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This article proposes a novel method for estimating quantile regression models that
account for sample selection. Unlike the approach by Arellano and Bonhomme
(2017, Econometrica 85(1), 1-28; hereafter referred to as AB17), which employs
a parametric selection equation, our method utilizes a standard binary quantile
regression model to handle the selection issue, thereby accommodating general
heterogeneity in both the selection and outcome equations. We adopt a semipara-
metric estimation technique for the outcome quantile regression by integrating
local moment conditions, resulting in /n-consistent estimators for the quantile
coefficients and copula parameter. Monte Carlo simulation results demonstrate that
our estimator performs well in finite samples. Additionally, we apply our method to
examine the wage distribution among women using a randomly simulated sample
from the US General Social Survey. Our key finding is the presence of significant
positive selection among women in the US, which is notably more pronounced than
the estimates produced by the AB17’s model.

1. INTRODUCTION

The quantile regression framework developed by Koenker and Bassett (1978) has
received a great deal of attention in theoretical as well as applied economic analy-
sis. Through parsimonious modeling, quantile regression provides comprehensive
characterization of conditional distributions, allowing for general heterogeneous
covariate effects and unobserved heterogeneity. However, most quantile regression
analyses have traditionally focused on single equation frameworks.

In an influential article, AB17 studied quantile regression subject to sample
selection. Sample selection dates back to Heckman (1979) and arises frequently in
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practice. For example, for the study of wages and employment, AB17 noted that
only the wages of employed individuals are observed, so conventional measures of
wage gaps or wage inequality may be biased and wage inequality for those at work
may provide a distorted picture of market-level wage inequality. To overcome such
bias and recover the latent wage distribution, AB17 proposed a quantile regression
model subject to a sample selection where the sample selection is modeled via
a bivariate cumulative distribution function (cdf), or copula, of the errors in the
outcome and the selection equation. Furthermore, in a parametric/semiparametric
framework, they proposed a two-step method for the estimation of the copula
parameter, and the final step for the estimation for the entire family of quantile
regression coefficient process given a consistent estimator for the copula param-
eter. Despite this important breakthrough in extending quantile regression to a
sample selection framework, AB17’s approach suffers from some drawbacks.
Their parametric/semiparametric framework, which is the focus of their estima-
tion, consists of a parametric selection equation and a semiparametric quantile
regression outcome equation. As a result, their model accommodates general
heterogeneous effects and unobserved heterogeneity only in the outcome equation,
but not in the selection equation. As Horowitz (1993) pointed out, the parametric
specification of the selection equation is prone to misspecification, often excluding
heteroskedasticity, which results in biased predictions of conditional selection
(choice) probabilities. Such misspecification can lead to inconsistent estimates and
misleading inferences about the quantile coefficients.

In this article, we overcome the drawbacks associated with the paramet-
ric/semiparametric estimation approach! in AB17 by relaxing the parametric
specification of the selection equation. In particular, like the outcome equation, the
selection equation is also modeled as a semiparametric binary quantile regression.
Therefore, our framework is able to accommodate general heterogeneous effects
in both equations.” Furthermore, by specifying both the selection equation and
the outcome as quantile regression equations, respectively, we provide a more
natural and coherent modeling strategy. Similar to AB17, given initial estimates
for the selection equation based on existing estimators, such as, Manski (1975,
1985), Horowitz (1992), and Chen and Zhang (2015), we propose a two-step
estimator for the copula parameter. Our estimation approach differs from that
of AB17 in constructing moment conditions; in fact, we work with the local
moment conditions. Specifically, for a pair of quantile indices that correspond to
the selection equation and outcome equation, we select a subsample for which

! Arellano and Bonhomme (2017) provided a brief discussion on estimation of quantile regression for the outcome
equation with nonparametric specification for the selection equation. One major drawback with that approach is the
curse-of-dimensionality problem associated with the nonparametric structure.

2We appreciate the editor’s comments regarding our specification of the selection equation, and in particular,
enforcing monotonic non-crossing in quantile regression does not fully resolve the misspecification issue (Phillips,
2015). However, binary quantile regression is inherently more robust than other parametric models. Furthermore, in
practice, when quadratic or cubic terms are present, the issue of quantile crossing may not arise. Even in the case of a
linear specification in terms of the base variables, quantile crossing may not occur if the regressor has a limited range
(e.g., class sizes).
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the local moment conditions correspond to a rotated quantile function, where the
subsample is constructed based on the quantile index of the selection equation.
Then, we combine the local moment conditions corresponding to different pairs of
quantile indices for the estimation of the copula parameter. Once an estimate for
the copula parameter is available, quantile regression coefficients for the outcome
equation can be estimated by combining local quantile regression estimates based
on different pairs of quantile indices for the selection and outcome equation.
Although estimators based on individual local moment conditions converge at
nonparametric rates, aggregating over local moment conditions based on a family
of quantile indices leads to the parametric rate of convergence of our quantile
regression estimator for the outcome equation. AB17’s estimators are known
for computational simplicity, using linear programming for their rotated quantile
regression for each given p. Similarly, our estimators retain this computational
advantage. The convolution smoothing quantile regression (SQR) introduced by
Fernandes, Guerre, and Horta (2019) has the desirable property of maintaining
the convexity of the objective function, enabling the computation of the global
optimal solution in finite samples using standard local optimization methods.

The rest of the article is organized as follows: Section 2 presents the quantile
regression model subject to binary quantile selection and proposes our estimation
procedure. Section 3 presents the large sample properties of our estimator. Sim-
ulation results are contained in Section 4. We apply our method to the General
Social Survey (GSS) data in Section 5. Section 6 concludes. The Appendix
contains proofs of the main theorems. The Supplementary Material contains some
additional simulation results.

2. MODEL AND ESTIMATOR
We consider the following model:

Y*=X'g(U), e}
D=1{Wy ) > 0}, @)

where (1) is the outcome equation and (2) is the selection equation; Y™* is the
latent dependent variable in the outcome equation (1), X and W are observed
characteristics with W = (X, Z), where Z represents the variables in the selection
equation excluded from the outcome equation; U and V are univariate unobserved
characteristics each with the uniform distribution on (0, 1) for its marginal distri-
bution conditional on W, representing “rankings” in the latent selection and out-
come equations, respectively. Following the usual set-up of quantile regressions,
conditional on W = w, both quantile functions T — x’'8 () and t — w'y (1) are
strictly increasing in t € (0, 1). Our observations consist of a random sample of
(Y;,Di, W), i = 1,2,...,n, where Y; = D;Y. Our objective is the estimation of
quantile regression coefficients B (t), for t € (0,1) as well as the corresponding
conditional quantile function x'8 (7). As in AB17 we model the selection bias
through the copula function C*(u,v, py), which is the joint distribution function
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of (U, V) assumed to be independent of W, with the copula parameter p, capturing
the dependence between U and V.

