Hostname: page-component-65b85459fc-w5djb Total loading time: 0 Render date: 2025-10-16T09:45:23.101Z Has data issue: false hasContentIssue false

Stability analysis on the angular dynamics of a spheroid in simple shear flow: influence of slip-induced fluid-inertial torque

Published online by Cambridge University Press:  13 October 2025

Zhiwen Cui
Affiliation:
College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, PR China State Key Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, PR China
Xinyu Jiang
Affiliation:
State Key Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, PR China Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Torino 10129, Italy
Jingran Qiu
Affiliation:
Department of Physics, University of Gothenburg, Gothenburg 41296, Sweden
Lihao Zhao*
Affiliation:
State Key Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, PR China
*
Corresponding author: Lihao Zhao, zhaolihao@tsinghua.edu.cn

Abstract

We investigate the angular dynamics of a single spheroidal particle with large particle-to-fluid density ratio in simple shear flows, focusing on the influence of the fluid-inertial torque induced by slip velocity. A linear stability analysis is performed to examine how the fluid-inertial torque, viscous shear torque and particle inertia affect the various stable rotation modes, including logrolling, tumbling and aligning modes. As particle inertia increases, bistable or tristable rotation modes emerge depending on initial conditions. For prolate spheroids, three distinct stable-mode regimes are identified, i.e. logrolling, tumbling and tumbling–logrolling (TL). The presence of these modes depends on particle shape and inertia. For oblate spheroids, when the Stokes number is small, we observe monostable modes (logrolling, tumbling and aligning) and bistable modes (TL, aligning–logrolling) varying with different factors. As Stokes number increases, the tristable mode (aligning–tumbling–logrolling) of oblate spheroids appears. These results of the stability analysis further highlight the intricate and significant effect of fluid-inertial torque compared with the results in the absence of fluid-inertial torque. When we apply fluid-inertial torque to the point-particle model, we reproduce the stable rotation modes observed in particle-resolved simulations, which validates the present stability analysis.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Anand, P., Ray, S.S. & Subramanian, G. 2020 Orientation dynamics of sedimenting anisotropic particles in turbulence. Phys. Rev. Lett. 125 (3), 034501.10.1103/PhysRevLett.125.034501CrossRefGoogle ScholarPubMed
Bhowmick, T., Seesing, J., Gustavsson, K., Guettler, J., Wang, Y., Pumir, A., Mehlig, B.Bagheri, G. 2024 Inertia induces strong orientation fluctuations of nonspherical atmospheric particles. Phys. Rev. Lett. 132 (3), 034101.10.1103/PhysRevLett.132.034101CrossRefGoogle ScholarPubMed
Brenner, H. 1963 The Stokes resistance of an arbitrary particle. Chem. Engng Sci. 18, 125.10.1016/0009-2509(63)80001-9CrossRefGoogle Scholar
Candelier, F., Mehlig, B. & Magnaudet, J. 2019 Time-dependent lift and drag on a rigid body in a viscous steady linear flow. J. Fluid Mech. 864, 554595.10.1017/jfm.2019.23CrossRefGoogle Scholar
Challabotla, N.R., Nilsen, C. & Andersson, H.I. 2015 On rotational dynamics of inertial disks in creeping shear flow. Phys. Lett. A 379 (3), 157162.10.1016/j.physleta.2014.10.045CrossRefGoogle Scholar
Chicone, C. 2006 Ordinary Differential Equations with Applications. Springer.Google Scholar
Cordasco, D. & Bagchi, P. 2016 Dynamics of red blood cells in oscillating shear flow. J. Fluid Mech. 800, 484516.10.1017/jfm.2016.409CrossRefGoogle Scholar
Cui, Z., Liu, H., Qiu, J. & Zhao, L. 2024 Effect of slip-induced fluid inertial torque on the angular dynamics of spheroids in a linear shear flow. Phys. Fluids 36 (3), 033338.10.1063/5.0197006CrossRefGoogle Scholar
