Hostname: page-component-7dd5485656-2pp2p Total loading time: 0 Render date: 2025-10-22T01:46:47.482Z Has data issue: false hasContentIssue false

Local and global instability of the rotating-disk boundary layer of a rotor-stator cavity

Published online by Cambridge University Press:  22 October 2025

Yaguang Xie
Affiliation:
Advanced Gas Turbine Laboratory, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, PR China University of Chinese Academy of Sciences, Beijing 100049, PR China National Key Laboratory of Science and Technology on Advanced Light-duty Gas-turbine, Beijing 100190, PR China
Zihao Zhu
Affiliation:
Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, PR China
Lei Xie
Affiliation:
Advanced Gas Turbine Laboratory, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, PR China University of Chinese Academy of Sciences, Beijing 100049, PR China National Key Laboratory of Science and Technology on Advanced Light-duty Gas-turbine, Beijing 100190, PR China
Ruonan Wang
Affiliation:
Advanced Gas Turbine Laboratory, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, PR China University of Chinese Academy of Sciences, Beijing 100049, PR China National Key Laboratory of Science and Technology on Advanced Light-duty Gas-turbine, Beijing 100190, PR China
Siyi Li
Affiliation:
Advanced Gas Turbine Laboratory, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, PR China University of Chinese Academy of Sciences, Beijing 100049, PR China National Key Laboratory of Science and Technology on Advanced Light-duty Gas-turbine, Beijing 100190, PR China
Guangzu Zhang
Affiliation:
Advanced Gas Turbine Laboratory, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, PR China University of Chinese Academy of Sciences, Beijing 100049, PR China National Key Laboratory of Science and Technology on Advanced Light-duty Gas-turbine, Beijing 100190, PR China
Qiang Du*
Affiliation:
Advanced Gas Turbine Laboratory, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, PR China University of Chinese Academy of Sciences, Beijing 100049, PR China National Key Laboratory of Science and Technology on Advanced Light-duty Gas-turbine, Beijing 100190, PR China Qingdao Institute of Aeronautical Technology, Qingdao 266400, PR China
Junqiang Zhu
Affiliation:
Advanced Gas Turbine Laboratory, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, PR China University of Chinese Academy of Sciences, Beijing 100049, PR China National Key Laboratory of Science and Technology on Advanced Light-duty Gas-turbine, Beijing 100190, PR China
*
Corresponding author: Qiang Du, duqiang@iet.cn

Abstract

This study investigates the stability characteristics of rotating-disk boundary layers in rotor–stator cavities under the frameworks of local linear, global linear and global nonlinear analyses. The local linear stability analysis uses the Chebyshev polynomial method, the global linear stability analysis relies on the linearised incompressible Navier–Stokes (N–S) equations and the global nonlinear analysis involves directly solving the complete incompressible N–S equations. In the local linear framework, the velocity profile derived from the laminar self-similar solution on the rotating-disk side of an infinite rotor–stator cavity is mapped to the Bödewadt–Ekman–von Kármán theoretical model to establish a unified analytical framework. For the global stability study, we extend the methodological framework proposed by Appelquist et al. (J. Fluid Mech.,vol 765, 2015, pp. 612–631) for the von Kármán boundary layer, implementing pulsed disturbances and constructing a radial sponge layer to effectively capture the spatiotemporal evolution of perturbation dynamics while mitigating boundary reflection effects. The analysis reveals that the rotating-disk boundary layer exhibits two distinct instability regimes: convective instability emerges at ${\textit{Re}}=r^*/\sqrt {\nu ^*/\varOmega ^*}=204$ (where $r^*$ is the radius, $\nu ^*$ is the kinematic viscosity and $\varOmega ^*$ is the rotation rate of the system) with azimuthal wavenumber $\beta =27$, while absolute instability emerges at ${\textit{Re}}=409.6$ with azimuthal wavenumber $\beta =85$. Under pulsed disturbance excitation, an initial convective instability behaviour dominates in regions exceeding the absolute instability threshold. As perturbations propagate into the sponge layer’s influence domain, upstream mode excitation triggers the emergence of a global unstable mode, characterised by a minimum critical Reynolds number ${\textit{Re}}_{\textit{end}}=484.4$. Further analysis confirms that this global mode is an inherent property of the rotating-disk boundary layer and is independent of the characteristics of the sponge layer. Frequency-domain analysis establishes that the global mode frequency is governed by local stability characteristics at ${\textit{Re}}_{\textit{end}}$, while its growth rate evolution aligns with absolute instability trends. By further incorporating nonlinear effects, it was observed that the global properties of the global nonlinear mode remain governed by ${\textit{Re}}_{\textit{end}}$. The global temporal frequency corresponds to ${\textit{Re}}_{\textit{end}}=471.8$. When ${\textit{Re}}$ approaches 517.2, the spiral waves spontaneously generate ring-like vortices, which subsequently trigger localised turbulence. This investigation provides novel insights into the fundamental mechanisms governing stability transitions in the rotating-disk boundary layer of the rotor–stator cavity.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