In (1) and (2), both the binary selection and outcome equations are specified
through semiparametric quantile regression functions, which allows for general
heterogeneous effects and provides a more coherent framework. The semipara-
metric model studied in Section 3 of AB17 adopted a parametric specification for
the selection equation for the estimation of the quantile regression coefficients in
the outcome equation. Typically, for estimating binary choice models, estimates
of the parameters and conditional probabilities can be sensitive to certain types
of heteroskedasticity which are generally ruled out by parametric models such as
Probit or Logit model.’ Furthermore, the parametric specification of the selection
equation cannot typically be justified by economic theory. Consequently, the
misspecification of the selection equation is likely to result in inconsistency and
erroneous inferences for 8 (7) as well as the conditional quantile function x'8 (t).*

For the estimation of the quantile regression coefficients in the outcome equa-
tion, similar to AB17, we adopt a moment based approach; but unlike AB17, we
work with local moment conditions. Specifically, for a given v € (0, 1), we consider
observations for which W’y (v) = 0 holds, then we can write the binary selection
indicator as

D=1{Wy() >0} &)
=1{WyWV)>Wyw}
= 1{V > v},

and consequently, we have

E[D1{y <X'B@}IX,Wy®) =0]
=E[1{X'BU) <X'B(x),Wy (V) >0} X,Wy(v)=0]
=E[I{U=<T1,V=>V}].

The above equations yield the following conditional moment equation:

E[D (1 [Y < x’ﬁ(f)} —C(,v, po)) X, W'y (v) = 0] -0, @)

where C (-, -, p) denotes the conditional copula,

E({U=t,V>v}) C*(r,1,p0)—C*(z,v, po)
E1{(V>v) 1—v ’

C(z,v,p0) =

3Typically, parametric binary choice models follow a specification,
D=UWyy+y(V) >0},

where, for example, y.(V) = ®~! (V) for the probit model.

4 Arellano and Bonhomme (2017) also discussed the possibility of a nonparametrically selection equation; however,
complete nonparametric specification will lead to the curse of dimensionality.

https://doi.org/10.1017/50266466625100121 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466625100121

SEMIPARAMETRIC ESTIMATION OF QUANTILE REGRESSION 5

with C*(u,v, pp) denoting the copula function, namely, the joint distribution
function of (U, V). From the conditional moment equation (4), we can construct
the following unconditional moment equations for (8 (t), pg),t € (0,1),

E[D(l [Y < X’ﬁ(r)} —C(t.v, ,00)) X|W'y (v) = 0] —0, ®)
and
E[D(l {Y < X’ﬂ(r)} —C(t,v, ,00)) ZIW'y (v) = 0] —0. 6)

Our identification strategy, in spirit, follows the common identification strategy
used for nonlinear regression models. Essentially, we view C* (7, v, p) as a function
of vindexed by (7, p). C* (t,v, pp) is distinguishable in the sense that for any given
7,7 € (0,1) and p € (—1,1), it is basically required that C* (t,v, pg) = C* (1, v, p)
forallv e (0,1),if and only if T = 7 and p = py. The Proposition 1 in the Appendix
shows the identification result.

Now we turn to the estimation strategy of the parameters of interest. Let [v;,v,,]
denote a range of v in the support of the conditional choice probabilities P (W) =
E (D|W) for which we can estimate y (v) reasonably precisely. Let 7 (v) denote
an estimator for y (v) for v € [v;,v,].” Existing estimators for y (v) include the
maximum score estimator (Manski, 1975, 1985, MSC estimator), the smoothed
MSC estimator (Horowitz, 1992, see also, Kordas, 2006 and Volgushev, 2020,
SMSC estimator), the local polynomial smoothed version of the MSC estimator by
Chen and Zhang (2015), and more recently, the two-step version Gao et al (2022),
among others. Note that given py and the SMSC estimator y (v) for the binary
quantile selection equation, § (t) can be estimated by a solution to

1 ¢ 1 (Wy
LS Dy (1= Xb < 0} = C (v, o) Xi] — s (ﬂ) —0, ™
n 1 hl ]’l1
which is the local estimating equation corresponding to the following local quantile
regression:
- L (WP

i Dipcv.p)(Yi—Xb)—k | —= ), 8

121611131; 0C(z,v, 00) ( ; )hl 1 < I 3)

where p; (1) = u(t — 1 {u < 0}) is the usual check function in quantile regression,
ki (+) is a kernel density function used to provide a smooth weighting, which gives
more weight to observations with Wy (v) close to zero.

Due to local weighting, the estimator in (8) will converge at a nonparametric
rate. To improve the rate of convergence, we integrate the objective function in (8)
over a continuum of vs by working with the objective function

g L1 (W)
/ ZDipC(r,v,pO)(Yi _Xib)_kl < 4 > o (v)dy, )
VIi—1 hl hl

SWe discuss the range of 7o and the support of P (W) in more detail in a remark below.
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where w (-) is some nonnegative and integrable weight function required to be
non-degenerated such that it only takes positive values on some interval [v;,v,] C
Spwy» where S,(w) is the support of the propensity score. Furthermore, in light of
the favorable asymptotic properties and finite sample performance associated with
smoothed quantile regression proposed by Fernandes et al. (2019), we consider the
convolution-type smoothing objective function of (9).

We now describe the details of our estimation algorithm for 8 (1), t € [rl*, T ] in
(0,1) and py: both parameters (B (t), po) are solved in a profiled manner, similar to
ABI17. Suppose y (v)s are obtained by Horowitz’s SMSC methods for v € [v;,v,].

Step 1: Fora given p,v € [v,v,]andt € J C [rl , u] where 7 is a set of quantile
indices for the purpose of estimating py, define ﬂ (t, p) as a solution to

min [ M1 (6.5 0).p.7.0) 0 0) . 10)

Vi

where M, represents a convolution-type smoothed objective function,

oo
Mnl (b’ yv 105 T,V) = / pC(‘L’,V,,O) (t)ﬁl (tv b1 y)dt1 (11)
—00

with

(Y;—Xb) Wy
fu(tb,y) = ZDkz( hz >k1<hl>,

ky (-) is a kernel density function and h; is the corresponding bandwidth. For
several commonly used kernel functions, we can compute (1 1) explicitly, for which
details are provided below in the simulation section.

Step 2: Based on the first step estimator B (t,p), for any fixed p and T € 7, define
our estimator for pg, p, which solves

min Gy, (p),
peo

where

G =Y / B(5.0).7 0.pt)[ .
ied

with

X/ -Y; w’
Gon (b, y, v, 7) = ZD <K2< ) C(t,v, ,0)) <h_1y> Z,
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where | - || in G, (-) is the Euclidean norm; K, (f) = fioo ky (v)dv and K, (—t/hy)
represents a smoothed version of the indicator function 1{¢ < 0}.

Step 3: Finally, we estimate § (7) by B (r, ,6) fort € ['L’l*, r;]

Remark 1 (Range of v and weight function). Note that the binary quantile
selection equation (3) implies

PWzl—-ve Wy 20, 12)
PW)y=1-v& Wy =0.

Hence, the range of v, [v;,v,] is chosen to be within the support of P (W) and
a natural choice of w (v) could be simply the uniform weight contained in the
support of P (W), which is used throughout our simulation studies, namely, w (v) =

1 {1 —pt+e<v<li —B—s}, where p = min,, P (w) and p = max,, P (w) and &
is some small positive value (e.g., upper/lower 5-10% percentiles of P(W)). In
practice, p and p can be based on some preliminary estimates.

