable local analytic

coordinates is defined by the equation x2 + y2 + z2 = 0.

A double cover is a finite map / : X —• Y of degree 2 between normal

projective varieties; we denote by i : X —* X the involution that inter-

changes the two points of a generic fibre of /. In this paper we will need to

consider only the following two cases: a) both X and Y are smooth, and b)

X is a smooth surface, Y is normal and / is unramified in codimension 1.

In case a), / is a flat map and /*0χ splits under the action of i as

Oγ Θ £~ x , where £ is a line bundle and i acts on C~ι as multiplication by

— 1. The branch locus of / is a smooth divisor B = 2£, the ramification

locus is a divisor R = f*C and one has:

(1.1) Kχ = Γ(Kγ + £) K\ = 2{KY + Cf f*Kχ = Kγ®(Kγ + C)

(1.2) h\Ox) = WiOy) + ti(C), i = 1,... dim Y

(Actually, the above formulas also hold if Y is a surface with rational double

points and 5 is a smooth divisor containing no singulairities of Y). The

cover φ : X —+ Y can be reconstructed from Y, £, B as follows. Let

p : C —y Y be the projection, let w be the tautological section of p*C and

let σ G H°(Y, C2) be a section vanishing on B: the zero locus in C of the
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section w2 — p*σ of p*£ 2 , together with the restriction of the map p, is a

double cover of Y isomorphic to φ : X —> Y. Moreover, it is clear that,

given a line bundle C on Y and a divisor B in the linear system | £ 2 | , the

above construction yields a finite degree 2 map φ : X —> Y.

A linearization of a line bundle TV on X is an involution %N ' N —> iV

that lifts the involution i : X —> X. If TV is a linearized line bundle, we say

that σ G H°(X, TV) is even if 2^*0" = σ and odd if i^^σ = —σ. A divisor

defined by an even (odd) section is called symmetric (antisymmetric). The

canonical bundle Kx and the pull-backs of line bundles from Y have nat-

ural linearizations: in these cases, unless otherwise stated, we consider the

natural linearizations.

Consider now case b): the singularities of Y are nodes, that are the

images of the fixed points of i. If v is the number of nodes of y, then one

has (see [Ba] (0.6)):

(1.3) χ(Oχ) = 2χ(Oγ) - \v

A set J of nodes on a normal surface Y is said to be even if there exists a

double cover φ : X —» Y branched precisely over J.

PROPOSITION 1.1. Let W be a smooth 3-fold, letY CW be a divisor

whose only singularities are nodes; if there exist divisors D, D1 in W such

that D = 2D' and D restricted to Y is equal to 2C, where C is a curve

passing though all the nodes of Y, then the nodes of Y are an even set.

Proof. Denote by η : W —• W the blow-up at the nodes of y, by

e : y —• y its restriction to the strict transform Y of y, by Ei, Ei the ex-

ceptional divisors of η and e respectively, and by I), C the strict transforms

of D on W and of C on W. One has the following linear equivalence on W:

2η*Df = η*D = D + ΣEi, which restricts to 2e*£>/ = e*D = 2C + Σ,Ei-

So Σ Ei = 2(e*D' — C), and there exists a smooth double cover g : X -^ Y

branched over Σ^i'i ^ e ramification divisor of g is a union of disjoint —1

curves that can be contracted to yield / : X —> Y branched over the nodes

ofy. D

§2. The set-up

The notations and the assumptions introduced in this section will be

maintained throughout all the paper. We start by making the following:
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ASSUMPTION 2.1. Let X be a minimal surface of general type of ge-

ometric genus pg, with K\ = 6pg — 14, q(X) > 0 and Kx ample, let

Σ C P ^ " 1 be the canonical image of X and let φ : X —• Σ be the canonical

map: assume that Σ is a canonical surface and that φ is not birational.

Moreover, if pg = 5,7 assume that Σ is isomorphic to a divisor with at

most rational double points in a P 2 -bundle over P 1 , such that the fibres F

of the projection Σ —• P 1 are plane quartzes.

Let now A be the Albanese variety of X, let XQ G X be a fixed point

of i, let a : X —> A be the Albanese map with base point #o a n d let

K = A/ < — 1 > be the Kummer variety of A. Since Σ is regular, the

involution i on X induces on A the multiplication by —1, and there is an

induced map / : Σ —• K. Thus we have the following basic commutative

diagram, where q : A —> K is the natural projection:

X —> A

(2.1) Φi iq

Σ Λ K

Assuming K\ — 6pg — 14 is equivalent to considering the lowest possible

value of K2 in the above situation, as it appears from the next proposition

and its proof. In order to state it we introduce the following

NOTATION - DEFINITION 2.2. Let 0 < a < b < c be integers: we write

Pα,6,c = Proj(C>pi (a) Θ Opi (b) θ OPi (c)), and denote by T the tautological

hyperplane section and by L the fibre of Pa,b,c We define a Castelnuovo

surface of type (α, 6, c) to be a divisor Σ in Pα,6,c linearly equivalent to

4T — (α + b + c — 2)L with at most rational double points as singularities.

Notice that T restricts to the canonical divisor of Σ and that the minimal

desingularization 5 of Σ is a minimal surface satisfying: UΓ| = 3(α + 6 +

PROPOSITION 2.3. Assume that 2.1 holds; then:

i) \Kχ\ is base point free and the only singularities o/Σ are i(l+pg

nodes, that are the critical values of φ;

ϋ) Pg > 5 ; deg φ = 2, A"| = 3pg - 7;

iii) there exist integers 0 < a < b < c with a + b + c = pg — 3 such that Σ

is a Castelnuovo surface of type (α, 6, c) (thus,in particular, one has a > 0

forpg > 5).
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Proof. Write Kx — M + Z, where M is the moving part and Z is

the fixed part of Kx and denote by d the degree o f Σ c P ^ " 1 . By [Ho2],

Lemma 1.1 or [Bel], Theorem 5.5, one has d > 3pg — 7 and thus:

6pg -U = K2

X = KXM + KXZ > KXM = M2 + MZ>M2>

(deg φ)d > (degφ)(3pg - 7) > 6Pg - 14.

The first and the second inequality are consequences of the fact that Kx and

M are nef. It follows that deg φ is equal to 2 and all the above inequalities

are equalities. In particular, one has KxZ = 0, MZ = 0: by the 1-

connectedness of canonical divisors, this implies that Z is empty and \Kχ\ —

\M\ is base point free. The surface Σ satisfies d = 3pg — 7: so it is a

Castelnuovo variety in the sense of [Ha], p.44 (in the notation of [Ha], here

one has M = 3, e = 1, k — 2 and n — pg — 1). Thus Σ is projectively normal

(cf. [Ha], p.66), and therefore it is normal. So φ : X —> Σ is a double cover

as defined in Section 1, the only singularities of Σ are nodes, and Σ is the

canonical model of 5. The map φ is necessarily unramified in codimension

1, since otherwise Kx would have a fixed part, and so the number of nodes

of Σ can be computed by means of formula 1.3.

