Hostname: page-component-54dcc4c588-tfzs5 Total loading time: 0 Render date: 2025-09-29T10:34:09.366Z Has data issue: false hasContentIssue false

SEMIPARAMETRIC ESTIMATION OF QUANTILE REGRESSION WITH BINARY QUANTILE SELECTION

Published online by Cambridge University Press:  29 September 2025

Songnian Chen
Affiliation:
https://ror.org/00a2xv884 Zhejiang University
Hanghui Zhang*
Affiliation:
https://ror.org/01mv9t934 Shanghai University of Finance and Economics
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This article proposes a novel method for estimating quantile regression models that account for sample selection. Unlike the approach by Arellano and Bonhomme (2017, Econometrica 85(1), 1–28; hereafter referred to as AB17), which employs a parametric selection equation, our method utilizes a standard binary quantile regression model to handle the selection issue, thereby accommodating general heterogeneity in both the selection and outcome equations. We adopt a semiparametric estimation technique for the outcome quantile regression by integrating local moment conditions, resulting in $\sqrt {n}$-consistent estimators for the quantile coefficients and copula parameter. Monte Carlo simulation results demonstrate that our estimator performs well in finite samples. Additionally, we apply our method to examine the wage distribution among women using a randomly simulated sample from the US General Social Survey. Our key finding is the presence of significant positive selection among women in the US, which is notably more pronounced than the estimates produced by the AB17’s model.

Information

Type
ARTICLES
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NC
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial licence (https://creativecommons.org/licenses/by-nc/4.0), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original article is properly cited. The written permission of Cambridge University Press must be obtained prior to any commercial use.
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Footnotes

We are very grateful for the insightful comments and suggestions from the editor, co-editor, and two anonymous referees, which greatly help to enhance the quality of this article. Address correspondence to Hanghui Zhang, School of Economics, Shanghai University of Finance and Economics; Key Laboratory of Mathematical Economics (SUFE), Ministry of Education, Shanghai 200433, China