Remark 2 (8 (7, p) for a given p). Note ,3(1,,0) is an estimator for B (z, p)
which solves

IIIJlEIll;lMl (bv P, 7:) i

where

My (b,p,T) = / M (by (v),p.T,v) @ (V)dv,
Vi

with

M (b,y (v),p.7,v) = E[I{V > v} pciz.v, o) (Yi = X(D) W'y () = 0] pwry 1 (0),

where pyry () () denotes the density of W’y (v) at ¢. Similar to the quantile regres-
sion analysis under misspecification (Angrist, Chernozhukov, and Fernandez-Val,
20006), B (z, p) satisfies

[ ED Y <X 0) = Crn )XWy ) = 0wy O v
v
— 1V > 1= POV (1{¥ <XB(x.0)} ~ Clx.1 ~P(W).p)

X Xfr; O.W)e (1= P(W)) |
:O,

where fy« (-,w) is the conditional density of Y* given W = w. Thus under a full
rank condition (Assumption 6) and some smoothness condition, 8 (7, p) is unique
and continuous and differentiable with respect to (z, p).
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Remark 3 (Computation of 3(r, p)). AB17’s estimators are known for their
computational simplicity. Given p, their rotated quantile regression can still
be implemented using linear programming. Similarly, our estimators offer the
same computational advantage. The convolution SQR introduced by Fernandes
et al. (2019) has the desirable property of maintaining the convexity of the
objective function, enabling the computation of the global optimal solution in
finite samples using standard local optimization methods. Moreover, the SQR
estimator outperforms standard quantile regression in terms of asymptotic mean
squared error (AMSE). He et al. (2023) demonstrates that SQR provides significant
computational advantages over standard quantile regression, especially for very
large samples and/or a large number of regressors, along with slightly superior
performance. Other versions of smoothed quantile regression have also been
explored by Horowitz (1998) (non-convex smoothing). Horowitz’s smoothing
approach has been widely used for various QR-related problems, such as Galvao
and Kato (2016), Kaplan and Sun (2017), and among others.

3. LARGE SAMPLE PROPERTIES

We now describe the large sample properties of our estimator. We make the
following assumptions:

Assumption 1. {X;, W;,D;,Y;}’_, is arandom sample generated from (1) and (2).

Assumption 2. (U, V) is jointly statistically independent of W and the bivariate
distribution of (U,V) is absolutely continuous with respect to the Lebesgue
measure with standard uniform marginals and rectangular support. We denote
its c.d.f as C*(u,v, py). The copula function C*(u,v,p) is twice continuously
differentiable with respect to p. X has a bounded support.°®

Write Y5 = W'y (V) and let p(w) = p(w;,w) denote the density of W and
also define the conditional density of (Y*, Yi") given W = w, by g(y;,ym|w) =
g (1, y2lw, w). And let fy+ (v, w) denote the marginal density of Y* given W = w.

Assumption 3. g(y;,y2|w) is continuously differentiable in (y;, y,) with positive
density on R2. In addition, g1, y2lwi,w) and p(wy,w) are (s; 4 3)th order contin-
uously differentiable with respect to w; and g(y;,y2|w) is (sy + D)th ((s; + 1) th)
order continuously differentiable with respect to y; (y2). The weight function,
w (v), is also (s; + 3)th order continuously differentiable in v and w (v) > 0 for
v e [vi, vl SSpmw)-

Assumption 4. (i) 8(7), y (v) and py are interior points of compact set B x I" x
o0, respectively, forany v € [v;,v,] and T € [t*, 7,/ ]; (i) ¥ (v) = (1 (v), ¥ (v)) such
that infve[v,,vu] lyi )] > 0.

Following Volgushev (2020), with a slight abuse of notation, let y (v) denote the
rescaled parameter y (v) / |y1 (v)].

®More generally, we can assume EX? < oo,p > 2 without requiring that X has bounded support.
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Assumption 5. The first stage SMSC 7 (-) satisfies the following asymptotic
linear representation:

1
POm-ym)=-0,"= Z(D l—v))zk< ,y(v)>W+ , (17172),

h

sup |7> v - 14 (V)| = p( ny)’
VE[V[,VM]
uniformly over v € [v;, v, ], where §,,, = (nh)~ 12 Inn+h*, k is sth order kernel such
that [ wWk(u)du =0 for j < s and [ wk(u)du is finite and nonzero for j = s. Q, is
defined in Horowitz (1992).

Assumption 6. E[1{V > v} fy«(X'b, W)XX'|W'y (v) = 0] is uniformly nonsin-
gular over (b,v) € B x [v;, v,] in that its minimum eigenvalue is bounded away from
some ¢y > 0.

Assumption 7. The kernel functions k; and k, are three times differentiable
with bounded support; k1, k» and their derivative functions are uniformly bounded;
k1 and k, are s;th and s»th order kernel functions: for some s; and s, > 2 and each
integer 1 <j; <sjand 1 <j, <s,,

) =0, ifji <si .
Wik (u)du = 1. CoT T i=1,2.
is finite, if j; = s;,
Define 8, = (nhy)~"2Inn + ' + h2, 8,0 = (nhd) ™ Inn+ k' + h2,8,5 =
(nhyho) " P Inn+ b} 452 S, = (nih3) ™2 Inn+ B 4 2.
Assumption 8. Bandwidth sequences satisfy (i) h* = o (n~"/?), and h\' + 13’ =
0 (n712); (i) 8uy.8y = 0(1) for j = 1,2,3 satisfy 8,y 8,0 = o (n~"/2), 8, b7 =

o(1), and (8,1 +8,,) 8pu = 0 (1).
Let

Ga(p) = Z/

5ed

(Y <X'B(v.p)} = C(5.v0)]ZIW'y (v) = 0]

2
X Py (0) H o (v) dv.
Assumption 9. py is the unique minimizer of G (p).

Assumption 10. i Gz (po) > 0.

Assumptions 1 and 2 describe the data generating mechanism. Assumption 3
provides some smoothness and boundedness conditions on the joint conditional
distribution of Y* and Y7 given the exogenous variables. The compactness condi-
tion in Assumption 4 is standard for extremum estimators. Regarding the binary
selection equation, it is well known that some normalization is required for
model identification (see, for example, Manski, 1975, 1985; Horowitz, 1992;
Kordas, 2006; Volgushev, 2020). Here, for notational convenience, we adopt the
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approach of Horowitz (1992), Kordas (2006), Manski (1975, 1985), and Volgushev
(2020). Assumption 5 states that the asymptotic linear representation properties are
satisfied by y (v). For the SMSC estimator y (v) proposed by Horowitz (1992),
Theorem 2.5 of Volgushev (2020) provides a set of sufficient conditions for
Assumption 5. Assumption 6 is the conditional full rank condition uniformly over
(b, v) to ensure that B (t, p) satisfies a uniformly asymptotic linear representation.
Assumptions 7 and 8 place some restrictions on the kernel function and the
bandwidth sequences. We consider a Gaussian kernel for k; and set s = 4,5, =
sp=2,andh=n""h; =n"",hy =n""2, then, for example, v =2/15,1/4 < v; <
13/45,v, = 1/3 will be some suitable choices of bandwidths. Assumption 9 states
the global identification condition for our moment-based estimator, similar to that
of AB17. The proposition in the first appendix essentially provides conditions
for global identification based on an infinite number of moment conditions.
The nonzero nature of %Gz (po) (full rankness) in Assumption 10 is the local
identification condition for py which is analogous to the Hessian form of the
information matrix in the maximum likelihood estimation and other extremum
estimators. In fact, Assumption 10 generally holds true since in the proofs of large
sample properties, it is shown that

d2 - Vu
262000 = > / [G3, (5.v) 0 (v av],
p b2
where
d
GZ,O (T, V) = %Gz (ﬁ (Tv pO) YV (V) » 00, Vs T) )
with

G2 (B(T.p),y (v),p,v.T)
=E[Di[1{Y: < XiB (z,p)} = C(z,v,0)] ZiIW]y () = O] pwr, ) (0).