Castelnuovo varieties are listed in [Ha], p.65 (apart from a small mis-

take corrected in [Mi]): taking into account Assumption 2.1 and the above

discussion, it follows that there exists (α, 6, c) with a-\-b-\-c = pg — 3 and a

divisor Sr C Pα,6,c of type 4T — (pg — 5)F such that Σ is the image of Sf via

the birational map ψ induced by \T\ (cf. Notation 2.2). (Remark that this

implies that \Ks\ is free; this fact can also be shown directly using the same

argument as in Lemma 2.1 of [Ko]). If a > 0, then ψ is an isomorphism

with its image; if a — 0 and pg > 5, then φ contracts a curve E C Sf (cf.

[AK], 2.4) and is an isomorphism outside E.

We wish to show that the latter case cannot occur. By contradiction,

assume that that is the case. The map e : S —> Σ factors as 5 —» S' —•> Σ,

where S' —> Σ contracts E to a singular point of Σ and is an isomorphism

outside E. Denote by φ : X —> 5 the map obtained by resolving the

indeterminacy of X —> Σ, by E the — 2-curve on S which is the strict

transform of E1, and by F the fibre of the pencil on S induced by the

projection S' —> P 1 . By the above discussion, φ is a double cover branched

over the sum Δ of all the — 2-curves of 5, and thus Δ is divisible by 2 in

Pic(X). In particular DA is even for any divisor D on X. On the other

hand, EF = 1 and FC = 0 for any — 2-curve C distinct from J5, since such
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a C arises from a node of 5', and so AF = 1. Therefore the case a = 0 and

pg > 5 is excluded.

In order to finish the proof we only need to exclude the case pg = 4. By

the previous argument, in that case X would be a double cover of a quintic

branched on a set of at least 24 nodes, but such a set does not exist by the

proposition on page 209 of [Be2]. D

Denote by \F\ the pencil on Σ induced by the projection Pα,6,c ~* P 1

and by \F\ the pull-back φ*\F\. Surfaces X as in Assumption 2.1 fall into

two types according to the nature of | F | :

DEFINITION 2.4. We say that a surface X as in Assumption 2.1 is of

type / if | F | is irreducible, and of type // if \F\ is reducible.

Remark that if X is of type / then \F\ is a linear pencil of genus 5. We

will show later (Proposition 5.3) that, if X is of type //, then there are only

a finite number of numerical possibilities for the invariants of X, so that

one should think of surfaces of type / as of the "general case".

PROPOSITION 2.5. Every irreducible component of a fibre of the pencil

\F\ on Σ has multiplicity < 2, and every double fibre contains 8 singular

points o/Σ. Moreover, if X is of type I, then \F\ and φ*\F\ have no multiple

fibres.

Proof. The fibres F on Σ are (possibly singular) plane quartics. Since

the only singularities of Σ are nodes and the fibres F are the restriction to

Σ of smooth Cartier divisors on the smooth threefold Pα,6,c5 the fibres of \F\

have double points at the singular points of Σ. So, if C is a component of a

fibre of multiplicity m > 2, then C does not contain any singular point of Σ.

C is necessarily a line and thus, if C denotes the strict transform of C on 5,

one has: KSC = 1, Cn = - 3 , C'(e*F - mC) = 4 - ra. (The last equality

is a consequence of the fact that C contains no singular point of Σ and F

is a plane quartic.) So it follows: 0 = C'e*F = mC'2 + C'(e*F - mC) =

—3m + 4 — m = 4(1 — m), a contradiction since m > 1. Let now 2C be a

double fibre on Σ, with C an irreducible plane conic. Let P i , . . . Pk be the

nodes of Σ that lie on C, let Eι,... Ek be the corresponding —2-curves on

5 and let C' be the strict transform of C on 5.

The pull-back of the fibre 2C to 5 is e*(2C) = 2C" + Eλ + . . . + Ek,

and C'Ei = 1, for i = 1,... k. If C is irreducible, then we have: KsC = 2,
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C"2 - -4 , 0 - C'e*F - C"(2C" + E1 + . . . + Ek) = - 8 + fc, k = 8. If C

consists of a pair of distinct lines, then a similar computation shows that

each line contains 4 nodes of Σ.

Assume now that the surface X is of type /, and suppose that 2C is a

double fibre on Σ. The pull-back of 2C to X is a double fibre F = 2D, where

D is either a smooth hyperelliptic curve of genus 3, or the sum of two smooth

elliptic curves meeting transversely at 2 points, according to whether C is ir-

reducible or not. In both cases, D is a curve of arithmetic genus 3. Tensoring

with Kx + F the decomposition sequence 0 —> Oj){—D) —• Op —> Op —» 0

and taking global sections, one obtains the following exact sequence:

0 -> H°(A # D ) - H°(F, f ^ ) -> H°( D, O D ( K χ + F)) .

Since h°(D,KD) = 3, and h°(F,Kp) = 5 the image V of

H 0 (D,θ£>(ίίχ + F)) has dimension 2. On the other hand, V contains the

restriction to D of H°(X, UΓχ ), that has dimension 3 since φ maps D to a

conic. So we have a contradiction, and we must conclude that if X is of

type /, then | F | (and thus also <^*|F|) does not contain multiple fibres. Q

§3. The examples

We describe here the known examples of surfaces X such that the

canonical map of X is 2-1 on a canonically embedded surface Σ, and we also

present some new ones. We collect at the end of the section some lemmas

that are needed in the description of the examples.

1. Examples with X regular.
The first example of a surface X mapped non-birationally onto a canon-

ical surface by the canonical system was found independently by several

authors ([Bel], [Cal], [VZ]). One of the possible descriptions of the canon-

ical image Σ is the following: Σ is a quintic surface in P 3 , defined by the

vanishing of the determinant of a generic symmetric 5 x 5 matrix M of

linear forms. The singularities of Σ are 20 nodes, occurring precisely where

the rank of M drops by 2, and they form an even set. The double cover

of Σ branched over the nodes is a regular surface X with pg — 4. In [Ci]

p.126 Ciliberto has remarked that the same method can be used to produce

similar examples, with Σ a canonical complete intersection in a projective

space. Notice that, if Σ is of type (3,3), (2,2,3) and (2,2,2,2), then the

examples thus obtained are not on the Castelnuovo line.
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2. Examples with pg(X) = 5 and q(X) = 2.
Surfaces Σ with pg = 5 and iiΓ2 = 8 are on the Castelnuovo line and

have been described in detail in [Ho4]. If the canonical map is birational,
then the canonical image is isomorphic to the canonical model, and it is
the intersection of a quadric and a quartic in P 4 . If the quadric is singular,
then Σ is a Castelnuovo surface of type (0,1,1) or (0,0,2), according to
whether the quadric is singular at one point or along a line. In the former
case Σ carries two different pencils of genus 3, while in the latter case Σ
is necessarily singular at the points of intersection with the singular line of
the quadric. (For a generic choice of the quartic, these singularities will be
4 nodes).