References

REFERENCES

Angrist, J., Chernozhukov, V., & Fernandez-Val, I. (2006). Quantile regression under misspecification, with an application to the U.S. wage structure. Econometrica , 74, 539563.10.1111/j.1468-0262.2006.00671.xCrossRefGoogle Scholar
Arellano, M., & Bonhomme, S. (2017). Quantile selection models: With an application to understanding changes in wage inequality. Econometrica , 85(1), 128.10.3982/ECTA14030CrossRefGoogle Scholar
Carroll, R. J., Fan, J., Gijbels, I., & Wand, M. P. (1997). Generalized partially linear single-index models. Journal of the American Statistical Association , 92(438), 477489.10.1080/01621459.1997.10474001CrossRefGoogle Scholar
Chen, S. (2018). Sequential estimation of censored quantile regression models. Journal of Econometrics , 207(1), 3052.10.1016/j.jeconom.2018.06.020CrossRefGoogle Scholar
Chen, S., & Wang, Q. (2023). Quantile regression with censoring and sample selection. Journal of Econometrics , 234(1), 205226.10.1016/j.jeconom.2021.11.018CrossRefGoogle Scholar
Chen, S., & Zhang, H. (2015). Binary quantile regression with local polynomial smoothing. Journal of Econometrics , 189(1), 2440.10.1016/j.jeconom.2015.06.019CrossRefGoogle Scholar
Chernozhukov, V., Fernández-Val, I., & Melly, B. (2013). Inference on counterfactual distributions. Econometrica , 81(6), 22052268.Google Scholar
Chernozhukov, V., Fernández-Val, I., Melly, B., & Wüthrich, K. (2020). Generic inference on quantile and quantile effect functions for discrete outcomes. Journal of the American Statistical Association , 115(529), 123137.10.1080/01621459.2019.1611581CrossRefGoogle Scholar
Chernozhukov, V., & Hansen, C. (2006). Instrumental quantile regression inference for structural and treatment effect models. Journal of Econometrics , 132(2), 491525.10.1016/j.jeconom.2005.02.009CrossRefGoogle Scholar
Chetverikov, D., Larsen, B., & Palmer, C. (2016). IV quantile regression for group-level treatments, with an application to the distributional effects of trade. Econometrica , 84(2), 809833.10.3982/ECTA12121CrossRefGoogle Scholar
Fernandes, M., Guerre, E., & Horta, E. (2019). Smoothing quantile regression. Journal of Business and Economic Statistics , 39(2), 338357.10.1080/07350015.2019.1660177CrossRefGoogle Scholar
Florios, K., & Skouras, S. (2008). Exact computation of max weighted score estimators. Journal of Econometrics , 146(1), 8691.10.1016/j.jeconom.2008.05.018CrossRefGoogle Scholar
Gao, Y., Xu, S., & Xu, K. (2022). Two-stage maximum score estimator, arxiv working paper.Google Scholar
Galvao, A. F., & Kato, K. (2016). Smoothed quantile regression for panel data. Journal of Econometrics , 193(1), 92112.10.1016/j.jeconom.2016.01.008CrossRefGoogle Scholar
He, X., Pan, X., Tian, M., & Zhou, W. (2023). Smoothed quantile regression for large scale inference. Journal of Econometrics , 232(2), 367388.10.1016/j.jeconom.2021.07.010CrossRefGoogle ScholarPubMed
Heckman, J. (1979). Sample selection bias as a specification error. Econometrica , 47(1), 153161.10.2307/1912352CrossRefGoogle Scholar
Horowitz, J. L. (1992). A smoothed maximum score estimator for the binary response model. Econometrica , 63(3), 505531.10.2307/2951582CrossRefGoogle Scholar
Horowitz, J. L. (1993). Semiparametric and nonparametric estimation of quantal response models. In G.S. Maddala, C.R. Rao and H.D. Vinod, Eds. Handbook of Statistics , Vol. 11, 4572. North Holland, Amsterdam.Google Scholar
Horowitz, J. L. (1998). Bootstrap methods for median regression models. Econometrica , 66, 13271351.10.2307/2999619CrossRefGoogle Scholar
Koenker, R., & Bassett, G. (1978). Regression quantiles. Econometrica , 46(1), 3350.10.2307/1913643CrossRefGoogle Scholar
Kaplan, D. M., & Sun, Y. (2017). Smoothed estimating equations for instrumental variables quantile regression. Econometric Theory , 33(1), 105157.10.1017/S0266466615000407CrossRefGoogle Scholar
Kordas, G. (2006). Smoothed binary regression quantiles. Journal of Applied Econometrics , 21(3), 387407.10.1002/jae.843CrossRefGoogle Scholar
Manski, C. (1975). Maximum score estimation of the stochastic utility model of choice. Journal of Econometrics , 3(3), 205228.10.1016/0304-4076(75)90032-9CrossRefGoogle Scholar
Manski, C. (1985). Semiparametric analysis of discrete response: Asymptotic properties of the maximum score estimator. Journal of Econometrics , 27(3), 313333.10.1016/0304-4076(85)90009-0CrossRefGoogle Scholar
Newey, W. K., & McFadden, D. (1994). Large sample estimation and hypothesis testing. In R.F Engle and D L. McFadden, Eds. Handbook of Ecomometrics , Vol. 4, 21112245. North Holland, Amsterdam.Google Scholar
Nolan, D., & Pollard, D. (1987). U-processes: Rates of convergence. Annals of Statistics , 15(2), 780799.10.1214/aos/1176350374CrossRefGoogle Scholar
Phillips, P. C. B. (2015). Pitfalls and possibilities in predictive regression. Journal of Financial Econometrics , 13(3), 521555.10.1093/jjfinec/nbv014CrossRefGoogle Scholar
Pakes, A., & Pollard, D. (1989). Simulation and the asymptotics of optimization estimators. Econometrica , 57(5), 10271057.10.2307/1913622CrossRefGoogle Scholar
Politis, D. N., Romano, J. P., & Wolf, M. (1999). Subsampling . Springer Series in Statistics. Springer New York.10.1007/978-1-4612-1554-7CrossRefGoogle Scholar
Pollard, D. (1989). Asymptotics via empirical processes. Statistical Science , 4(4), 341354.Google Scholar
Pollard, D. (1995). Uniform ratio limit theorems for empirical processes. Scandinavian Journal of Statistics , 22(3), 271278.Google Scholar
Volgushev, S. (2020). Smoothed quantile regression processes for binary response models. Econometric Theory , 36(2), 292330.10.1017/S0266466619000124CrossRefGoogle Scholar
Supplementary material: File

Chen and Zhang supplementary material

Chen and Zhang supplementary material
Download Chen and Zhang supplementary material(File)
File 29.3 KB