We define some notations before presenting the main theorem. Let P; =
E(D;|W;) and

S(B(x.p) = E[ 1V > 1 = PAXXify- (XiB (2. p), Wlfy; 0. W (1= P
and

Ppoi (p,T) = 1{V; > 1 =P} [1{Y:i = X[ (z,p) <0} = C(z,1=P;, p)]
X frz (0, W Xiw (1 = P)),

and

Pp1: (0,7) = Qui (T, p) (Di — Pi) Wifys (0, W (1 = Py),
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where Qy; (t,p) = —0i1(p, 7,1 —Pi)Ql_lPi andfy; (-,w) is the conditional density
function of Y; given W =w and

d - -
Q](,O,T,V) = E|:8_VV1G1 (ﬁ (T,p),p,f,v, - W;?(V),Wl)] 5

with
Gi(b,p,T,v,W)
= E[Di (1 {Yi < Xl’b} - C(r,v,p)) W= (wl,ﬁ/)]p(wl,v?/)x(wl,ﬂ/) w,

ind i il / "
where X = x (Wl, W) such that (X’,Z’) = (Wl, W’) . We can then define

bpi (p.T) =S~ (B(T.0)) (dp0i (T, p) + dp1i (T.0)).

Furthermore, define

o, pi = ZDi [1{Y; =X/B(1j.p0)} — C(z;, 1 = P;, po) | Zi
Ged

X G (Tj, 1 = Pi)fy; (0, W) (1 — P),

and

Vu a
O1,pi 1= Z / 9 G2 (B (%> 00), v (), 0, v, 7)) Gap (T, V)i (0, ) @ (v) v,
ied

and

$rpi =Y 5 %G (B (5p0) .y (1= P po.Pit)

tieJ
X Gap (1, 1 = P)Q1 Ly, (D — P)) Wifi; (0, W (1 = Py),
where note that 8 (z, p9) = B (7). Finally, we can define
-1

bpi = Z/ (G5, (mv) o av] | (¢o.pi+ @1.pi+b2.pi)

T eJ
and
®pi (T) = dpi (0, T) + By (T, £0) Ppis
where
- -1 .=
_ aGl (T,,O) 8Gl (f’p)
:3;0 (T? p) - ( 8‘3 ) ap ’
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and
G (t,p) =
E[(l {Yi<XB(t.p)} - C(x,1=Pi,p)) 1{Vi>1 — P} Xify; O, W) (1 _Pi)]-

THEOREM 1. If Assumptions 1-10 hold, then (i) 0 is consistent for py and for
any t € [‘L’Z , ] and ﬂ (t ,0) is also consistent for B (t); (ii) furthermore, p and

ﬁ (r, ,0) have the asymptotic linear representation:

it (5= po) Z¢m+op<1>
and

Vi (B(w.p)-B®) = —% > s (040, (1),
i=1

uniformly in t € [tl ,T ] Consequently, p and ﬁ (1’ ,0) are asymptotically normal
with

i)~ VO E[0.8)
and

Vi (B(.5) = B®) =N (0.E[¢p (1) 8} ()]).-

Let 6y = (B (1), po), then 0 is consistent for 8y and jointly asymptotically normal
with

ﬁ(é —90) — 4N (0,E[¢ai () 5 (0)]).

where g (0) = (8} (0), 8};)

For the purpose of carrying out large-sample statistical inference for g (),
consistent estimates of the asymptotic variance and covariance matrix need to be
constructed. From the proof of the theorem, we can show that all the components
in the asymptotic variance can be consistently estimated by the sample analogue
replacing the true value of the parameters by their consistent sample analogues.
Specifically,

(i) Finite sample estimate of the influence function of y (v):

Bus ) = —0) (D~ (1— ) %k (Wf'i(”) W,
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where
~ W’ v
an h2 Z(D _(1_ ))k,< )}/Z(V)>

(i1) Finite sample estimate of the linear representation of ,3 (t,p):

Bupi (5.7) = 8," (B (x.9) ) (B (A7) + 1 (5.7) ).
where

5 (B(e.9)) = / 8B (2.5).7 Mo W)y,

with |

S.(B I ¥ X;B(x.p) =Y, Wiy
Sﬂ(ﬁ(r,ﬁ),ﬁ(\;)): ZD;‘X;’X;]Q( 'ﬂ(T ,0) )lq( IV(V))’

nh1h2 ; hz hl

R Vu X, Y
Ppoi (5, 7) = / D;X; |:K2 (—ﬂ (Thf ) )—C(t,v, ﬁ)}
Vi

1 Wiy
x —ki A w)dv,
h hy

and
¢ﬂ11 P, T / 01 (B, T, M)y (V) @ (v) v,

with

in(ﬁ,r,V):lZDiXiW{Kz (’M) o, p)} <w 20
n

h

h
i=1 2

(iii) Finite sample estimate of the influence function of p,

-1

Bupi = Z/ Gznp T,V a)(v)dv] (qgo,pi+¢;1,pi+$2,pi)v

reg
where
. d ~ /A~ . .
Gonp (T,v) = %GZn (/3 (t.0).y (V). p.v, t),
with

Gan (B (7,007 0, p.0.7)

1 XB(x.p) =Y\ WymY.,
= nhl D (KZ( h2 ) C(T,V, 10)) kl ( ]’ll )Zl
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(A;gn,p (t,v) involves ﬁp (t, p) which is given by

30,001\ 80m0(p.7)
Y p

ﬁp (Tvp) = (

where

Qno(pvt) :[ uQn()(,O,‘E,v)a)(V)dV,
Vi

with

: N XB(xr.p)=Y; L (W
QnO(pa T, V) = ; I:Z]Dle [KZ (%) — C(‘C,V,p)} h_]kl < 1;1/1(‘})) ,

and furthermore,

X/B(5.p)— Y, .
¢0p,: Z/ |: (%)—C(Tj,v,p)}

TEJ

_k (W/h AU )> Gonp (7,v) @ (v dv,
1

Vu a R R A
b1 pi = Z / I G T], 0),y (V),p,v, Tj) Gupi (5, 7)) Gonp (T, v) @ (V) v,
T eJ

and

~ J - A ~ ~
¢2,pi = Z 8)/’ GZ!’L (/3 (‘ij p) YV (V) » 05V, Tj) ¢nyi (V) Gzn,p (ij V) w (V) dv.
Ged

(iv) Finite sample estimate of the influence function of ,3 (r, ,6) :

énﬂi (T) = qgnﬂi (;5’ 'L’) + ,ép ('L’, 15) ‘i’npi-

Therefore, the asymptotic variance and covariance matrix of /§ (7: ,5) and p can be
consistently estimated by Y qb,,ﬂ, (1) ¢nﬁ1 (r) and % D 1¢n Li» Tespectively.