Let now A be a principally polarized abelian surface, let K be the
Kummer surface of A and let q : A —• K be the projection onto the quotient.
If D is a symmetric theta divisor, then the linear system \2D\ is the pull-
back from K of a linear system \H\. If D is irreducible, then \H\ embeds
K as a quartic surface in P 3 ; if D is reducible, then \H\ maps K 2-1 onto
the smooth quadric in P 3 . Let / : Σ —> K be the double cover branched
on a curve B of \2H\ not meeting the singular set of K. If B is smooth,
then the singularities of Σ are 32 nodes, which are the inverse image of the
16 singular points of K. If B has simple double points, then Σ has extra
rational double points above the singularities of B. The sheaf / * 0 Σ splits
as Oκ Θ Oκ(-H) and, using 1.1, one computes: K\ = 2H2 = 8, pg(Σ) =
pg(K) + h°(Oκ(H)) = 5, ?(Σ) = hι{Oκ) + hι{Oκ{-H)) = 0. Denote by
φ : X —> Σ the map obtained from q : A —> K by base-changing with /,
and by a : X —> A the map that completes the square as in diagram 2.1.
The map φ is branched precisely over the inverse image of the singularities
of UΓ, while a is branched on q*B € |4I?|, and X is singular only above the
singularities of q*B. One has: a*Oχ = ΌA Θ OA{~2-D), and thus one may
compute the invariants of X as above, and obtain: pg(X) = 5 = p^(Σ),
K\ = 16, q(X) = 2. (In fact, a is the Albanese map of X). So the
canonical map of X is the composition of φ with the canonical map of Σ. If
D is irreducible, then by our construction Σ is isomorphic to the intersection
in P 4 of the cone over K with a quadric not passing through the vertex of
the cone, and so it is a canonical surface. As we have already explained at
the beginning, when the quadric is singular, namely when B is cut out on
K by a singular quadric of P 3 , Σ is a Castelnuovo surface. In this case, it
is easy to check that the genus 3 fibres are mapped to plane sections of K
by 0, and that their inverse images in X are connected genus 5 curves; thus
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X is a surface of type /.

Assume now that D is reducible: then A is isomorphic to the product

E\ x E2 of two elliptic curves, with origins O{ and, if TΓ̂  : A —» Ei, % = 1, 2,

are the projections, then D = πj~1(Oi)+π^~1(θ2). The map πχoα : X •—> JSi,

is an elliptic pencil of genus 3 curves. We wish to show that, for a generic

choice of B G |2i/|, the generic fibres of this pencil are not hyperelliptic. The

subspace V = q*Ή°(K,2H) C H°(A, 4£)) is the subspace of even sections.

It is possible to find a basis σ j , . . . σι

3, τ
ι of H°(ί^, 4Oj), ί = 1, 2, such that

the σί 's are even and the τX5s are odd. So V is spanned by the products

σjσ|, z,j = 1,2,3 and by τιτ2. It follows that the restriction of V to a

generic fibre of π\ contains sections that are not even. So, for a generic

choice of B G |2if|, the inverse image in X of a generic fibre of TΓI is not

hyperelliptic by Lemma 3.4.

The maps 7Γχ and 7Γχ o α are compatible with the involutions on A,

on X and on EΊ, and so they induce linear pencils p\ : K —> P 1 and

pi o / : Σ —> P 1 . The generic fibre of pχo f is the same as the generic fibre

of qι o α, and so it is a non-hyperelliptic curve of genus 3. By Lemma 1.1

of [AK], the canonical map of Σ is not composed with a pencil and it has

degree < 2; on the other hand, the restriction of \K%\ to a smooth fibre F

of Pi ° f is a subsystem of \Kp\- So we must conclude that the restriction

of the canonical map of Σ to F is an embedding. Moreover, the system

/*|2ίf|, and so it separates the fibres of p\ o f. So we conclude that the

canonical map of Σ is birational and Σ is a Castelnuovo surface (of type

(0,1,1)). The pull-back of the genus 3 pencil pi o f factors through the

elliptic pencil TΓI o α, thus it is not connected and X is a surface of type //.

3. Surfaces of type // with pg = 6, q — 1.

From Propositions 5.1 and 5.3, it follows that these examples arise from

divisors Σ of bidegree (4,3) in P 2 x P 1 with only nodes as singularities

and having the following properties: 1) the pencil on Σ induced by the

projection p : P 2 x P 1 —• P 1 has 4 double fibres, 2) Σ is smooth away from

the double fibres. Such a surface Σ has 32 nodes, 8 on each of the double

fibres, and these form an even set. The double cover φ : X —• Σ branched

over the nodes is a surface of type //. In Section 6 we produce explicitly

such an example. This enables us to describe a 16-dimensional family of

non isomorphic surfaces X of type // with the above invariants. Let Uι

be the open subset of the 4-fold product of P 1 with itself consisting of the
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4-tuples (zi, 22,23,24) such that Z{ φ Zj for i φ j ; let U<ι be the open subset

of the 4-fold product of the space P 5 of conies with itself consisting of the

4-tuples (Qi, Q2, Q3, QA) such that Qi is reduced, i = 1,... 4, and Qf, Q^

Q3, Q4 represent independent points in the space P 1 4 of quartics; finally,

denote by Us C P 5 5 the open subset of irreducible divisors of bidegree (4, 3)

in P 2 x P 1 , and let Z C U\ x E/2 x Us be the closed subset consisting of

the points (21, z<ι, 23,24; Qi, Q2? Q35 Q4; Σ) such that the fibre of Σ over z\ is

(J?, for i = 1,... 4. It is easy to check that the projection of Z onto U\ x t/2

is surjective, and that the fibre of this projection over a point of U\ x U2 is

naturally isomorphic to P 3 minus the coordinate planes. So Z is a smooth

quasiprojective variety of dimension 27. Let now Uo be the open subset of

Z consisting of the points such that the singularities of Σ are only nodes:

the example of Section 6 shows that Uo is nonempty. Moreover, the number

ι/(Σ) of nodes is a lower-semicontinuous function of Σ £ UQ and, by Lemma

2.5, one always has u(Έ) > 32 . This minimum is attained in the example,

and so there is a nonempty open subset U C Uo such that Σ has precisely

32 nodes, occurring on the double fibres. Notice that the restriction to U of

the projection onto Us is a Galois cover of its image with Galois group 54,

the group action consisting simply in changing the ordering of the double

fibres of Σ. We abuse notation and also denote by U the image of U in

Us. The double covers of surfaces Σ E Ϊ7, branched over the nodes, form

a 27-dimensional family W of surfaces of type II with q == 1 and pg = 6.

