Hostname: page-component-65b85459fc-w5djb Total loading time: 0 Render date: 2025-10-16T11:01:15.798Z Has data issue: false hasContentIssue false

Experimental study on space–time correlations of velocity and passive scalar fields in turbulent pipe flows

Published online by Cambridge University Press:  14 October 2025

Huixin Li
Affiliation:
State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, 15 Beisihuanxi Road, Beijing 100190, PR China School of Engineering Science, University of Chinese Academy of Sciences, 1 Yanqihu East Road, Beijing 101408, PR China
Duo Xu*
Affiliation:
State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, 15 Beisihuanxi Road, Beijing 100190, PR China School of Engineering Science, University of Chinese Academy of Sciences, 1 Yanqihu East Road, Beijing 101408, PR China
Guowei He
Affiliation:
State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, 15 Beisihuanxi Road, Beijing 100190, PR China School of Engineering Science, University of Chinese Academy of Sciences, 1 Yanqihu East Road, Beijing 101408, PR China
*
Corresponding author: Duo Xu, duo.xu@imech.ac.cn

Abstract

Space–time correlations of velocity and high-Schmidt-number ($Sc \approx 2000$) passive scalar fields are investigated in turbulent pipe flow using particle image velocimetry and planar laser-induced fluorescence, respectively. Both the velocity and scalar fields exhibit characteristic elliptical patterns in their respective space–time correlations. The elliptic approximation model, originally developed for the velocity field, is applied to estimate convection and sweeping velocities for both fields. In both fields, the convection velocity decreases, while the sweeping velocity increases, along the pipe radius. The convection velocity ratio between the scalar and velocity fields shows that high-Schmidt-number scalar fluctuations are advected faster than the velocity fluctuations. Similarly, the sweeping velocity of the scalar fluctuations is found to be larger than that of the velocity fluctuations. Furthermore, the high-Schmidt-number scalar is found to decorrelate more rapidly than the corresponding velocity, with the scalar Taylor microscale distinctly smaller than the velocity Taylor microscale.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abe, H. & Antonia, R.A. 2009 Near-wall similarity between velocity and scalar fluctuations in a turbulent channel flow. Phys. Fluids 21 (2), 025109.10.1063/1.3081555CrossRefGoogle Scholar
Antonia, R.A., Abe, H. & Kawamura, H. 2009 Analogy between velocity and scalar fields in a turbulent channel flow. J. Fluid Mech. 628, 241268.10.1017/S0022112009006181CrossRefGoogle Scholar
Antonia, R.A. & Orlandi, P. 2003 Effect of Schmidt number on small-scale passive scalar turbulence. Appl. Mech. Rev. 56 (6), 615632.10.1115/1.1581885CrossRefGoogle Scholar
Batchelor, G.K. 1959 Small-scale variation of convected quantities like temperature in turbulent fluid Part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5 (1), 113133.10.1017/S002211205900009XCrossRefGoogle Scholar
Buaria, D., Clay, M.P., Sreenivasan, K.R. & Yeung, P.K. 2021 Turbulence is an ineffective mixer when schmidt numbers are large. Phys. Rev. Lett. 126, 074501.10.1103/PhysRevLett.126.074501CrossRefGoogle Scholar
Del Á lamo, J.C. & Jiménez, J. 2009 Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J. Fluid Mech. 640, 526.10.1017/S0022112009991029CrossRefGoogle Scholar
Dimotakis, P.E. 2005 Turbulent mixing. Annu. Rev. Fluid Mech. 37 (1), 329356.10.1146/annurev.fluid.36.050802.122015CrossRefGoogle Scholar
van Doorne, C.W.H. & Westerweel, J. 2007 Measurement of laminar, transitional and turbulent pipe flow using Stereoscopic-PIV. Exp. Fluids 42, 259279.10.1007/s00348-006-0235-5CrossRefGoogle Scholar
Draad, A.A., Kuiken, G.D.C. & Nieuwstadt, F.T.M. 1998 Laminar–turbulent transition in pipe flow for Newtonian and non-Newtonian fluids. J. Fluid Mech. 377, 267312.10.1017/S0022112098003139CrossRefGoogle Scholar
