Hostname: page-component-65b85459fc-bczq6 Total loading time: 0 Render date: 2025-10-15T05:28:55.193Z Has data issue: false hasContentIssue false

Properties of the mean-momentum balance in turbulent boundary layer flows subjected to pressure gradients

Published online by Cambridge University Press:  15 October 2025

Tie Wei*
Affiliation:
Department of Mechanical Engineering, New Mexico Institute of Mining and Technology, 801 Leroy PL, Socorro, NM 87801, USA
Tobias Knopp
Affiliation:
Institute of Aerodynamics and Flow Technology, DLR (German Aerospace Center), Bunsenstr. 10, Gottingen 37073, Germany
Zhaorui Li
Affiliation:
Department of Engineering, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
*
Corresponding author: Tie Wei, tie.wei@nmt.edu

Abstract

This study applies the scaling patch approach to investigate the influence of pressure gradients on the mean-momentum balance in turbulent boundary layers (TBLs). Under strong pressure gradients, the force balance in the outer region is dominated by advective and pressure forces, with gradients of Reynolds stresses playing a minimal role. To retain the relevance of Reynolds stress gradients within the scaling patch framework, we propose a redistribution of the component $U_e \textrm {d}U_e/\textrm {d}x$ from the advective term to the pressure-gradient term. Here, $U_e$ is the mean streamwise velocity at the boundary layer edge. This reformulation enhances the outer-scaling framework of Wei & Knopp (2023 J. Fluid Mech. 958, 1–21), ensuring consistency across a wide range of pressure gradients, including those involving flow separation. Remarkably, the new outer-scaled gradient of Reynolds shear stress in TBLs under a pressure gradient closely resembles that observed in zero-pressure-gradient TBLs. In the inner region, the impact of pressure gradient is well captured by the Stratford–Mellor parameter $\beta _{\textit{in}}$. For weak pressure gradients ($|\beta _{\textit{in}}| \ll 0.07$), traditional inner scaling remains valid. However, for stronger pressure gradients $|\beta _{\textit{in}}| \gtrsim 0.07$, the near-wall dynamics is governed by a balance between pressure gradient and viscous force, as described by Stratford (1959 J. Fluid Mech. 5, 1–16) and Mellor (1966 J. Fluid Mech. 24, 255–274). In this sub-layer, viscosity and the imposed wall pressure gradient dictate the relevant velocity and length scales. Moreover, when $|\beta _{\textit{in}}| \gtrsim 0.7$ and the wall pressure $P_{w\textit{all}}$ gradient $\textrm { d}P_{w\textit{all}}/\textrm {d}x \gt 0$, a distinct sub-layer emerges outside the pressure–viscous balance region, characterised by a dominant balance between the imposed pressure gradient and the gradient of the Reynolds shear stress. In this region, the Reynolds shear stress increases linearly with distance from the wall. These findings provide new insights into the structure of TBLs under pressure gradients and establish a refined framework for modelling their dynamics.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Afzal, N. 1982 Fully developed turbulent flow in a pipe: an intermediate layer. Arch. Appl. Mech. 52 (6), 355377.Google Scholar
Bobke, A., Vinuesa, R., Örlü, R. & Schlatter, P. 2017 History effects and near equilibrium in adverse-pressure-gradient turbulent boundary layers. J. Fluid Mech. 820, 667692.10.1017/jfm.2017.236CrossRefGoogle Scholar
Castillo, L., Wang, X. & George, W.K. 2004 Separation criterion for turbulent boundary layers via similarity analysis. J. Fluids Engng 126 (3), 297304.CrossRefGoogle Scholar
Clauser, F.H. 1954 Turbulent boundary layers in adverse pressure gradients. J. Aeronaut. Sci. 21, 91108.CrossRefGoogle Scholar
Coleman, G.N., Rumsey, C.L. & Spalart, P.R. 2018 Numerical study of turbulent separation bubbles with varying pressure gradient and Reynolds number. J. Fluid Mech. 847, 2870.10.1017/jfm.2018.257CrossRefGoogle ScholarPubMed