The group PGL(2) x PGL(l) acts naturally on £/, and thus on W. On the

other hand, it is easy to show that two surfaces X, X' £ W are isomorphic

iff they belong to the same orbit of the action of PGL(2) x PGL(l). Thus

the geometric invariant theory quotient of W by PGL(2) x PGL(l) is an

irreducible variety of dimension 16, parametrizing non-isomorphic surfaces.

4. An infinite family of surfaces of type / with q=2
These examples are due to Beauville (see [Ca2], 2.9). Let A, if, q : A —>

K, D and H be as in Example 2. For n > 3, consider a smooth hypersurface

G of bidegree (l ,n) in P 3 x P 1 : the projection onto P 1 exhibits G as a

P2-bundle and the hypersurfaces of bidegree (l,fc), k > 0 induce effective

tautological hyperplane sections of G. Assume that G intersects the singular

locus of Y — K x P 1 transversely, and the intersection at smooth points of

Y is transversal. (This certainly happens for a generic choice of G). Then

the surface Σ = G(ΊY has lβn nodes at the intersections with the singular
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locus of Σ and is smooth elsewhere. Using adjunction on P 3 x P 1 , one sees

that the hypersurfaces of bidegree ( l , n — 2) induce canonical curves of Σ,

and therefore the canonical system \Kγ,\ is very ample. A straightforward

computation yields: pg(Σ) — An — 3, K\ = Yin — 16. So Σ is a Castelnuovo

surface, and G, with the natural projection onto P 1 , is isomorphic to the

P2-bundle Pα,6,c containing it. Since the canonical divisor of Σ is induced by

the hypersurfaces of bidegree (1, n — 2), one has a+b+c = pg(Σ)— 3 = 4n —6,

and a > n — 2.

Now denote by X the pull-back of Σ to A x P 1 via the map q x 1:

the surface X is smooth, the projection X —> A is the Albanese map, and

g x l restricts to a double cover φ : X —> Σ branched over the nodes Σ.

Using adjunction on A x P 1 and ί ί x P 1 , one checks immediately that

Pg(X) = Pg(Σ). So φ is the canonical map of X. Moreover, it is easy to see

that the inverse image of a fibre F of the projection Σ —>• P 1 is connected,

and thus X is of type /.

The results that follow show that the surfaces Σ of Example 4 exist for

all the admissible values of α, b and c.

LEMMA 3.1. Let n > 3 and n — 2<a<b<cbe integers such that

a + b + c = An — 6; then there exists a smooth divisor G £ P 3 x P 1 of bidegree

( l ,n) 7 and an isomorphism Pa,b,c ~* G such that hypersurfaces of bidegree

(l,7i — 2) pull back to tautological hyperplane sections o/Pα,6,c

Write An — 6 = 3e + p, with p and e integers, 0 < p < 3; a generic hy-

per surf ace G of bidegree (l,ra), with the polarization given by hypersurfaces

of bidegree ( l ,n — 2), is isomorphic to Pa,b,c with the tautological hyperplane

section, where α, 6, c are as follows:

p = 0 ; a = b = c = e;

p = 1, a — b — e, c = e + 1,

p = 1, a = e, b = c = e + 1.

Proof. Let T be the tautological hyperplane section and L be the fibre

of the projection p : Pa,b,c —> P1?' the divisor T1 = T—(n — 2)L is base point

free, and the corresponding morphism g : Pα,6,c ~* p n + 2 is birational. More

precisely, if a > n — 2 then g is an embedding and if a = n — 2 then the image

of g is one over Pδ j C Let h : Pa,b,c ~* P 3 be the morphism associated to a

generic 3-dimensional subsystem of \Tf\: h has degree n and maps the fibres

of Pα,6,c linearly to planes in P 3 . The morphism h x p : Pttj6,c —• P 3 x P 1
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embeds Pα,6,c

 a s a divisor of type (l,n), and hypersurfaces of bidegree
(l,n - 2) pull-back to elements of \T\ via h x p.

To prove the second part of the statement, consider the space P 4 n + 3 of
divisors of bidegree (l,n), and the dense open subset U C P 4 n + 3 consisting
of the smooth divisors. If k is an integer, then h°(G, C?G(1, k)) is ower semi-
continuous function of G G U. If, say, p = 0, then we have shown that there
exists Go G U such that Go with the polarization given by hypersurfaces of
bidegree (l,ra — 2) is isomorphic to Pe,e,e with the tautological hyperplane
sections. This is equivalent to the condition /ι°(Go, 0Go(l>n — e — 3) = 0.
Then, by semi-continuity, one has h°(G, 0(1, n - e - 3 ) = 0ona dense open
set U\ C 17, and so G is isomorphic to Pe,e,e for every G G C/i The same
argument shows the statement for p = 1, 2. Π

LEMMA 3.2. Le£ A be an abelian surface with an irreducible principal
polarization, let K C P 3 be the corresponding Kummer quartic, and let G be
a smooth hypersurface of bidegree (1, n) in P 3 x P 1 there exists 7 G PGL(3)
such that Σ 7 = GC\(ηK x P 1 ) has 16n nodes, occurring at the intersections
of G with the singular locus of K x P 1 , and is smooth elsewhere.