These authors contributed equally to this work.

References

Alfredsson, P.H., Kato, K. & Lingwood, R.J. 2024 Flows over rotating disks and cones. Annu. Rev. Fluid Mech. 56, 4568.CrossRefGoogle Scholar
Alveroğlu, B. 2016 The convective instability of the BEK system of rotating boundary-layer flows over rough disks. PhD thesis, University of Leicester, Leicester, UK.Google Scholar
Appelquist, E., Imayama, S., Alfredsson, P.H., Schlatter, P. & Lingwood, R.J. 2016 a Linear disturbances in the rotating-disk flow: a comparison between results from simulations, experiments and theory. Eur. J. Mech. B/Fluids 55, 170181.CrossRefGoogle Scholar
Appelquist, E., Schlatter, P., Alfredsson, P.H. & Lingwood, R.J. 2015 Global linear instability of the rotating-disk flow investigated through simulations. J. Fluid Mech. 765, 612631.CrossRefGoogle Scholar
Appelquist, E., Schlatter, P., Alfredsson, P.H. & Lingwood, R.J. 2018 Transition to turbulence in the rotating-disk boundary-layer flow with stationary vortices. J. Fluid Mech. 836, 4371.CrossRefGoogle Scholar
Appelquist, E., Schlatter, P., Alfredsson, P.H. & Lingwood, R.J. 2016 b On the global nonlinear instability of the rotating-disk flow over a finite domain. J. Fluid Mech. 803, 332355.CrossRefGoogle Scholar
Balachandar, S., Streett, C.L. & Malik, M.R. 1992 Secondary instability in rotating-disk flow. J. Fluid Mech. 242, 323347.CrossRefGoogle Scholar
Batchelor, G.K. 1951 Note on a class of solutions of the Navier–Stokes equations representing steady rotationally-symmetric flow. Q. J. Mech. Appl. Maths, 4 (1), 2941.CrossRefGoogle Scholar
Bridges, T.J. & Morris, P.J. 1984 Differential eigenvalue problems in which the parameter appears nonlinearly. J. Comput. Phys. 55 (3), 437460.CrossRefGoogle Scholar
Briggs, R.J. 1964 Electron-Stream Interaction with Plasmas. MIT press.CrossRefGoogle Scholar
Cheah, S.C., Iacovides, H., Jackson, D.C., Ji, H. & Launder, B.E. 1994 Experimental investigation of enclosed rotor-stator disk flows. Exp. Therm. Fluid Sci. 9 (4), 445455.CrossRefGoogle Scholar
Childs, P.R.N. 2010 Rotating Flow. Elsevier.Google Scholar
Chomaz, J.-M. 2005 Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu. Rev. Fluid Mech. 37 (1), 357392.CrossRefGoogle Scholar
Cros, A., Floriani, E., Le Gal, P. & Lima, R. 2005 Transition to turbulence of the Batchelor flow in a rotor/stator device. Eur. J. Mech. B/Fluids 24 (4), 409424.CrossRefGoogle Scholar
Davies, C. & Carpenter, P.W. 2003 Global behaviour corresponding to the absolute instability of the rotating-disc boundary layer. J. Fluid Mech. 486, 287329.CrossRefGoogle Scholar
Davies, C., Thomas, C. & Carpenter, P.W. 2007 Global stability of the rotating-disk boundary layer. J. Engng Maths 57, 219236.CrossRefGoogle Scholar
Douglas, C.M., Emerson, B.L., Hemchandra, S. & Lieuwen, T.C. 2021 Forced flow response analysis of a turbulent swirling annular jet flame. Phys. Fluids 33 (8), 085124.CrossRefGoogle Scholar
Fischer, P.F., Lottes, J.W. & Kerkemeier, S.G. 2012 Nek5000. Available at: http://nek5000.mcs.anl.gov.Google Scholar