The plug-in method of estlmatmg asymptotic varlance involves kernel estima-
tion of the density and derivative functions, among other aspects. Alternatively,
given the asymptotic distributional characterization in the main theorem, inference
may also be conducted using bootstrap or subsampling methods, as suggested by
Politis, Romano, and Wolf (1999). For the unconditional distribution or quantile
function of the latent outcome Y*, we recommend using the systematic resampling-
based statistical inference methods developed by Chernozhukov, Fernandez-Val,
and Melly (2013) and Chernozhukov et al. (2020).
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4. SIMULATION STUDIES

In this section, we report the results of some Monte Carlo experiments to demon-
strate the finite sample performance of our estimator. In the simulations, we choose
the Gaussian copula and Frank copula with positive and negative correlations. In
the case of the Gaussian copula, we set the correlation coefficient py = 0.7 and
—0.7, respectively. For the Frank copula,

Cv.y) = ——In [1 — L expluln(1 — )1} {1 - explvingi - y)]}} :
In(1—y) Y
where we choose n = —In(1 — y) = 6 and —6, which correspond to 0.5141 and
—0.5141 for the Kendall’s tau, respectively.
We consider data generating processes (DGP) for both homoskedastic and het-
eroskedastic cases, including one homoskedastic design and two heteroskedastic
designs. The heteroskedastic models captures the nature of quantile regression

where both slope and intercept coefficients vary over quantiles.
DGP1: Homoskedastic model

Yi=Xi+X+ 1+ (U),
Y} =Z+05X, + X, + 7' (V),
D=1{y; >0}, Y, =Y;D,

where X; ~ X(Zl),Xz ~ U(0,1) and are mutually independent and the excluded
variable Z ~ N (0, 1) is independent of (X, X>). In this design, 8 () = B, (1) =
1,B3(t) = 1+ @' (r). DGP2: Heteroskedastic model

Yi=X0 ' ()+X(1+07 ' () +1+27 (),

* —1 —1 —1
Yi=Z+X (1 +0.5F; ! (V)) + X (1 +0.5F; ! (V)) +0.5F ()~ 1,
D=1{y; >0},Y, =YD,

where the distribution of X;, X5, and Z is the same as in the homoskedastic case.
And Fy; is the cdf of a -distributed random variable with three degrees of freedom.
In this design, B (t) = ®'(1),8,(r) = B3 (t) = 1 + &' (7). In both DGPs,
(U,V) are independent of all regressors (Xi,X», and Z) and follow either the
Gaussian copula C§ (-, -, £0.7) or the Frank copula C.(:, -, £6).

Based on the randomly generated samples, we calculate both the AB17 estima-
tors and our estimators to compare their performance under both homoskedastic
and heteroskedastic conditions. It is expected that the estimates of the quantile
coefficients B (r) will exhibit a large bias for AB17’s rotated quantile regression
even for large sample sizes, as the Probit model misspecifies the conditional
probability in the heteroskedastic scenario.

Before presenting our simulation results, we first describe the implementation
details of the estimation procedures.
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For AB17’s rotated QR (denoted by AB17):
1. For an one-parameter copula function C* (u, v, p), since for all (u,v) € (0, 1)?,
u—C*(u,1-v,p)=C"(u,v, — p).

Suppose the true conditional probability function follows the Probit model
in AB17, P(W) = & (W'6p), under our selection equation (2), the moment
condition for AB17’s estimator becomes

Pr(Y*<XgB()ID=1W=w)
=Pr(Y* <X'B@m Wy (V)>0W=w)
=Pr(Y*<XB(@m)IV>1-0(W6)W=w)
_ C(z,@(W6h), — po)
@ (Wbp)

Thus, pg would exhibit opposite signs for our estimators and the AB17 estima-
tors.

For our estimator (denoted by CZ):

1. Kernel functions: in estimating the binary quantile regression, a fourth-order
Gaussian kernel is used in SMSC estimator,

1
KO=20O+ 519,

where ® and ¢ are the standard normal cdf and pdf, respectively. k; (-) is
standard Gaussian density function. For the choice of k; (-), He et al. (2023)
discussed in detail the computation aspect of convolution SQR. In particular,
the smoothed objective function (11) can be explicitly expressed for several
commonly used kernel functions, for example, Gaussian kernel and Epanech-
nikov kernel. In this simulation study, we utilize the Gaussian kernel for k; (-),
specifically,
Gaussian kernel: k; (f) = ¢ (1), the resulting smoothed objective function is

M, (b,y,p,T,v)

1 & h Yi—Xb 1 w!
e (e () () oo (),
I’lhl i— 2 hz 2 hl

where MY (u) = (2/m)"?exp (—u?/2) + u(1 —2® (—u)).

2. Bandwidths: We set bandwidths according to a rule of thumb that satisfies
Assumption 8: b = 0.6xstd(W'y (v)) x n=*/'*, where y (v) is the initial MSC
estimates of ¥ (v); by = cxstd(W'y (v)) x n~''/49 (11/40=0.275) and h, =
n~'3. To save space, we only report the numerical results for the following
simulation designs: (i) Gaussian homoskedastic model (py = 0.7, ¢ = 1.2); (ii)
Gaussian heteroskedastic model (o9 = —0.7, ¢ = 1.2); and Frank heteroskedas-
tic model (py = —0.5141(Kendall’s tau),c = 1.2). The results for the above
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TABLE 1. Homoskedastic model: Gaussian copula (pg = 0.7), n = 1,000, c = 1.2

Bias SD

T Bi B B3 B1 B2 B3
CZ AB17 CZ AB17 CZ AB17 CZ AB17 CZ AB17 CZ ABI17

0.2 0.008 0.001 —0.008 —0.017 —0.062 0.003 0.106 0.037 0.297 0.205 0.252 0.167
0.3 0.006 —0.001 —0.004 —0.015 —0.049 0.004 0.094 0.034 0.253 0.183 0.208 0.144
0.4 0.006 —0.001 0.001 —0.010 —0.039 0.004 0.087 0.031 0.228 0.169 0.182 0.125
0.5 0.005 —0.001 0.002 —0.015 —0.028 0.008 0.082 0.031 0.223 0.164 0.164 0.117
0.6 0.005 —0.002 0.004 —0.011 —0.022 0.010 0.082 0.030 0.220 0.159 0.155 0.111
0.7 0.001 —0.003 0.008 —0.010 —0.013 0.010 0.084 0.031 0.220 0.163 0.149 0.107
0.8 —0.003 —0.004 0.008 —0.002 —0.006 0.007 0.089 0.033 0.236 0.169 0.151 0.110

Bias SD

CzZ AB17 CzZ AB17

p 0.024 0001 0.127 0.099

designs using other choices of bandwidth (c = 0.6, 1.8) will be presented in the
Supplementary Material correspondingly. Additional simulation results will be
available upon request from the authors.

3. Optimization algorithm: For the binary quantile regression, we solve the SMSC
using the Nelder—Mead algorithm. Since the SMSC is not globally convex, a
good initialization is crucial for ensuring global convergence. We initialize the
SMSC with Manski’s MSC estimator using a simulated annealing algorithm
with multiple starting points. Alternatively, the mixed-integer algorithm by
Florios and Skouras (2008) offers another suitable option. Second, to compute
B (t,p), we basically use the Quasi-Newton algorithm, as the corresponding
objective function is differentiable and convex. Finally, similar to Arellano and
Bonhomme (2017), p is obtained through grid search.

In estimating B(r,p), v; = max {0.1, 1 —Opw) (0.9)}, and v, =
min{0.9, 1 — Opw) (0.1)}, thus we are pooling over several quantiles such that
ve Jo= {f/j}jLzl, where V1 = v, ¥, = v, and ¥, — V1 = 0.05 forj=1,...,.L—1
and further let 7 = J for the estimate of p. We consider two sample sizes of
n = 1,000 and n = 2,000 and each is replicated 500 times.