Proof. The proof consists simply in counting dimensions. Let (P3)*
be the space of planes in P 3 , let K* C (P3)* be the dual surface of If, and
let φ : P 1 —> (P3)* be the map that associates to z G P 1 the plane G Π
(P 3 x {*}). We say that 7 G PGL(3) is "good" if 7K* and ^(P 1 ) intersect
transversely at smooth points, and moreover the intersection points are
regular values of φ and do not lie on the exceptional curves corresponding
to the nodes of K. We are going to show that if 7 is "good", then it satisfies
the claim. Remark first of all that the points of the curve ^(P 1 ) correspond
to planes that are tangent to ηK at most at one smooth point. So the
surface Σ 7 has nodes at the points of intersections with the singular set of
ηK x P 1 . To show that Σ is smooth elsewhere, notice that Σ 7 Π (P 3 x {z})
is just the intersection oiηK with the plane φ(z), and so Σ 7 can be singular
only at points (x, z) G G such that the plane φ(z) is tangent to jK at x. A
computation in local coordinates shows that these points are also smooth
if φ is regular at z and the curve ^(P 1 ) meets jK* transversely at φ(z).
In order to conclude the proof it is enough to remark that the 7's that are
not "good" form a subset of dimension at most 14. This is a consequence
of the following facts: 1) the subset of PGL(3) consisting of the elements
that map a point x\ G P 3 to a point #2 has dimension 12, 2) the subset of
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PGL(3) consisting of the elements that map a chosen point x\ G P 3 and a

line L\ through x\ to a point X2 and a line L2 through X2 has dimension

10. D

The two previous lemmas together yield the following:

PROPOSITION 3.3. Let A be an abelian surface with an irreducible prin-

cipal polarization, and let a < b < c be integers such that a + b + c =

2 (mod 4) and a > n := (α + b + c + 6)/4; then there exist X and Σ as in

Example 4 such that Σ is a Castelnuoυo surface of type (α, 6, c) and A is

the Albanese variety of X.

We close the section by proving the lemma needed in Example 2.

LEMMA 3.4. Let E be an elliptic curve with origin O; let B £ |4O|

be a reduced divisor and let f : C —> E be the double cover branched on B,

with C = 2O. Then C is hyperelliptic if and only if B is symmetric with

respect to the elliptic involution.

Proof. As it is explained in Section 1, C is isomorphic to a divisor

D C £; the line bundle C has a natural linearization and, if B is symmetric,

then D is easily seen to be also symmetric. Thus the involution on C induces

an involution of C, whose fixed points are the inverse images of points of

order 2 of E. Since B is symmetric and reduced, it does not contain any

point of order 2, and so the involution has 8 fixed points on C. By the

Hurwitz formula, the quotient of C by the involution is rational, and thus

C is hyperelliptic.

Conversely, assume that C is hyperelliptic and denote by φ : C —> φ(C)

the canonical map, with φ(C) a plane conic. If g : E —* P 1 is the quotient

map of the elliptic involution, then by 1.1 the canonical system H°(C, Kc)

contains /*H°(E,2O) = /*^*H°(P 1 ,O P i ( l ) ) as a subsystem. So one has a

map / : φ(C) —> P 1 such that the following diagram commutes:

C Λ E
(3.1) Φ [ 19

φ(C) Λ P1

If we denote by i\ the hyperelliptic involution on C and by %2 the elliptic

involution on E, then it follows immediately: / o i1 = i2 o /. In particular,

if R is the ramification divisor of /, then i\(R) = R. Applying the Hurwitz
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formula to /, one sees that R is a canonical divisor of C; since R is reduced,
it contains no Weierstrass point. Thus, R may be written asx + h(x) +
y + ή(y), for some x, y G C and B = f(x) + ̂ (/(z)) + f(y) + ̂ (/(j/)) is a
symmetric divisor. Π

§4. Surfaces of type / with q(X) > 2

In this section we study surfaces of type / with q > 2 and we show that
they are all obtained as in Example 4 of Section 3. More precisely we prove
the following:

THEOREM 4.1. Let φ : X —* Σ be as in Assumption 2.1; if X is of

type I and q>2, then pg{X) = 1 (mod 4), q(X) — 2, the Albanese surface

A of X has an irreducible principal polarization, and X can be constructed

as in Example 4 of Section 3, with n = (pg(X) + 3)/4.

The proof of Theorem 4.1 requires some preliminary steps: first we
show that the Albanese variety A of X is a surface and the Albanese map
is surjective, and then we prove that A is isomorphic to the Prym variety of
the unramified double cover F —> F, with F a generic fibre. Then it follows
that A is principally polarized and that there is a map / : Σ —> K, where
K is the Kummer quartic K of A. Finally we show that / can be extended
to a morphism g : Pα,6,c —> P 3 F° r the rest of the section, we will assume
that φ : X —•> Σ is as in Assumption 2.1 and that X is of type / and that
q(X) > 2. In particular, the pull-back to X of the genus 3 pencil | F | is a
linear pencil \F\ of genus 5.

LEMMA 4.2. The irregularity q(X) is equal to 2.

Proof. It suffices to show that q(X) < 2. Notice that for a generic fibre
F, the restriction map H°(Σ, AΓΣ + F) -> E°(F,KF) is surjective, by the
regularity of Σ. So 0*H°(Σ, KΣ + F) C H°(X, Kx + F) -> H°(F, Kp) is a
subspace whose image via the restriction map H°(X, Kx +F) —» H°(F, Kp)
has dimension 3. Since the pencil \F\ is linear, by Ramanujan vanishing one
has H1(X, Kx + F) = 0 and therefore the cokernel of the above restriction
map is isomorphic to H1(X, Kx). Since F has genus 5, it follows that
q{X)<2. D

LEMMA 4.3. The Albanese map a : X —* A is surjective.
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Proof. Assume by contradiction that a(X) = B is a curve. We start
by showing that this forces the pencil \F\ to be isotrivial.

Let a : X —* B be the Albanese pencil. In this case, diagram 2.1
reduces to:

X A B

(4.1) ΦΪ [q

Σ Λ P1

Because the pencil | F | is linear, each fibre maps surjectively onto B. Re-
stricting the above diagram to a generic F yields:

F £ B
(4.2) φ' I [q

F £ P1

Let n be the degree of /' and a': by the Hurwitz formula for oί one has
2n < 8. The map φf : F —> F is obtained from g : J5 —> P 1 by base change
and normalization. Let D be the branch locus of q: since φ' is unramified,
ff*D = 2D1 for a suitable divisor D1 on F. Since .D consists of distinct
points, it follows that n is even. If n were equal to 2, then F would be
hyperelliptic, contradicting the assumption that the canonical map of Σ is
birational. So we are left with n = 4. Applying the Hurwitz formula to a1

again, one sees that a' is unramified. Therefore /' is branched precisely on
the points of D, and so, by the Riemann's construction (cf. [GH], p.255),
there are only a finite number of possibilities for F up to isomorphism. We
have thus proven that the pencil \F\ is isotrivial. We will finish the proof
by showing that this cannot happen.

Consider the pull-back \F'\ of \F\ to the minimal desingularization S
of Σ and consider a fibre FQ containing an exceptional curve of 5. It is
well known (cf. [Se]) that there are only the following two possibilities for a
singular fibre FQ in an isotrivial fibration: either 1) FQ consists of a smooth
multiple curve D, possibly together with some strings of smooth rational
curves meeting D at distinct points, such that D intersects each string
transversely at one of its ends, or 2) FQ is a collection of strings of rational
curves whose ends all meet at one point, not necessarily transversely.