Ganapathisubramani, B., Lakshminarasimhan, K. & Clemens, N.T. 2007 Determination of complete velocity gradient tensor by using cinematographic stereoscopic PIV in a turbulent jet. Exp. Fluids 42 (6), 923939.10.1007/s00348-007-0303-5CrossRefGoogle Scholar
Geng, C., He, G., Wang, Y., Xu, C., Lozano-Durán, A. & Wallace, J.M. 2015 Taylor’s hypothesis in turbulent channel flow considered using a transport equation analysis. Phys. Fluids 27 (2), 025111.10.1063/1.4908070CrossRefGoogle Scholar
George, W.K. 1992 Self-Preservation of Temperature Fluctuations in Isotropic Turbulence. pp. 514528. Springer New York.Google Scholar
Ghate, A.S. & Lele, S.K. 2017 Subfilter-scale enrichment of planetary boundary layer large eddy simulation using discrete Fourier–Gabor modes. J. Fluid Mech. 819, 494539.10.1017/jfm.2017.187CrossRefGoogle Scholar
Gotoh, T. & Yeung, P.K. 2012 Passive scalar transport in turbulence: a computational perspective. In Ten Chapters in Turbulence, (ed. P.A. Davidson, Y. Kaneda & K.R. Sreenivasan), pp. 87131. Cambridge University Press.10.1017/CBO9781139032810.004CrossRefGoogle Scholar
Guo, L., Li, D., Zhang, X. & He, G. 2012 LES prediction of space-time correlations in turbulent shear flows. Acta Mechanica Sinica 28 (4), 993998.10.1007/s10409-012-0088-5CrossRefGoogle Scholar
He, G., Jin, G. & Yang, Y. 2017 Space-time correlations and dynamic coupling in turbulent flows. Annu. Rev. Fluid Mech. 49, 5170.10.1146/annurev-fluid-010816-060309CrossRefGoogle Scholar
He, G. & Zhang, J. 2006 Elliptic model for space-time correlations in turbulent shear flows. Phys. Rev. E 73 (5), 055303.10.1103/PhysRevE.73.055303CrossRefGoogle ScholarPubMed
He, X., Funfschilling, D., Nobach, H., Bodenschatz, E. & Ahlers, G. 2012 Transition to the ultimate state of turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 108 (2), 024502.10.1103/PhysRevLett.108.024502CrossRefGoogle Scholar
He, X., van Gils, D.P.M., Bodenschatz, E. & Ahlers, G. 2014 Logarithmic spatial variations and universal ${f}^{{-}1}$ power spectra of temperature fluctuations in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 112, 174501.10.1103/PhysRevLett.112.174501CrossRefGoogle ScholarPubMed
He, X., van Gils, D.P.M., Bodenschatz, E. & Ahlers, G. 2015 Reynolds numbers and the elliptic approximation near the ultimate state of turbulent Rayleigh–Bénard convection. New J. Phys. 17 (6), 063028.10.1088/1367-2630/17/6/063028CrossRefGoogle Scholar
He, X., He, G. & Tong, P. 2010 Small-scale turbulent fluctuations beyond Taylor’s frozen-flow hypothesis. Phys. Rev. E 81 (6), 065303.10.1103/PhysRevE.81.065303CrossRefGoogle ScholarPubMed
He, X. & Tong, P. 2011 Kraichnan’s random sweeping hypothesis in homogeneous turbulent convection. Phys. Rev. E 83 (3), 037302.10.1103/PhysRevE.83.037302CrossRefGoogle ScholarPubMed
He, X. & Tong, P. 2014 Space-time correlations in turbulent Rayleigh–Bénard convection. Acta Mechanica Sinica 30, 457467.10.1007/s10409-014-0068-zCrossRefGoogle Scholar
Hogg, J. & Ahlers, G. 2013 Reynolds-number measurements for low-Prandtl-number turbulent convection of large-aspect-ratio samples. J. Fluid Mech. 725, 664680.10.1017/jfm.2013.179CrossRefGoogle Scholar
Kim, J. & Hussain, F. 1993 Propagation velocity of perturbations in turbulent channel flow. Phys. Fluids A: Fluid Dyn. 5 (3), 695706.10.1063/1.858653CrossRefGoogle Scholar
Kim, J. & Moin, P. 1989 Transport of passive scalars in a turbulent channel flow. In, turbulent shear flows, 6. (ed. J.-C. André, J. Cousteix, F. Durst, B.E. Launder, Schmidt, F.W. & Whitelaw, J.H.), pp. 8596. Springer.Google Scholar
Kolmogorov, A.N. 1991 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc. R. Soc. Lond. Ser. A: Math. Phys. Sci. 434(1890), 913.Google Scholar
Kraichnan, R.H. 1964 Kolmogorov’s hypotheses and Eulerian turbulence theory. Phys. Fluids 7 (11), 17231734.10.1063/1.2746572CrossRefGoogle Scholar
Kraichnan, R.H. 1968 Small-scale structure of a scalar field convected by turbulence. Phys. Fluids 11 (5), 945953.10.1063/1.1692063CrossRefGoogle Scholar
Li, H., Xu, D. & He, G. 2025 Experimental investigation of fractal features of passive scalar mixing in turbulent pipe flow. J. Fluid Mech. 1017, A27.10.1017/jfm.2025.10454CrossRefGoogle Scholar