We now report the performance of our estimator p and ,3 (z,p) forT =0.80,0.70,
0.60, 0.50, 0.40, 0.30, and 0.20 to demonstrate how well our estimation procedure
can recover the quantile coefficients at different quantile levels. In particular, we
report the bias (Bias) and standard deviation (SD) for both estimators.

Tables | and 2 present the simulation results for the Gaussian homoskedastic
designs, while Tables 3—6 display the results for the heteroskedastic designs with
both Gaussian and Frank copulas. In all scenarios, our estimator performs well.
When estimating the copula parameter 7, the biases appear relatively small, but the
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TABLE 2. Homoskedastic model: Gaussian copula (o9 = 0.7), n = 2,000, c = 1.2

Bias SD

T Bi B B3 B1 B2 B3
CZ AB17 CZ AB17 CZ AB17 CZ AB17 CZ AB17 CZ ABI17

0.2 0.001 —0.001 —0.002 —0.005 —0.027 0.004 0.073 0.026 0.200 0.143 0.170 0.113
0.3 0.000 —0.001 0.005 —0.004 —0.025 0.003 0.065 0.023 0.177 0.128 0.147 0.097
0.4 —0.000 —0.002 0.009 —0.003 —0.021 0.003  0.061 0.022 0.166 0.120 0.132 0.088
0.5 —0.001 —0.002 0.006 —0.000 —0.015 0.002 0.058 0.021 0.160 0.114 0.118 0.080
0.6 —0.002 —0.001 —0.000 0.000 —0.008 0.002 0.055 0.021 0.157 0.112 0.109 0.079
0.7 —0.003 —0.003 0.003 0.005 —0.006 0.002 0.056 0.022 0.159 0.112 0.104 0.077
0.8 —0.005 —0.003 0.007 0.006 —0.005 0.001  0.059 0.024 0.164 0.113 0.104 0.075

Bias SD

CzZ AB17 CzZ AB17

p 0011 0.002 0.089 0.070

TABLE 3. Heteroskedastic model: Gaussian copula (p9 = —0.7), n = 1,000,
c=1.2

Bias SD
T Bi B2 B3 Bi B B3

CZ AB17 CZ AB17 CZ ABl17 CZ AB17 CZ AB17 CZ AB17

0.2 0.002 0.038 —0.027 —0.066 0.047 —0.004 0.232 0.176 0.433 0435 0.276 0.276
0.3 —0.014 0.013 —0.041 —0.081 0.073 0.025 0.219 0.165 0430 0.424 0.279 0.270
04 —0.012 —0.011 —0.039 —0.095 0.089 0.050 0.216 0.161 0.444 0419 0.291 0.282
0.5 —0.015 —0.030 —0.024 —0.118 0.099 0.081 0.219 0.164 0.478 0.424 0.317 0.302
0.6 —0.009 —0.065 —0.030 —0.162 0.109 0.132 0.221 0.174 0.513 0.456 0.339 0.343
0.7 —0.013 —0.102 —0.031 —0.201 0.135 0.175 0.247 0.186 0.575 0.494 0.394 0.384
0.8 —0.007 —0.152 0.014 —0.288 0.129 0.263 0.296 0.212 0.703 0.619 0.468 0.508
Bias SD

Ccz AB17 CczZ AB17

p —0.022 —0.053 0.113 0.104

standard errors are quite large. This can be misleading due to the extreme nonlin-
earity inherent in the Frank copula. To provide a clearer understanding, we convert
the copula parameter to Kendall’s tau, which offers a more intuitive representation
of the copula structure, as Kendall’s tau is a concrete and intuitive measure of
dependence for any copula. The simulation results show that when the model does
not exhibit heteroskedasticity, both our estimator and the AB17 estimator have
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TABLE 4. Heteroskedastic model: Gaussian copula (o9 = —0.7), n = 2,000,
c=1.2

Bias SD

T Bi B2 B3 Bi B2 B3
CZ ABl17 CZ AB17 CZ ABI17 CZ AB17 CZ AB17 CZ ABI17

0.2 —0.013 0.033 —0.006 —0.044 0.028 0.006  0.167 0.123 0.320 0.295 0.200 0.191
03 —0.015 0.013 —0.006 —0.078 0.035 0.038  0.156 0.118 0.327 0.279 0.204 0.192
0.4 —0.009 —0.008 —0.008 —0.105 0.046 0.068  0.156 0.116 0.331 0.292 0.216 0.206
0.5 —0.008 —0.029 —0.005 —0.129 0.054 0.098  0.150 0.115 0.337 0.304 0.226 0.223
0.6 —0.011 —0.056 0.005 —0.168 0.059 0.137  0.157 0.120 0.351 0.334 0.239 0.252
0.7 —0.019 —0.088 0.009 —0.228 0.068 0.190 0.171 0.132 0.396 0.369 0.276 0.286
0.8 —0.025 —0.134 —0.017 —0.266 0.097 0.244 0208 0.148 0.493 0432 0.358 0.346

Bias SD

CZ AB17 CcZ AB17

p —0.012 —0.046 0.078 0.068

TABLE 5. Heteroskedastic model: Frank copula (pg = —0.5141 (Kendall’s tau)),
n=1,000,c=1.2

Bias SD

T Bi B2 B3 Bi B2 B3

CZ AB17 CZ AB17 CZ AB17 CZ AB17 CZ AB17 CZ ABI17
0.2 —0.022  0.039 —0.049 —0.069 0.062 0.010 0.223 0.181 0.437 0.401 0.257 0.263
0.3 —0.026 0.025 —0.049 —0.108 0.074 0.044 0.204 0.172 0.415 0.382 0.263 0.262
0.4 —0.038 0.009 —0.062 —0.161 0.100 0.086 0.202 0.170 0.433 0.390 0.295 0.285
0.5 —0.033 —0.016 —0.068 —0.211 0.117 0.126 0.213 0.176 0.468 0.419 0.335 0.311
0.6 —0.032 —0.048 —0.066 —0.252 0.134 0.181 0.229 0.178 0.549 0.447 0.404 0.346
0.7 —0.036 —0.084 —0.051 —0.329 0.159 0.252 0.258 0.189 0.654 0.541 0.485 0.432
0.8 —0.025 —0.127 —0.008 —0.384 0.165 0.314 0.323 0.231 0.809 0.699 0.569 0.556

Bias SD

CZ AB17 CZ ABl17

Kendall’s 7 —0.018 —0.046 0.107  0.080
o —0.822 —0.647 2.506 1.399

very small biases and standard deviations, with the AB17 estimator’s bias being
nearly nonexistent and its standard deviation smaller than ours.