On the other hand FQ is the total transform of a fibre containing a
node of Σ, namely of a plane quartic C with precisely a double point at the
node and, possibly, other singularities. It is easy to convince oneself that
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in case 1) C can only be a double conic, and in case 2) C can only be a

pair of irreducible conies intersecting only at one point. Case 1) is ruled out

by Proposition 2.5. In case 2) the pull-back of C to X would be a union

of rational curves, and therefore it would be contracted by α, but this is

impossible. Q

PROPOSITION 4.4. The Albanese variety A of X is a principally po-

larized abelian surface, and the polarization D of A is irreducible.

The above proposition is a consequence of the following lemmas, that

describe the Prym variety Z of the cover F —• F, for a generic F and show

that Z is naturally isomorphic to A.

We start by reviewing quickly the properties of Prym varieties that we

need; for more details and proofs the reader may consult Chapter 12 of [LB].

Let J be the Jacobian of F, and let 7 : F —> J be the period map with

base point XQ E F. The Abel-Prym map with base point xo, β : F —> 2Γ, is

defined as the composition i o 7, where i : J —• Z is a surjective morphism

of abelian varieties with connected kernel. Z is an abelian surface having a

natural principal polarization D, the restriction of β to F is an embedding

and the image of F is a divisor algebraically equivalent to 2D, by Welters

criterion ([LB], p.373).

LEMMA 4.5. The polarization D on Z is irreducible.

Proof. Assume by contradiction that D is reducible: then Z is a

product Eι x E<χ of elliptic curves and D is algebraically equivalent to

πj~1(Oi)+π^"1(θ2), where TΓΪ is the projection onto 2%, i = 1, 2, and O{ € Eι.

For a suitable choice of Oι and O2, the curve β(F) in £Ί x E2 is linearly

equivalent to τr^"1(2Oi) + τr^~1(2θ2) Denote by ji the involution on £^ that

fixes Oi, i = 1, 2: then β(F)Ίs invariant under jι x 1 and 1 x j2 The quo-

tient of β(F) by the diagonal automorphism jι x 22 is isomorphic to F, and,

via this isomorphism, jι x 1 induces an involution of F whose quotient is a

plane section of the smooth quadric in P 3 . So F is hyperelliptic, but this

contradicts the assumption that the canonical map of Σ is birational. Q

Given any map h : F -*Y, with Y a complex torus, there exist a unique

morphism of tori ψ : J —> Y and a unique translation r :Y —• Y such that

r o h = ψ o 7. If, moreover, the map h is equivariant with respect to the

Z/2-actions given by the involution on F and by multiplication by —1 on
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y, then the kernel of i is mapped to 0 by ψ; thus ψ induces a morphism
Ψ : Z —> Y such that r o h = ψ o /?. We are interested in the case in which /ι
is the restriction to F of the Albanese map a : X —> A. Consistently with
the above notation, we denote by ^ : J —» A and Ψ : Z —> A the morphisms
induced by the restriction of α.

LEMMA 4.6. The morphism ψ : Z -* A is an isomorphism.

By the above discussion, ψ is an isomorphism iff ψ is surjective and has
connected kernel. In turn, if we consider the dual map of ψ, Ψ* : Pic°(X) —»
Pic°(F), then the above conditions are equivalent to ψ* being injective. So
assume that ψ* is not injective and consider a torsion element ξ G keτψ*
of order m > 1. Let r : X' —» X be the unramified Z/ra-cover given by £:
the restriction of r to a generic fibre F is a disjoint union of m components
isomorphic to F. Using the Stein factorization of the pull-back to X' of the
pencil JP, one gets the following commutative diagram, where the vertical
arrows are pencils with fibre F and the horizontal arrows are connected
Z/m-covers:

X' A X
(4.3) I i

B Λ P 1

The map f is ramified at at least 2 points, while r, which is obtained from
f by base change and normalization, is unramified. This implies that the
fibres of the pencil \F\ over the branch points of f are m-tuple fibres. But
this contradicts Proposition 2.5. Π

Finally, we put all the previous results together and get:

Proof of Theorem 4.1. Consider the basic diagram 2.1: we wish to show
that the map / : Σ —• K can be extended to a map / : Έ*a,b,c ~> P 3 that
maps the fibres of P α ? ^ c linearly to planes of P 3 . By Lemma 4.6, the
Albanese variety A can be identified with the Prym variety Z of a generic
F. So the fibres F are mapped to divisors of |2D|, where D is the principal
polarization on A (see Proposition 4.4); as a consequence, the fibres F on
Σ are mapped isomorphically to plane sections of K with respect to the
embedding as a quartic in P 3 . If F is a smooth fibre of Σ, then there
is a natural linear isomorphism between the fibre of Pa,b,c containing F
and the plane in P 3 containing f(F). So we can define a rational map
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/ - Pα,6,c -* P 3

? such that its restriction to Σ extends to the morphism
/. Let now Fo be a fibre of Pαj6)C containing an indeterminacy point of /:
the restriction of / to Fo is a degenerate projectivity, whose singular locus
can either be a point or a line. In the former case, the scheme theoretic
image via / of the curve ΣίΊFo would be a 4-tuple line. This is impossible,
because a Kummer surface has no such plane section. If the indeterminacy
locus of / on Fo were a line not contained in Σ, then the curve Σ Π Fo
would be contracted to a point, but this is of course impossible. So the
only possibility left is that the indeterminacy locus of / on Fo is a line R
contained in Σ. Remark that every other component of ΣίΊFo is contracted
by /, and so the pull-back to X of every component of ΣlΊFo different from
R is contracted by a. Arguing as in the proof of Proposition 2.5, one shows
that R can contain at most 4 nodes of Σ, so the pull-back R of R to X is a
curve of genus 0 or 1. On the other hand, the scheme-theoretic image Δ of
the fibre of \F\ containing R is supported on α(JR), but this is impossible
because Δ is an ample divisor on an abelian surface. So we conclude that
/ is indeed a regular map. If we denote by p : Pa,b,c ~¥ P 1 the projection
map, then the map / xp : Pa,b,c —* P 3 x P 1 embeds Pα,6jC as a divisor G of
bidegree (l,n), for a suitable value of n, and Σ is mapped isomorphically to
G Π (K x P 1 ) . To determine n, we use adjunction on P 3 x P 1 and remark
that divisors of bidegree (l,n — 2) cut out canonical curves on Σ, and so
pg(X) = Pg(Σ) = a + b + c + 3 = 4n-3 = l(mod 4), n = (Pg(X) + 3)/4.
By Proposition 2.3, i), Σ has 16n nodes, occurring at the intersections of
G with the singular locus of K x P 1 . So the intersection of G with the
singular locus of K x P 1 is transversal. D

§5, Surfaces of type //

In this section we describe surfaces of type // in detail and we show
that the invariants of these surfaces are bounded.