Lin, C.C. 1953 On Taylor’s hypothesis and the acceleration terms in the Navier–Stokes equation. Q. Appl. Maths 10, 295306.10.1090/qam/51649CrossRefGoogle Scholar
Lohse, D. 1994 Temperature spectra in shear flow and thermal convection. Phys. Lett. A 196 (1), 7075.Google Scholar
Lopez, J.M., Choueiri, G.H. & Hof, B. 2019 Dynamics of viscoelastic pipe flow at low Reynolds numbers in the maximum drag reduction limit. J. Fluid Mech. 874, 699719.Google Scholar
Lozano-Durán, A. & Jiménez, J. 2014 Time-resolved evolution of coherent structures in turbulent channels: characterization of eddies and cascades. J. Fluid Mech. 759, 432471.10.1017/jfm.2014.575CrossRefGoogle Scholar
Lumley, J.L. 1965 Interpretation of time spectra measured in high-intensity shear flows. Phys. Fluids 8 (6), 10561062.10.1063/1.1761355CrossRefGoogle Scholar
Nobach, H. & Tropea, C. 2012 A statistical method for transforming temporal correlation functions from one-point measurements into longitudinal spatial and spatio-temporal correlation functions. Exp. Fluids 53, 18151821.10.1007/s00348-012-1392-3CrossRefGoogle Scholar
Pirozzoli, S. 2023 An explicit representation for mean profiles and fluxes in forced passive scalar convection. J. Fluid Mech. 968, R1.10.1017/jfm.2023.591CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Raffel, M., Willert, C.E., Scarano, F., Kähler, C.J., Wereley, S.T. & Kompenhans, J. 2018 Particle Image Velocimetry: A Practical Guide. Springer.Google Scholar
Rosenberg, B.J., Hultmark, M., Vallikivi, M., Bailey, S.C.C. & Smits, A.J. 2013 Turbulence spectra in smooth- and rough-wall pipe flow at extreme Reynolds numbers. J. Fluid Mech. 731, 4663.10.1017/jfm.2013.359CrossRefGoogle Scholar
Sreenivasan, K.R. 1991 On local isotropy of passive scalars in turbulent shear flows. Proc. R. Soc. Lond. Ser. A: Math. Phys. Sci. 434(1890), 165182.Google Scholar
Sreenivasan, K.R. 2019 Turbulent mixing: a perspective. Proc. Natl Acad. Sci. 116 (37), 1817518183.10.1073/pnas.1800463115CrossRefGoogle ScholarPubMed
Taylor, G.I. 1938 The spectrum of turbulence. Proc. R. Soc. Lond. Ser. A - Math. Phys. Sci. 164 (919), 476490.Google Scholar
Vallikivi, M., Ganapathisubramani, B. & Smits, A.J. 2015 Spectral scaling in boundary layers and pipes at very high Reynolds numbers. J. Fluid Mech. 771, 303326.10.1017/jfm.2015.181CrossRefGoogle Scholar
Villermaux, E. & Innocenti, C. 1999 On the geometry of turbulent mixing. J. Fluid Mech. 393, 123147.10.1017/S0022112099005674CrossRefGoogle Scholar
Wang, W., Guan, X. & Jiang, N. 2014 TRPIV investigation of space-time correlation in turbulent flows over flat and wavy walls. Acta Mechanica Sinica 30 (4), 468479.10.1007/s10409-014-0060-7CrossRefGoogle Scholar
Wieneke, B. 2015 PIV uncertainty quantification from correlation statistics. Meas. Sci. Technol. 26 (7), 074002.10.1088/0957-0233/26/7/074002CrossRefGoogle Scholar
Wu, T. & He, G. 2021 a Space-time energy spectra in turbulent shear flows. Phys. Rev. Fluids 6, 100504.10.1103/PhysRevFluids.6.100504CrossRefGoogle Scholar
Wu, T. & He, G. 2021 b Stochastic dynamical model for space-time energy spectra in turbulent shear flows. Phys. Rev. Fluids 6, 054602.10.1103/PhysRevFluids.6.054602CrossRefGoogle Scholar
Xu, D. & Chen, J. 2012 Experimental study of stratified jet by simultaneous measurements of velocity and density fields. Exp. Fluids 53, 145162.10.1007/s00348-012-1275-7CrossRefGoogle Scholar
Yeung, P.K., Xu, S. & Sreenivasan, K.R. 2002 Schmidt number effects on turbulent transport with uniform mean scalar gradient. Phys. Fluids 14 (12), 41784191.Google Scholar
Zhao, X. & He, G. 2009 Space-time correlations of fluctuating velocities in turbulent shear flows. Phys. Rev. E 79 (4), 046316.10.1103/PhysRevE.79.046316CrossRefGoogle ScholarPubMed
Zhou, Q., Li, C., Lu, Z. & Liu, Y. 2011 Experimental investigation of longitudinal space–time correlations of the velocity field in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 683, 94111.10.1017/jfm.2011.249CrossRefGoogle Scholar