Similarly, our estimator continues to perform well, for the heteroskedastic
designs, with the exception of the intercept coefficients when the sample size n is
small. As the sample size increases, the biases are nearly eliminated, accompanied
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TABLE 6. Heteroskedastic model: Frank copula (pg = —0.5141 (Kendall’s tau)),
n=2,000,c=12

Bias SD

T Bi B2 B3 Bi B2 B3

CZ AB17 CZ AB17 CZ AB17 CZ AB17 CZ AB17 CZ ABI17
02  —0.008 0034 0007 —0.062 0.020 0.016 0.149 0.123 0.290 0.278 0.180 0.183
03  —0.012 0.022 —0.001 —0.085 0.033 0.043 0.141 0.117 0281 0271 0.178 0.186
04  —00l14 0008 0001 —0.120 0.041 0.076 0.142 0.115 0.291 0.280 0.192 0.200
05  —0.011 —0.017 —0.001 —0.165 0.050 0.120 0.146 0.118 0.326 0312 0215 0.227
06  —0.006 —0.050 —0.002 —0.212 0.056 0.170 0.158 0.124 0.366 0.338 0.250 0.266
07  —0.004 —0.086 —0.018 —0.263 0.079 0.216 0.185 0.132 0.432 0398 0.312 0.322
08  —0.010 —0.127 —0.012 —0.326 0.104 0.269 0.227 0.156 0.590 0.491 0.394 0.391

Bias SD

CZ AB17 CZ AB17

Kendall’s 7 —0.011 —0.044 0.067 0.057
o —0.381 —0.707 1.366 0.984

by small standard deviations. However, the biases for AB17’s estimator remain
unchanged even when the sample size increases to 2,000. The simulation results
in the supplement indicate that adjusting the bandwidth selection within a certain
range does not affect the estimation results significantly.

5. EMPIRICAL ILLUSTRATION

We next apply our estimation method to study female wages in the US using a
subset of the GSS data for women in the US for the years 2006, 2008, 2010, and
2012. Specifically, we use a randomly generated sample of 1,500 observations and
estimate the model accordingly.

In this example, all the observations are female. We assume that the hourly
wage is a function of education, age, and marital status, whereas the likelihood of
working (the selection equation) is a function of the number of children at home (an
excluded variable) and the three included variables in the wage equation. Table 7
reports the summary statistics of the sample. We estimate the conditional quantile
function of women’s latent wages using both AB17’s quantile selection regression
and our approach.

In this study, the conditional probability of labor participation follows a Probit
model for AB17’s selection equation. For our approach, we adopt a slightly
different scale normalization in the estimation of the binary quantile selection
equation. Specifically, the coefficients in the selection equation are standardized to
have unit length, ensuring that ||y (v)|| = 1 for all v, thereby circumventing the need
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TABLE 7. Summary statistics

Variable No. of obs. Mean SD Min Max
log-wage (observed) 1,500 (1111) 1.9851 0.7447 —2.5771 5.6649
age 1,500 41.5427 12.1925 18 65
edu (edu>0) 1,495 13.7010 3.0842 1 20
Married 1,500 0.4960 0.5002 0

No. of kids 1,500 0.8573 1.1755 0 8

to ascertain the sign of y; (v) in advance. The selection of bandwidths and other
computational techniques employed in the estimation procedure are identical to
those used in the preceding simulations, namely, = 0.6xstd(W'y (v)) x n=%/15,
hy = 1.2xstd1W’y () x n=%27 and hy = n~'3; 7 = max {0.1, 1 — Qpw) (0.9)},
and 7, =min {0.9,1 — Qpw) (0.1 }.

Following AB17, the unconditional cdf of the latent wage may be estimated as
a discretized version of

n 1
Fr) = %Z/O Hxip o =v}ar.
i=1

The quantile of the latent wage is then obtained as F v+ after applying a monotone
rearrangement. Chernozhukov et al. (2013) and Chernozhukov et al. (2020)
proposed a systematic treatment for the statistical inference of the counterfactual
distribution or quantile function of the latent outcome, which can be readily applied
to our model.” Finally, the empirical results for both Gaussian and Frank copula
functions are reported below to address robustness concerns.

We first examine the results of the Gaussian copula model. Regarding the
copula estimates, we obtain a Spearman’s rank correlation (implied by the copula
estimate) of 0.756. In contrast, Arellano and Bonhomme (2017) reports a rank
correlation of —0.38, which potentially indicates smaller selectivity for women.
We then discuss the estimation of the unconditional quantile function, as illustrated
in Figure 1. Specifically, Figure 1a presents the result from the Gaussian copula
model and Figure 1b shows the result obtained from the Frank copula model. Both
models predict a positive selection for females; however, our model indicates a
more pronounced selection bias. This is evident as our unconditional quantile
curve of the latent log-wage (blue dashed line) is positioned significantly lower
than the observed wage quantile curve (yellow solid line), compared to the
unconditional quantile curve predicted by AB17’s model (red solid line). This
pattern remains robust even when we switch to the Frank copula function. The

7In this version, we did not incorporate and report the statistical inference for the distribution or quantile function of
Y
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(a) Gaussian copula (b) Frank copula

---cz ---cz

35} —AB17 | 3857 —AB17 I
No correction No correction
T4 . 4

log-wage

05 e 05 ey
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
quantile 7 quantile 7

FI1GURE 1. Quantile function of log-wage for female after no, AB17 and our (CZ) correction with
Gaussian and Frank copula.

correlation parameters, Kendall’s 7 for the Frank copula are —0.25 for the AB17’s
model and 0.484 for our model.

6. CONCLUSION

In this article, we have considered semiparametric estimation of the quantile
regression model subject to binary quantile sample selection, based on local
moment conditions. Compared with Arellano and Bonhomme (2017), we extend
the parametric selection equation to semiparametric quantile selection equation
and provide a more coherent framework that allows for a general form of hetero-
geneity for both equations. We derive the large sample properties of our estimator,
which performs comparably well in finite samples, especially in heteroskedastic
cases where AB17’s rotated quantile regression suffers from relatively large biases.
We also apply our model and estimator to study the wage distribution among
women using a randomly simulated sample from the U.S. GSS. The major finding
is that there exists a significant positive selection among women in the US, which
is notably more severe than the model prediction by AB17.

One important issue is the presence of endogeneity and censoring in the outcome
equation. It is possible to extend the analysis in Arellano and Bonhomme (2017),
Chernozhukov and Hansen (2006), Chen (2018), Chen and Wang (2023), and this
article. It is an interesting topic for future research.
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APPENDICES
~ ~ /
Notations: Throughout the proofs, we use dj; to denote dim (W), where W = (Wl, w’ ) ;
y; represents the jth component of parameter vector y. We use Bp (t,p) and B,op (t,p) to
32

denote %3(‘(,/)) and 37 A(r,p) and similarly Cy (7, v, p) and Cpp (7,v, p) are used for

2 .
%C(r,v, p) and %C(t,v,p); and 8,y = (nh) =2 Inn+ K.

Appendix A: Identification

In this appendix, we show the point identification of 8 () and pg for all T € (0, 1).
Assumption ID.1. {X;, W;,D;,Y, i};'z 1 is a random sample generated from (1) and (2).

Assumption ID.2. (U,V) is jointly statistically independent of W and the bivariate
distribution of (U, V) is absolutely continuous with respect to the Lebesgue measure with
standard uniform marginals and rectangular support. We denote its cdf as C* (u, v, pg). The
conditional distribution Fy« (y,x) of Y* given X = x and its inverse x'8 (1) are strictly
increasing for any given x. In addition, C* (u,v, pg) is strictly increasing in u and v.

Assumption ID.3. For u,it € (0,1) and p € (—1,1), C* (u,v, pg) = C* (&1, v, p) for all
v e (0,1), if and only if u =z and p = py.

Assumption ID.4. Let pyr,, () denote the pdf of W'y (v), E(D1{Wy (v) =0} X'X) is
of full rank for all v € (0, 1) such that PW'y(v) ) > 0.

