Hostname: page-component-6bb9c88b65-lm65w Total loading time: 0.006 Render date: 2025-07-26T10:55:58.608Z Has data issue: false hasContentIssue false

Orthomorphisms of a commutative W*-algebra

Published online by Cambridge University Press:  09 April 2009

P. G. Dodds
Affiliation:
The Flinders University of South AustraliaBedford Park, S.A. 5042, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

If M is a commutative W*-algebra of operators and if ReM is the Dedekind complete Riesz space of self-adjoint elements of M, then it is shown that the set of densely defined self-adjoint transformations affiliated with ReM is a Dedekind complete, laterally complete Riesz algebra containing ReM as an order dense ideal. The Riesz algebra of densely defined orthomorphisms on ReM is shown to coincide with , and via the vector lattice Randon-Nikodym theorem of Luxemburg and Schep, it is shown that the lateral completion of ReM may be identified with the extended order dual of ReM.

Information

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1984

References

[1]Bernau, S. J., ‘The square root of a positive self-adjoint operator’, J. Austral. Math. Soc. 8 (1967), 1736.CrossRefGoogle Scholar
[2]Dixmier, J., Les algèbres d'opérateurs dans l'espace Hilbertien (Gauthier-Villars, Paris, 1957).Google Scholar
[3]Dixmier, J., ‘Sur certains espaces considérés par M. H. Stone’, Summa Brasil. Math. 2 (1951), 151182.Google Scholar
[4]Dodds, P. G., “The order dual of an abelian von Neumann algebra’, J. Austral. Math. Soc. 28 (1974), 153160.CrossRefGoogle Scholar
[5]Duhoux, M. and Meyer, M., ‘A new proof of the lattice structure of orthomorphisms’, J. London Math. Soc. (2) 25 (1982), 375378.CrossRefGoogle Scholar
[6]Duhoux, M. and Meyer, M., Extended orthomorphisms on Archimedean Riesz spaces, Rapport n°114 (1981), Séminaire de Mathématique Pure et Appliquée, Université Catholique de Louvain.Google Scholar
[7]Dunford, N. and Schwartz, J. T., Linear operators, Part II, Interscience, New York, 1963.Google Scholar
[8]Luxemburg, W. A. J., Some aspects of the theory of Riesz spaces (Lecture Notes in Mathematics 4, University of Arkansas, Fayetteville, 1979).Google Scholar
[9]Luxemburg, W. A. J. and Masterson, J. J., ‘An extension of the concept of the order dual of a Riesz space’, Canad. J. Math. 19 (1967), 488498.CrossRefGoogle Scholar
[10]Luxemburg, W. A. J. and Schep, A. R., ‘A Radon-Nikodym theorem for positive operators and a dual’, Nederl. Adad. Wetensch. Proc. Ser. A 81 (3) (1978), 357375.Google Scholar
[11]Luxemburg, W. A. J. and Zaanen, A. C., Riesz spaces I (North-Holland Mathematical Library, Amsterdam, 1972).Google Scholar
[12]Murray, F. and von Neumann, J., ‘On rings of operators’, Ann. of Math. 37 (1936), 116229.CrossRefGoogle Scholar
[13]Sz-Nagy, B. v., Spektraldarsartellung linearer Transformationen des Hilbertschen Raumes (Ergebnisse Math. Band 5, Springer, Berlin, 1942).CrossRefGoogle Scholar
[14]Nakamura, M. and Takeda, Z., ‘The Radon-Nikodym theorem of traces for a certain operator algebra’, Tôhoku Math. J. 4 (1952), 275283.CrossRefGoogle Scholar
[15]Nakano, H., ‘Teilweise geordnete Algebra’, Japan J. Math. 17 (1941), 425511.CrossRefGoogle Scholar
[16]de Pagter, B., f-algebras and orthomorphisms (Thesis, University of Leiden, 1981).Google Scholar
[17]Riesz, F. and Sz-Nagy, B. v., Functional analysis (Ungar, New York, 1955).Google Scholar
[18]Vulikh, B. Z., Introduction to the theory of partially ordered spaces (Wolters-Noordhoff, Groningen, 1967).Google Scholar
[19]Wouk, A., ‘A note on square roots of positive operators’, SIAM Rev. (1966), 100102.CrossRefGoogle Scholar
[20]Wickstead, A. W., ‘Representation and duality of multiplication operators on Riesz spaces’, Compositio. Math. 35 (1977), 225238.Google Scholar
[21]Wickstead, A. W., ‘Extensions of orthomorphisms’, J. Austral. Math. Soc. Ser. A 29 (1980), 8798.CrossRefGoogle Scholar
[22]Zaanen, A. C., ‘Examples of orthomorphisms’, J. Approximation Theory 13 (1975), 192204.Google Scholar