Hostname: page-component-cb9f654ff-pvkqz Total loading time: 0 Render date: 2025-08-31T10:38:42.153Z Has data issue: false hasContentIssue false

Electron beam induced rapid crystallization of water splittingnanostructures

Published online by Cambridge University Press:  21 December 2015

Nitul S. Rajput
Affiliation:
Masdar Institute of Science and Technology, Masdar City, Abu Dhabi, UAE
Sang-Gook Kim
Affiliation:
Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
Jeffrey B. Chou
Affiliation:
Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
Jehad Abed
Affiliation:
Masdar Institute of Science and Technology, Masdar City, Abu Dhabi, UAE
Jaime Viegas
Affiliation:
Masdar Institute of Science and Technology, Masdar City, Abu Dhabi, UAE
Mustapha Jouiad*
Affiliation:
Masdar Institute of Science and Technology, Masdar City, Abu Dhabi, UAE
Get access

Abstract

Titanium dioxide (TiO2) loaded with gold (Au) as noble metal, acts asan efficient photocatalyst that has been extensively investigated for watersplitting processes. In this paper, we report on the microstructure of atomiclayer deposited titanium dioxide and the crystallinity modification of thematerial using energetic electron beam irradiation. A rapid high-energy electronbeam induced crystallization of the nanostructures has been observedin-situ inside a High-Resolution Transmission ElectronMicroscope (HRTEM). The systematic crystallization of the nanomaterial occurringunder the electron beam irradiation (300 KV) indicates the transformation of thenear amorphous material into a mixture of two nuances of TiO2polymorphs, namely rutile and anatase. We believe that this transformation willenhance the efficiency of water splitting process, as the mixed phases of rutileand anatase are known to possess better optical properties than the individualpolymorphs of TiO2. This finding may be of particular interest indeveloping appropriate heat treatment methods for these nanostructures dedicatedto water splitting to increase their efficiency.

Information

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

Fujishima, A. and Honda, K., Nature 238, 37 (1972).CrossRefGoogle Scholar
Linic, S., Christopher, P. and Ingram, D. B., Nat. Mater. 10, 911 (2011).Google Scholar
Liu, E., Kang, L., Yang, Y., Sun, T., Hu, X., Zhu, C., Liu, H., Wang, Q., Li, X. and Fan, J., Nanotechnology 25, 165401 (2014).Google Scholar
Chou, J. B., Yeng, Y. X., Lee, Y. E., Lenert, A., Rinnerbauer, V., Celanovic, I., Soljačić, M., Fang, N. X., Wang, E. N. and Kim, S. G., Adv. Mater. 26, 8041 (2014).Google Scholar
Mathews, N. R., Morales, E. R., Cortés-Jacome, M. A. and Antonio, J. A. T., Sol. Energy, 83 1499 (2009).CrossRefGoogle Scholar
Bakardjieva, S., Stengl, V., Szatmary, L., Subrt, J., Lukac, J., Murafa, N., Niznansky, D., Cizek, K., Jirkovsky, J. and Petrova, N., J. Mater. Chem. 16, 1709 (2006).Google Scholar
Scanlon, D. O., Dunnill, C. W., Buckeridge, J., Shevlin, S. A., Logsdail, A. J., Woodley, S. M., Catlow, C. R. A., Powell, M. J., Palgrave, R. G., Parkin, I. P., Watson, G. W., Keal, T. W., Sherwood, P., Walsh, A. and Sokol, A. A., Nat. Mater. 12, 798 (2013).Google Scholar
Murray, J., Song, K., Huebner, W. and O'Keefe, M., Mater. Lett. 74, 12 (2012).Google Scholar