Healey, J.J. 2004 On the relation between the viscous and inviscid absolute instabilities of the rotating-disk boundary layer. J. Fluid Mech. 511, 179199.CrossRefGoogle Scholar
Healey, J.J. 2010 Model for unstable global modes in the rotating-disk boundary layer. J. Fluid Mech. 663, 148159.CrossRefGoogle Scholar
Huerre, P. & Monkewitz, P.A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22 (1), 473537.CrossRefGoogle Scholar
Imayama, S., Alfredsson, P.H. & Lingwood, R.J. 2013 An experimental study of edge effects on rotating-disk transition. J. Fluid Mech. 716, 638657.CrossRefGoogle Scholar
Imayama, S., Alfredsson, P.H. & Lingwood, R.J. 2014 On the laminar–turbulent transition of the rotating-disk flow: the role of absolute instability. J. Fluid Mech. 745, 132163.CrossRefGoogle Scholar
Itoh, M., Yamada, Y., Imao, S. & Gonda, M. 1992 Experiments on turbulent flow due to an enclosed rotating disk. Exp. Therm. Fluid Sci. 5 (3), 359368.CrossRefGoogle Scholar
Karniadakis, G.E., Israeli, M. & Orszag, S.A. 1991 High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97 (2), 414443.CrossRefGoogle Scholar
Kobayashi, R., Kohama, Y. & Kurosawa, M. 1983 Boundary-layer transition on a rotating cone in axial flow. J. Fluid Mech. 127, 341352.CrossRefGoogle Scholar
Kobayashi, R., Kohama, Y. & Takamadate, C. 1980 Spiral vortices in boundary layer transition regime on a rotating disk. Acta Mechanica 35 (1-2), 7182.CrossRefGoogle Scholar
Kohama, Y. 1984 Study on boundary layer transition of a rotating disk. Acta Mechanica 50 (3-4), 193199.CrossRefGoogle Scholar
Launder, B., Poncet, S. & Serre, E. 2010 Laminar, transitional, and turbulent flows in rotor-stator cavities. Annu. Rev. Fluid Mech. 42, 229248.CrossRefGoogle Scholar
Lee, K., Nishio, Y., Izawa, S. & Fukunishi, Y. 2018 The effect of downstream turbulent region on the spiral vortex structures of a rotating-disk flow. J. Fluid Mech. 844, 274296.CrossRefGoogle Scholar
Lingwood, R.J. 1996 An experimental study of absolute instability of the rotating-disk boundary-layer flow. J. Fluid Mech. 314, 373405.CrossRefGoogle Scholar
Lingwood, R.J. 1995 Absolute instability of the boundary layer on a rotating disk. J. Fluid Mech. 299, 1733.CrossRefGoogle Scholar
Lingwood, R.J. 1997 Absolute instability of the Ekman layer and related rotating flows. J. Fluid Mech. 331, 405428.CrossRefGoogle Scholar
Lopez, J.M., Marques, F., Rubio, A.M. & Avila, M. 2009 Crossflow instability of finite Bödewadt flows: transients and spiral waves. Phys. Fluids 21 (11), 114107.CrossRefGoogle Scholar
Lygren, M. & Andersson, H.I. 2001 Turbulent flow between a rotating and a stationary disk. J. Fluid Mech. 426, 297326.CrossRefGoogle Scholar
Makino, S., Inagaki, M. & Nakagawa, M. 2015 Laminar-turbulence transition over the rotor disk in an enclosed rotor-stator cavity. Flow Turbul. Combust. 95, 399413.CrossRefGoogle Scholar
Martinand, D., Serre, E. & Viaud, B. 2023 Instabilities and routes to turbulence in rotating disc boundary layers and cavities. Phil. Trans. R. Soc. Lond. A 381 (2243), 20220135.Google ScholarPubMed