So here X and Σ are as in Assumption 2.1, and moreover the pull-back
F of a generic F is disconnected. The Stein factorization of the pencil \F\
gives rise to the following commutative diagram, where p denotes the pencil
\F\ and p denotes the connected fibration on X through which \F\ factors:

x Λ Σ
(5.1) ί l I P

B I P1
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The curve B is smooth and the map φ is a double cover. We introduce a

new invariant of X, the genus g of B. Notice that g < q(X)

THEOREM 5.1. The surface Σ has precisely 2g + 2 double fibres, occur-

ring at the branch points of φ, and c < g. Conversely, ifΈa Castelnuovo

surface of type (α, ί>, c) with only nodes as singularities, with c < g, hav-

ing 2g + 2 double fibres, and smooth outside the double fibres, then Σ has

16g + 16 nodes which form an even set, and the double cover φ : X —> Σ

branched over the nodes is a surface of type II.

Proof. For i = 1,... 2g + 2, denote by X{ the ramification points of φ,

by Vi £ P 1 the image of X{, and by F{ and F{ the fibres of p and p over

yi and X{ respectively. In diagram 5.1, the map φ is obtained from φ by

base change and normalization: since φ is unramified in codimension 1, the

i*Vs are double fibres, i = 1,... 2g + 2, and they contain all the nodes of

Σ. So, by Proposition 2.5, Σ has precisely I6g + 16 nodes. In order to

show that c < g, we construct explicitly X as the normalization of a divisor

in a P2-bundle. Denote by Pa,b,c the pull-back of Pa,b,c to J5; so Pa,b,c —

Proj(</>*0pi(α) Θ 0*OPi(6) Θ φ*OPi(c)). If Γ and L are the tautological

hyperplane section and a fibre of Έ*a,b,ci a n d T, Z, are the pull-backs of T

and L to Pα,6,C5 then the fibre product W oi p and 0 is a divisor in Pa,b,c

linearly equivalent to 4T—(α + 6 + c — 2)L. The singular locus of W consists

of 2g + 2 double curves, that are the intersections of W with the fibres of

P f l)5)C over a?i,... £2^+2 One has: ifp^ = - 3 T + p*(Kβ) + (a + b + c)L

and ifp + W = T + ft* (KB). SO the canonical curves of X correspond
* a,b,c

to sections of T + p*(Kβ + φ*Opi(2)) vanishing on the double curves of

W, namely to sections of f + p*(KB - (xi + ... + x2g+2 + Φ*Opi(2)). The

Hurwitz formula shows that Kβ is linearly equivalent to x\ + . . . + #23+2 —

</>*0pi(2), and so the canonical system of X is the pull-back of H°(Pα?57C, T).

By assumption, we have pg(X) — p^(Σ) = α + ί> + c + 3; on the other

hand, h°(PafitC,f) = h°(Bj*Opι(a))+h°(B,φ*OPι{b))+h0(B,φ*Opi(c)).
Applying 1.1 to the double cover φ (with C = Opi(g + 1)) yields for any

integer k > 0: h°(B,φ*Opi(k)) = h°(P\θPi(k))+h0(P\θPi(k-g-l)) =
fc + 1 + ^ ( P 1 , Opi (k- g - 1)). So it follows that c < g.

Conversely, assume that Σ is a divisor in ΐ*a,b,c linearly equivalent to

4T — (α + b + c — 2)L, with only nodes as singularities, with exactly 2^ + 2

double fibres, c < g, and assume that Σ is smooth away from the double

fibres. Then by Proposition 2.5 Σ has 16# + 16 nodes. Let D C Pα,fe,c be
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the sum of the fibres of p : Pα?&,c —> P 1 that are double for Σ —» P 1 : D is

smooth, it is linearly equivalent to 2D', where Df = (g + 1)F, it contains

all the nodes of Σ and, finally, the restriction of D to Σ is a union of double

curves. Therefore, by Proposition 1.1, the nodes of Σ form an even set. If

φ : X —> Σ is the double cover branched over the nodes, then the above

computations show that X s a smooth surface such that pg(X) = Pp(Σ).

Let e : 5 —> Σ be the minimal resolution of the singularities of Σ, let E

be the exceptional divisor of e, let Z be the sum of the strict transforms of

supports of the double fibres of Σ and let φ : X —> 5 be obtained from φ

by base change with e: φ is a smooth double cover branched on 22, and the

line bundle C associated with the cover is equal to (g + l)e*F — Z. The

restriction of £ to a generic fibre F is trivial, so the inverse image in X

(and in X) of a generic F is disconnected, and X is of type //. •

We will now give bounds for the invariants of X and relations between

them.

LEMMA 5.2. The following relations between the invariants of X hold:

Proof. The inequality q — g > 0 is a consequence of the fact that there

exists a dominant map p : X —* JB, with B a curve of genus g. The equality

q — g = 3g + 3 — pg is equivalent to the formula 2.5, since by Proposition

5.1 Σ has 16g + 16 nodes. Q

PROPOSITION 5.3. The numerical possibilities for the invariants of X

are the following:

a) pg = 3# + 3, q = g, a = b = c = g, 0<=g<26;

b) p g = 3# + 2, g = 0 + l , a = g - 1, b = c = g, 0<g<17;

c) p g = 3g + l, q = g + 2, a = b = g — \, c = g= or a = g — 2,b — c = g,

0<g<8.

Proof. The topological Euler characteristic of the minimal desingular-

ization S of Σ can be computed from Noether's formula as follows:

c2(S) = Uχ(Os) -K2

S = 9pg(S) + 19.

On the other hand the following formula (see [BPV], p.97), in which e(D)

represents the topological characteristic of the support of a divisor D, ex-

presses C2(S) in terms of the base and of the singular fibres of the pull-back
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to 5 of the ίibration F o n Σ , that we also denote by F:

c2(S) = e(T>ι

F' singular

(The term e(F') — e(F) is always non-negative, see [BPV], p.97). From
Proposition 2.5, it follows that if F' is the pull-back of a double conic on
Σ, then e(F) — 10 or 11, according to whether the conic is smooth or
not. So, recalling that by Proposition 5.1 there are 2g -\- 2 double fibres
on Σ, and comparing the two expressions for C2(S) one obtains: C2(S) >
2(-4) + (2g + 2)14, namely 9pg > 2Sg + 1. The statement now follows in
view of Lemma 5.2. Π

Remark 5.4. Notice that at least for g = 1 possibilities a) and b) ac-
tually occur, as it is shown by Examples 3 and 2 of Section 3. We do not
know examples for possibility c).