Cui, Z., Qiu, J., Jiang, X. & Zhao, L. 2023 Effect of fluid inertial torque on the rotational and orientational dynamics of tiny spheroidal particles in turbulent channel flow. J. Fluid Mech. 977, A20.10.1017/jfm.2023.942CrossRefGoogle Scholar
Cui, Z., Zhao, L., Huang, W.-X. & Xu, C.-X. 2019 Stability analysis of rotational dynamics of ellipsoids in simple shear flow. Phys. Fluids 31 (2), 023301.10.1063/1.5080316CrossRefGoogle Scholar
Dabade, V., Marath, N.K. & Subramanian, G. 2015 Effects of inertia and viscoelasticity on sedimenting anisotropic particles. J. Fluid Mech. 778, 133188.10.1017/jfm.2015.360CrossRefGoogle Scholar
Dabade, V., Marath, N.K. & Subramanian, G. 2016 The effect of inertia on the orientation dynamics of anisotropic particles in simple shear flow. J. Fluid Mech. 791, 631703.10.1017/jfm.2016.14CrossRefGoogle Scholar
Einarsson, J., Angilella, J.R. & Mehlig, B. 2014 Orientational dynamics of weakly inertial axisymmetric particles in steady viscous flows. Physica D: Nonlinear Phenom. 278-279 (Supplement C), 7985.10.1016/j.physd.2014.04.002CrossRefGoogle Scholar
Einarsson, J., Candelier, F., Lundell, F., Angilella, J.R. & Mehlig, B. 2015 a Effect of weak fluid inertia upon Jeffery orbits. Phys. Rev. E 91 (4), 041002.10.1103/PhysRevE.91.041002CrossRefGoogle ScholarPubMed
Einarsson, J., Candelier, F., Lundell, F., Angilella, J.-R. & Mehlig, B. 2015 b Rotation of a spheroid in a simple shear at small Reynolds number. Phys. Fluids 27, 063301.10.1063/1.4921543CrossRefGoogle Scholar
Einarsson, J., Mihiretie, B.M., Laas, A., Ankardal, S., Angilella, J.R., Hanstorp, D. & Mehlig, B. 2016 Tumbling of asymmetric microrods in a microchannel flow. Phys. Fluids 28 (1), 013302.10.1063/1.4938239CrossRefGoogle Scholar
Giusto, D.Di, Bergougnoux, L., Marchioli, C. & Guazzelli, É. 2024 Influence of small inertia on Jeffery orbits. J. Fluid Mech. 979, A42.10.1017/jfm.2023.1007CrossRefGoogle Scholar
Gustavsson, K., Sheikh, M.Z., Lopez, D., Naso, A., Pumir, A. & Mehlig, B. 2019 Effect of fluid inertia on the orientation of a small prolate spheroid settling in turbulence. New J. Phys. 21 (8), 083008.10.1088/1367-2630/ab3062CrossRefGoogle Scholar
Hinch, E.J. & Leal, L.G. 1979 Rotation of small non-axisymmetric particles in a simple shear flow. J. Fluid Mech. 92 (03), 591.10.1017/S002211207900077XCrossRefGoogle Scholar
Huang, H., Yang, X., Krafczyk, M. & Lu, X.-Y. 2012 Rotation of spheroidal particles in Couette flows. J. Fluid Mech. 692, 369394.10.1017/jfm.2011.519CrossRefGoogle Scholar
Jeffery, G.B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102 (715), 161179.Google Scholar
Jiang, X., Huang, W., Xu, C. & Zhao, L. 2022 Chaotic rotation of a finite-size spheroidal particle in oscillating shear flows with fluid inertia. Phys. Fluids 34 (10), 103309.10.1063/5.0114610CrossRefGoogle Scholar
Joseph, D.D. 1976 Stability of Fluid Motions I. Springer.Google Scholar
Li, R.-Y., Cui, Z.-W., Huang, W.-X., Zhao, L.-H. & Xu, C.-X. 2018 On rotational dynamics of a finite-sized ellipsoidal particle in shear flows. Acta Mechanica 239, 449467.Google Scholar
Lovecchio, S., Climent, E., Stocker, R. & Durham, W.M. 2019 Chain formation can enhance the vertical migration of phytoplankton through turbulence. Sci. Adv. 5 (10), eaaw7879.10.1126/sciadv.aaw7879CrossRefGoogle Scholar
Lundell, F. 2011 The effect of particle inertia on triaxial ellipsoids in creeping shear: from drift toward chaos to a single periodic solution. Phys. Fluids 23 (1), 011704.10.1063/1.3548864CrossRefGoogle Scholar
Lundell, F. & Carlsson, A. 2010 Heavy ellipsoids in creeping shear flow: transitions of the particle rotation rate and orbit shape. Phys. Rev. E 81 (1), 016323.10.1103/PhysRevE.81.016323CrossRefGoogle ScholarPubMed
Lundell, F., Söderberg, L.D. & Alfredsson, P.H. 2011 Fluid mechanics of papermaking. Annu. Rev. Fluid Mech. 43 (1), 195217.10.1146/annurev-fluid-122109-160700CrossRefGoogle Scholar