Coles, D.E. & Hirst, E.A. 1969 Computation of Turbulent Boundary Layers - 1968 AFOSR-IFP-Stanford Conference. Thermosciences Division, Department of Mechanical Engineering, Stanford University.Google Scholar
Cuvier, C. et al. 2017 Extensive characterisation of a high Reynolds number decelerating boundary layer using advanced optical metrology. J. Turbul. 18, 929972.10.1080/14685248.2017.1342827CrossRefGoogle Scholar
Fife, P. 2006 Scaling approaches to steady wall-induced turbulence, arXiv: 2301.08740.Google Scholar
Fife, P., Klewicki, J., McMurtry, P. & Wei, T. 2005 a Multiscaling in the presence of indeterminacy: wall-induced turbulence. Multiscale Model. Simul. 4 (3), 936959.10.1137/040611173CrossRefGoogle Scholar
Fife, P., Klewicki, J. & Wei, T. 2009 Time averaging in turbulence settings may reveal an infinite hierarchy of length scales. Discrete Continuous Dyn. Sys. A 24 (3), 781.10.3934/dcds.2009.24.781CrossRefGoogle Scholar
Fife, P., Wei, T., Klewicki, J. & McMurtry, P. 2005 b Stress gradient balance layers and scale hierarchies in wall-bounded turbulent flows. J. Fluid Mech. 532, 165189.10.1017/S0022112005003988CrossRefGoogle Scholar
George, W.K. & Castillo, L. 1997 Zero-pressure gradient turbulent boundary layer. Appl. Mech. Rev. 50, 689729.CrossRefGoogle Scholar
Kevorkian, J. & Cole, J.D. 1981 Perturbation Mathods in Applied Mathematics. Springer-Verlag.CrossRefGoogle Scholar
Kitsios, V., Sekimoto, A., Atkinson, C., Sillero, J.A., Borrell, G., Gungor, A.G., Jiménez, J. & Soria, J. 2017 Direct numerical simulation of a self-similar adverse pressure gradient turbulent boundary layer at the verge of separation. J. Fluid Mech. 829, 392419.CrossRefGoogle Scholar
Klewicki, J.C., Fife, P. & Wei, T. 2009 On the logarithmic mean profile. J. Fluid Mech. 638, 7393.CrossRefGoogle Scholar
Kline, S.J., Reynolds, W.C., Schraub, F.A. & Runstadler, P.W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30 (4), 741773.CrossRefGoogle Scholar
Long, R.R. & Chen, T.-C. 1981 Experimental evidence for the existence of the ‘mesolayer’in turbulent systems. J. Fluid Mech. 105, 1959.10.1017/S0022112081003108CrossRefGoogle Scholar
Maciel, Y., Rossignol, K.-S. & Lemay, J. 2006 A study of a turbulent boundary layer in stalled-airfoil-type flow conditions. Exp. Fluids 41 (4), 573590.10.1007/s00348-006-0182-1CrossRefGoogle Scholar
Maciel, Y., Wei, T., Gungor, A.G. & Simens, M.P. 2018 Outer scales and parameters of adverse-pressure-gradient turbulent boundary layers. J. Fluid Mech. 844, 535.CrossRefGoogle Scholar
Manhart, M., Peller, N. & Brun, C. 2008 Near-wall scaling for turbulent boundary layers with adverse pressure gradient: a priori tests on dns of channel flow with periodic hill constrictions and dns of separating boundary layer. Theor. Comput. Fluid Dyn. 22, 243260.CrossRefGoogle Scholar
Mellor, G.L. 1966 The effects of pressure gradients on turbulent flow near a smooth wall. J. Fluid Mech. 24 (2), 255274.10.1017/S0022112066000624CrossRefGoogle Scholar
Mellor, G.L. & Gibson, D.M. 1966 Equilibrium turbulent boundary layers. J. Fluid Mech. 24 (2), 225253.10.1017/S0022112066000612CrossRefGoogle Scholar
Metzger, M., Lyons, A. & Fife, P. 2008 Mean momentum balance in moderately favourable pressure gradient turbulent boundary layers. J. Fluid Mech. 617, 107140.Google Scholar
Millikan, C.B. 1938 A critical discussion of turbulent flows in channels and circular tubes. In Proc. 5th Int. Congr. Applied Mechanics, pp. 386392. Wiley.Google Scholar
Monin, A.S. & Yaglom, A.M. 1965 Statistical Fluid Mechanics, Volume I: Mechanics of Turbulence. The MIT Press.Google Scholar
Örlü, R., Fransson, J.H.M. & Alfredsson, P.H. 2010 On near wall measurements of wall bounded flows - the necessity of an accurate determination of the wall position. Prog. Aerosp. Sci. 46, 353387.10.1016/j.paerosci.2010.04.002CrossRefGoogle Scholar