Oberleithner, K., Sieber, M., Nayeri, C.N., Paschereit, C.O., Petz, C., Hege, H.-C., Noack, B.R. & Wygnanski, I. 2011 Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J. Fluid Mech. 679, 383414.CrossRefGoogle Scholar
Owen, J.M. & Rogers, R.H. 1989 Flow and Heat Transfer in Rotating Disc Systems, vol. 1: Rotor-Stator systems. Research Studies Press.Google Scholar
Pier, B. 2003 Finite-amplitude crossflow vortices, secondary instability and transition in the rotating-disk boundary layer. J. Fluid Mech. 487, 315343.CrossRefGoogle Scholar
Poncet, S., Chauve, M.-P. & Schiestel, R. 2005 Batchelor versus Stewartson flow structures in a rotor-stator cavity with throughflow. Phys. Fluids 17 (7), 075110.CrossRefGoogle Scholar
Schmid, P.J., Henningson, D.S. & Jankowski, D.F. 2002 Stability and transition in shear flows. applied mathematical sciences, vol. 142. Appl. Mech. Rev. 55 (3), B57B59.CrossRefGoogle Scholar
Schouveiler, L., Le Gal, P. & Chauve, M.P. 2001 Instabilities of the flow between a rotating and a stationary disk. J. Fluid Mech. 443, 329350.CrossRefGoogle Scholar
Schouveiler, L., Le Gal, P., Chauve, M.P. & Takeda, Y. 1999 Spiral and circular waves in the flow between a rotating and a stationary disk. Exp. Fluids 26 (3), 179187.CrossRefGoogle Scholar
Serre, E., Del Arco, E.C. & Bontoux, P. 2001 Annular and spiral patterns in flows between rotating and stationary discs. J. Fluid Mech. 434, 65100.CrossRefGoogle Scholar
Serre, E., Tuliszka-Sznitko, E. & Bontoux, P. 2004 Coupled numerical and theoretical study of the flow transition between a rotating and a stationary disk. Phys. Fluids 16 (3), 688706.CrossRefGoogle Scholar
Séverac, É., Poncet, S., Serre, É. & Chauve, M.-P. 2007 Large eddy simulation and measurements of turbulent enclosed rotor-stator flows. Phys. Fluids 19 (8), 085113.CrossRefGoogle Scholar
Suslov, S.A. 2006 Numerical aspects of searching convective/absolute instability transition. J. Comput. Phys. 212 (1), 188217.CrossRefGoogle Scholar
Theofilis, V. 2011 Global linear instability. Annu. Rev. Fluid Mech. 43 (1), 319352.CrossRefGoogle Scholar
Viaud, B., Serre, E. & Chomaz, J.-M. 2008 The elephant mode between two rotating disks. J. Fluid Mech. 598, 451464.CrossRefGoogle Scholar
Viaud, B., Serre, E. & Chomaz, J.-M. 2011 Transition to turbulence through steep global-modes cascade in an open rotating cavity. J. Fluid Mech. 688, 493506.CrossRefGoogle Scholar
Xie, Y., Du, Q., Xie, L., Wang, Z. & Li, S. 2024 Onset of turbulence in rotor–stator cavity flows. J. Fluid Mech. 991, A3.CrossRefGoogle Scholar
Yim, E., Chomaz, J.-M., Martinand, D. & Serre, E. 2018 Transition to turbulence in the rotating disk boundary layer of a rotor–stator cavity. J. Fluid Mech. 848, 631647.CrossRefGoogle Scholar
Zhang, J., Hui, X., An, Q. & Wang, Z. 2023 Impact of density stratification and azimuthal velocity on the growth of coherent structures in a convectively unstable swirl flame. Phys. Fluids 35 (10), 105149.CrossRefGoogle Scholar