Hostname: page-component-6bb9c88b65-vmslq Total loading time: 0 Render date: 2025-07-28T04:52:20.009Z Has data issue: false hasContentIssue false

An example concerning Bergman completeness

Published online by Cambridge University Press:  22 January 2016

Włodzimierz Zwonek*
Affiliation:
Instytut Matematyki, Uniwersytet Jagielloński, Reymonta 4, 30-059 Kraków, Poland, zwonek@im.uj.edu.pl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We construct a bounded plane domain which is Bergman complete but for which the Bergman kernel does not tend to infinity as the point approaches the boundary.

Keywords

Information

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2001

References

[Blo-Pfl] Blocki, Z. & Pflug, P., Hyperconvexity and Bergman completeness, Nagoya Math. J., 151 (1998), 221-225.CrossRefGoogle Scholar
[Chen 1] Chen, B.-Y., Completeness of the Bergman metric on non-smooth pseudo-convex domains, Ann. Polon. Math., LXXI (3) (1999), 242-251.Google Scholar
[Chen 2] Chen, B.-Y., A remark on the Bergman completeness, Complex Variables Theory Appl., 42 (2000), no.1, 11-15.Google Scholar
[Her] Herbort, G., The Bergman metric on hyperconvex domains, Math. Z., 232(1) (1999), 183-196.Google Scholar
[Jar-Pfl ] Jarnicki, M. & Pflug, P., Invariant Distances and Metrics in Complex Analysis, Walter de Gruyter, Berlin, 1993.Google Scholar
[Jar-Pfl-Zwo] Jarnicki, M., Pflug, P. & Zwonek, W., On Bergman completeness of non-hyperconvex domains, Univ. Iag. Acta Math., No.38 (2000), 169-184.Google Scholar
[Ohs 1] Ohsawa, T., Boundary behaviour of the Bergman kernel function on pseu-doconvex domains, Publ. RIMS Kyoto Univ., 20 (1984), 897-902.CrossRefGoogle Scholar
[Ohs 2] Ohsawa, T., On the Bergman kernel of hyperconvex domains, Nagoya Math. J., 129 (1993), 43-52.Google Scholar
[Pfl] Pflug, P., Various applications of the existence of well growing holomorphic functions, Functional Analysis, Holomorphy and Approximation Theory, J. A. Barossa (ed.), Math. Studies, 71 (1982), North-Holland.Google Scholar
[Zwo] Zwonek, W., On Bergman completeness of pseudoconvex Reinhardt domains, Ann. Fac. Sci. Toul., VIII (3) (1999), 537-552.Google Scholar