Marath, N.K. & Subramanian, G. 2017 The effect of inertia on the time period of rotation of an anisotropic particle in simple shear flow. J. Fluid Mech. 830, 165210.10.1017/jfm.2017.534CrossRefGoogle Scholar
Meibohm, J., Candelier, F., Rosén, T., Einarsson, J., Lundell, F. & Mehlig, B. 2016 Angular velocity of a spheroid log rolling in a simple shear at small Reynolds number. Phys. Rev. Fluids 1 (8), 084203.10.1103/PhysRevFluids.1.084203CrossRefGoogle Scholar
Nilsen, C. & Andersson, H.I. 2013 Chaotic rotation of inertial spheroids in oscillating shear flow. Phys. Fluids 25 (1), 013303.10.1063/1.4789376CrossRefGoogle Scholar
Peskin, C.S. 2002 The immersed boundary method. Acta Numerica 11, 479517.10.1017/S0962492902000077CrossRefGoogle Scholar
Pfitzenmaier, L., Unal, C.M.H., Dufournet, Y. & Russchenberg, H.W.J. 2018 Observing ice particle growth along fall streaks in mixed-phase clouds using spectral polarimetric radar data. Atmos. Chem. Phys. 18 (11), 78437862.10.5194/acp-18-7843-2018CrossRefGoogle Scholar
Qi, D. & Luo, L. 2002 Transitions in rotations of a nonspherical particle in a three-dimensional moderate Reynolds number Couette flow. Phys. Fluids 14 (12), 44404443.10.1063/1.1517053CrossRefGoogle Scholar
Qi, D. & Luo, L.-S. 2003 Rotational and orientational behaviour of three-dimensional spheroidal particles in Couette flows. J. Fluid Mech. 477, 201213.10.1017/S0022112002003191CrossRefGoogle Scholar
Qiu, J., Cui, Z., Climent, E. & Zhao, L. 2022 Gyrotactic mechanism induced by fluid inertial torque for settling elongated microswimmers. Phys. Rev. Res. 4 (2), 023094.10.1103/PhysRevResearch.4.023094CrossRefGoogle Scholar
Rosén, T. 2017 Chaotic rotation of a spheroidal particle in simple shear flow. Chaos Interdisciplinary J. Nonlinear Sci. 27 (6), 063112.10.1063/1.4985640CrossRefGoogle ScholarPubMed
Rosén, T., Do-Quang, M., Aidun, C.K. & Lundell, F. 2015 The dynamical states of a prolate spheroidal particle suspended in shear flow as a consequence of particle and fluid inertia. J. Fluid Mech. 771, 115158.10.1017/jfm.2015.127CrossRefGoogle Scholar
Rosén, T., Kotsubo, Y., Aidun, C.K., Do-Quang, M. & Lundell, F. 2017 Orientational dynamics of a triaxial ellipsoid in simple shear flow: influence of inertia. Phys. Rev. E 96 (1), 013109.10.1103/PhysRevE.96.013109CrossRefGoogle ScholarPubMed
Rosén, T., Lundell, F. & Aidun, C.K. 2014 Effect of fluid inertia on the dynamics and scaling of neutrally buoyant particles in shear flow. J. Fluid Mech. 738, 563590.10.1017/jfm.2013.599CrossRefGoogle Scholar
Rosén, T., Nordmark, A., Aidun, C.K., Do-Quang, M. & Lundell, F. 2016 Quantitative analysis of the angular dynamics of a single spheroid in simple shear flow at moderate Reynolds numbers. Phys. Rev. Fluids 1 (4), 044201.10.1103/PhysRevFluids.1.044201CrossRefGoogle Scholar
Sabban, L. & van Hout, R. 2011 Measurements of pollen grain dispersal in still air and stationary, near homogeneous, isotropic turbulence. J. Aerosol Sci. 42 (12), 867882.10.1016/j.jaerosci.2011.08.001CrossRefGoogle Scholar
Sheikh, M.Z., Gustavsson, K., Lopez, D., Lévêque, E., Mehlig, B., Pumir, A. & Naso, A. 2020 Importance of fluid inertia for the orientation of spheroids settling in turbulent flow. J. Fluid Mech. 886, A9.10.1017/jfm.2019.1041CrossRefGoogle Scholar
Taylor, G.I. 1923 The motion of ellipsoidal particles in a viscous fluid. Proc. R. Soc. Lond. A Containing Papers Math. Phys. Character 103 (720), 5861.Google Scholar
Varney, P. & Green, I. 2017 Comparing the floquet stability of open and breathing fatigue cracks in an overhung rotordynamic system. J. Sound Vib. 408, 314330.10.1016/j.jsv.2017.07.034CrossRefGoogle Scholar
Yarin, A.L., Gottlieb, O. & Roisman, I.V. 1997 Chaotic rotation of triaxial ellipsoids in simple shear flow. J. Fluid Mech. 340, 83100.10.1017/S0022112097005260CrossRefGoogle Scholar
Yu, Z., Phan-Thien, N. & Tanner, R.I. 2007 Rotation of a spheroid in a Couette flow at moderate Reynolds numbers. Phys. Rev. E 76 (2), 026310.10.1103/PhysRevE.76.026310CrossRefGoogle Scholar