Perry, A.E., Bell, J.B. & Joubert, P.N. 1966 Velocity and temperature profiles in adverse pressure gradient turbulent boundary layers. J. Fluid Mech. 25, 299320.10.1017/S0022112066001666CrossRefGoogle Scholar
Perry, A.E., Marusic, I. & Li, J.D. 1994 Wall turbulence closure based on classical similarity laws and the attached eddy hypothesis. Phys. Fluids 6, 10241035.10.1063/1.868336CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Romero, S., Zimmerman, S., Philip, J., White, C. & Klewicki, J. 2022 a Properties of the inertial sublayer in adverse pressure-gradient turbulent boundary layers. J. Fluid Mech. 937, A30.CrossRefGoogle Scholar
Romero, S.K., Zimmerman, S.J., Philip, J. & Klewicki, J.C. 2022 b Stress equation based scaling framework for adverse pressure gradient turbulent boundary layers. Intl J. Heat Fluid Flow 93 (108885), 112.10.1016/j.ijheatfluidflow.2021.108885CrossRefGoogle Scholar
Rotta, J. 1962 Turbulent boundary layers in incompressible flow. Prog. Aerosp. Sci. 2 (1), 195.10.1016/0376-0421(62)90014-3CrossRefGoogle Scholar
Schatzman, D.M. & Thomas, F.O. 2017 An experimental investigation of an unsteady adverse pressure gradient turbulent boundary layer: embedded shear layer scaling. J. Fluid Mech. 815, 592642.Google Scholar
Schlatter, P. & Örlü, R. 2010 Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116126.Google Scholar
Schlichting, H. 1979 Boundary-Layer Theory. McGraw-Hill: Inc.Google Scholar
Sekimoto, A., Kitsios, V., Atkinson, C., Sillero, J.A., Borell, G., Gungor, A.G., Jimenez, J. & Soria, J. 2019 Outer scaling of self-similar adverse-pressure-gradient turbulent boundary layers, arXiv:1912.Google Scholar
Skåre, P.E. & Krogstad, P.A. 1994 A turbulent equilibrium boundary layer near separation. J. Fluid Mech. 272, 319348.10.1017/S0022112094004489CrossRefGoogle Scholar
Skote, M. & Henningson, D. 1999 Analysis of the data base from a DNS of a separating turbulent boundary layer. Center Turbul. Res. Annu. Res. Briefs 225237, 113.Google Scholar
Smits, A.J. 2022 Batchelor prize lecture: measurements in wall-bounded turbulence. J. Fluid Mech. 940, A1.CrossRefGoogle Scholar
Sreenivasan, K.R. & Sahay, A. 1997 The persistence of viscous effects in the overlap region, and the mean velocity in turbulent pipe and channel flows. 115, arXiv:9708016.Google Scholar
Stratford, B.S. 1959 The prediction of separation of the turbulent boundary layer. J. Fluid Mech. 5 (1), 116.10.1017/S0022112059000015CrossRefGoogle Scholar
Tennekes, H. & Lumley, J.L. 1972 A First Course in Turbulence. MIT Press.10.7551/mitpress/3014.001.0001CrossRefGoogle Scholar
Townsend, A.A. 1956 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Wei, T. 2018 Multiscaling analysis of the mean thermal energy balance equation in fully developed turbulent channel flow. Phys. Rev. Fluids 3 (9), 094608.10.1103/PhysRevFluids.3.094608CrossRefGoogle Scholar
Wei, T. 2020 Analyses of buoyancy-driven convection. Adv. Heat Transfer 52, 193.Google Scholar
Wei, T., Fife, P., Klewicki, J. & McMurtry, P. 2005 Properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows. J. Fluid Mech. 522, 303327.CrossRefGoogle Scholar
Wei, T. & Knopp, T. 2023 Outer scaling of the mean momentum equation for turbulent boundary layers under adverse pressure gradient. J. Fluid Mech. 958 (A9), 121.CrossRefGoogle Scholar
Wei, T., Li, Z. & Wang, Y. 2023 New formulations for the mean wall-normal velocity and Reynolds shear stress in turbulent boundary layer under zero pressure gradient. J. Fluid Mech. 969 (A3), 115.Google Scholar
Wei, T., Li, Z. & Wang, Y. 2024 New momentum integral equation applicable to boundary layer flows under arbitrary pressure gradients. J. Fluid Mech. 984, A64.10.1017/jfm.2024.207CrossRefGoogle Scholar