§6. Appendix: a computation with Macaulay

We describe here how we have used Macaulay ([BS]) to show the exis-
tence of a divisor Σ of bidegree (4, 3) in P 2 x P 1 with the properties required
in Example 3 of Section 3. We use the notation introduced there.

We consider homogeneous coordinates (s, t) in P 1 and (α o, xi, #2) i n P 2

and set: zx = (1, 0), z2 = (0,1), z3 = (1, -1), z4 = (1,1); Qλ = x\+x\+x\,

Q2 = %l + x\ - #2> Qs — ̂ 0X1 + X0X2 + xi#2> QA = Xo + 5xoxi + 7x0X2 +
2x\ + IIX1X2 + 3x2- We start by writing down the equation h of Σ:

Macaulay version 3.0, created 12 September 1994

Γ/o ring R ! characterist ic (if not 31991) ?
! number of variables ? 5
! 5 variables, please ? stx[0]-x[2]
! variable weights (if not all 1) ?

! monomial order (if not rev. lex.) ?

largest degree of a monomial : 217

l°/o ideal fl

! number of generators ? 1

! (1,1) ? x[0]2+x[l]2+x[2]2
17. ideal f2
! number of generators ? 1
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! (1,1) ? X[0]2+X[1]2-X[2J2

1% ideal f3 ! number of generators ? 1

! (1,1) ? x[0]x[l]+x[0]x[2]+x[l]x[2]

l°/o ideal f4 ! number of generators ? 1

! (1,1) ? x[0]2+5x[0]x[l]+2xCl]2+7x[0]xC2]+llx[l]x[2]+3x[2]2

l°/o poly si (s-t)*(s+t)*s

I*/, poly s2 (s-t)*(s+t)*t

l°/« poly s3 (s-t)*st

1% poly s4 (s+t)*st

l°/o mult f 1 f 1 gl

1% mult f2 f2 g2

l°/o mult f3 f3 g3

l°/o mult f 4 f 4 g4

1% mult si gl hi

l°/o mult s2 g2 h2

1% mult s3 g3 h3

l°/o mult s4 g4 h4

l°/o add hi h2 h

lβ/o add h h3 h

1% add h h 4 h

°/o

Next we show that the singularities of Σ are at most nodes. This is a local

computation, that has to be repeated for each of the 6 standard open affine

subsets. Consider for instance U = {sxo φ 0} C P 1 x P 2 : we identify U

with A 3 C P 3 and then consider the closure in P 3 of Σ Π £/, defined by

the equation /ι5o The plane at infinity is w = 0. The ideal I of the locus

in P 3 of the singular points of hso = 0 that are not nodes is generated by

the derivatives of hso and by the 3 x 3 minors of the Hessian matrix hhso

of hSQ. Computing the standard basis of / and using it to reduce w30 one

gets 0, namely w30 £ / and therefore the singularities of Σ Π U are at most

nodes. Here is the transcript of the Macaulay session (slightly edited):

1% r i n g SsO

! characteristic (if not 31991) ?

! number of variables ? 4

! 4 variables, please ? tx[l]x[2]w

! variable weights (if not all 1) ?

! monomial order (if not rev. lex.) ?

https://doi.org/10.1017/S0027763000006851 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000006851


IRREGULAR CANONICAL DOUBLE SURFACES 227

largest degree of a monomial : 512

l°/o rmap fsO R SsO

! s — > ? w

! t — > ? t

! x[0] — > ? w

! x[2] —-> ? x[2]

lβ/o ev f sO h hsO

1% setring SsO

1% Jacob hsO jhsO

l°/o Jacob jhsO hhsO

l°/o f l a t t e n jhsO jhsO

l°/o wedge hhsO 3 whsO

[189k][252k]

1% f l a t t e n whsO whsO [315k]

l°/o concat whsO jhsO

l°/o l i f t - s t d whsO whsOstd

6.7.8.[378k]9.10.11.[441k]12.[504k][567k]

13.14.15. [630k][692k]16.[755k][818k][881k]

17.[944k][1007k]18.[1070k]19.20.[1133k]21.[1196k]

computation complete after degree 21

% ideal w

! number of generators ? 1

! (1,1) ? w30

% reduce whsOstd w red

% type red 0

The computation in the other 5 affine open sets goes exactly in the same

way. Now, to finish the computation it is enough to show that the singular

locus of Σ, that we already know to be reduced and of dimension 0, has

length 32. In fact, by Proposition 2.5, each of the 4 double fibres contains 8

nodes and therefore Σ is smooth outside the double fibres. First one embeds

Σ in P 5 via the Segre embedding:

l°/o ring S ! character i s t ic (if not 31991) ? !

number of variables ? 11 [126k]

! 11 variables, please ? stx[0]-x[2]y[0]-y[5]

! variable weights (if not a l l 1) ? 1:5 2:6

! monomial order (if not rev. lex.) 7 5 1 1 1 1 1 1
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largest degree of a monomial : 217 512 512 512 512 512 512

l / fetch h h

17. ideal j

! number of generators ? 6

! (1,1) ? sx[0]-y[0]

! (1,2) ? sx[l]-y[l]

! (1,3) ? sx[2]-y[2]

! (1,4) ? tx[0]-y[3]

! (1,5) ? tx[l]-y[4]

! (1,6) ? tx[2]-y[5]

1% concat h j

l°/o std h hst

23.4.5.6.7.8.9.10.11.12.13.14. [189k] 15.16.17.

computation complete after degree 17

l°/o elim hst helim

l°/o ring R

! characteristic (if not 31991) ?

! number of variables ? 6

! 6 variables, please ? y[0]-y[5]

! variable weights (if not all 1) ?

! monomial order (if not rev. lex.) ?

largest degree of a monomial : 117

17. fetch helim h

Now h is the ideal of Σ in P 5 ; the singular locus of Σ is defined by the

equations of Σ and by the 3 x 3 minors of the Jacobian matrix of the

equations of Σ:

lβ/0 s td h hs t 2 3 . 4 . 5 . 6 . 7 . 8 . computation complete a f t e r degree 8

l°/o Jacob hs t jh

1% wedge jh 3 sing

[252k][315k][378k][441k][504k][567k][630k]

l°/o f latten sing sing

[692k][755k][818k][881k][944k]

l°/o concat sing hst

1% std sing singst 0123.4.5.6.7.8. computation complete after

degree 8

l°/o degree singst

codimension : 5
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degree : 32

The last line shows that the singularities of Σ are 32, as required.
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