Assumption ID.3 is the key identification condition that conveys our identification
strategy, which, in spirit, follows the common approach used for nonlinear regression
models.

PROPOSITION. Let the Assumptions ID.1—4 hold, and suppose y (v)s are identified for all
v € (0, 1) such that Pwy ) (0) >0, then B (t) and pg are identified for all T € (0, 1).

Proof. We define I (7, b, p) and by the Assumptions ID.1-2, we have
I(z,b,p)

= /VME[I {Wy () =0}E(D1{Y <X'b}IX,Wy (v) =0)—(1 —v)C(f,v,p)]2dv
Vi

Vu
= / (1 —v)szry(V) (0) (C(Fy= (X'b,X),v. po) —C(r,v,p))zdv.
Vi

It is straightforward to show that I (z, 8 (7), pg) = 0. Now suppose I (t,b, p) = 0 for some
(b, p) # (B (7)), po), then for any v such that py,, () (0) > 0,

C(Fy* (X'b,X),v,p0) = C(t,v.p)
thus

X'b=X'B(r) and p = py
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due to Assumption ID.3. Finally, identification follows from the full rank condition in
Assumption ID.4. (]

Appendix B: Large Sample Properties

For the convenience of readers, we restate the Lemma A1 in Carroll et al. (1997) which is
used in the proof of two following lemmas:

LEMMA AO. Let C and D be compact sets in RY and RP, and let f (x,0) be a continuous
Sfunction in 0 € C and x € D. Assume that 0 (x) € C is continuous in x € D and is the unique
maximizer of f (x,60). Let 0, (x) € C be a maximizer of f;, (x,0). If

sup  fu(x,0) —f (x,0)| = 0,
0eC,xeD

then

sup On (x) —é(x) H — 0,

xeD
asn— oQ.

We now present the following two lemmas, which are useful for proving the main
theorem.

LeEMMA Al. If Assumptions 1-9 are satisfied,
(a). B (z, p) is uniquely identified for all (z, p) € [1:]*, r[f] X 0, and uniformly over (t, p) €

[fl ] xe

s _sup [fr.p)=p e =op (1. 1)
te[tf, ] PEC
(b).

R 1 &

V(B —pa.p)= D+ (1, (@2)
where
bpi (0.7) =SB (1.0) [dp0i (p.T) + dp1: (0.T)].
with

$poi (. 1) = Di[L{Y; = X[B (x.p) < 0} = C(x, 1= Pi, )| Xiffys (0. Wp)w (1 = Py),
$p1i (0.7) = Q1 (7. p) (D = P fy; (0. W Wiw (1 = Py),

and

50) = [ E[1Vi > WX G0 WOIW, () = O]y ) O )
v

= E[1{Vi > 1= POXiX/fi- ()b Wofy; Q. Wp (1= Py,
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where Q1;(t,p) = —01(p, 7,1 —Pl-)Ql__IP, and P; = E (Dj|W;) and fy«(-,w) denotes the
density of Y* given W = w; Y;‘ =Wy (V) and fy; (-,w) denotes the conditional density
Sfunction of Y;‘ given W =w, and

9 .
Ql(ps T,V) :E[WGl(ﬁ ('C,,O),p,f,v, _W,/V(V)v Wl)}s
and let x = x (w1, w)
G1(b,p,t,v,wi, W) = E[D; (1{Y; < X;b} — C(z,v,p)) IW = (w1, W) ] p(w, W)x (wi, W) w'.

For the convenience of presenting Lemma 2, we also define
Gy (t,p)
=E[1(V; > 1= P} (1{Yi = X[B (1.0} = C (2.1 = Piup)) Xfi; O WD (1 = P
and

A Vu
QnO(P’T) = / Qno(p,r,v)w(v)dv,
Vi

with
. 1< X B(x,p)—Y; 1 VAZ0))
Ono(p,T,v) = 0 ;Di |:K2 (lhz —C(t,v,p) Xiakl l/’l] .

We further define Bp (t,p) and ﬁpp (z,p) by

~ -1
A b , a )
Bo (r,p)z( Q”g;p T)) Q”g;p 23
~ —1 ~ ~
A a n s 82 n ) A 82 n ’ o
ﬂpp<r,p>=( e ’)) ( COLT 4 By ) o B, (r,p)>.

LEmMMA A2. If Assumptions 1-9 are satisfied, then uniformly over (t,p) € [rl*, (o ] X 0

Bp (x.0) = By (v.9) = Op (bny + (ahi )~ nn+ B 17 ). (@3)
and

~ 3 —-1/2 51 5
Bop(0.0) = Bop(e.0) = Op 8y + (nhih3) "I+ B! +43 ). (a.4)

where by differentiating Gy (t, p) with respect to p twice,

- -1 -
(3G (7,p) G (7,p)
,3,0 (t,p) = ( Y ) p s
- —1 2~ 2~
G (z,p) 0“Gy(t,p) 0°Gy (7, p)
ﬁpp(fap) = (187/3> (gp +,3p (t,p0) Wﬁp (Tvp)) .
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Proof of Lemma Al. To prove (a). Following the standard arguments for the quantile
regression, the full rank Assumption 6 ensures that for any given t € [rl*, r,f] and p € 0,
f My (b,y (v),p,T,v)w(v)dv is continuous in b with an the unique minimizer 8 (t, p).

Define the class of functions

Fi= [m(D, Y, W:hy,ho,b,y, p,7,v): hi,hy € R,
beByeGpeot.ve [t 1] x [t }
where

m(D,Y,W;hy,hp,b,y,p,T,v)

D (Wy\ [ u—(Y—X'b)
=5k1< I )/ [PC(e,v, p) @) = pc(z,v, p) (+X'D) | ks <hz du

—00

W/V o0 /
=Dk I (o (e,v,p) (Y =X'b+5hy) = pee,v, p) (Y +5h2) | ka (s) ds.
—00

First, note that
W/
fK={k1< hy> “y €G,hy eR+}
1
is Euclidean for the constant envelope (Example 2.10, Pakes and Pollard, 1989). Next,

following Lemma 6 in Chetverikov, Larsen, and Palmer (2016), shows that

Fo={pv(Y=X'b—s)—py (Y —5):s€RbeB,ve (01},

1/2
is VC subgragh with a bounded envelope function (||X ||2supbeB ||b||2) as X has a

bounded support and thus F, is an Euclidean class with a bounded envelope (Lemma 2.12,
Pakes and Pollard, 1989), and by Corollary 21 in Nolan and Pollard (1987) and Lemma 2.14
in Pakes and Pollard (1989), we can deduce that F7 is Euclidean with a bounded envelope.
Consequently, use the uniform law of large numbers in Pollard (1995) (Example 2 on page
273), we can deduce that

My (b,y, p,T,v) =My (b,y,p,T,v) = Op ((nh1)_1/2 lnn), (a.5)
uniformly over (b, y, p, 7,v), where8

My1 by, p,T,v)

1 & [®
= nhlh2 Z/ D[pc(f,v’p) (M) _pC(T,V,p) (M+X/b)]
=177

—(Y=X'b w’
xk2<”()>k1< y)du
Iy I

1 & Wy\ [
= o ZDkl ( )/ [oc(r,v,p) (Y =X'b+5h2) — peir, v, py (Y +5h2) | ko (5)ds,
i=1

hy —00

8The definition of M, is slightly different from the original definition in the main body of the article. However, they
are equivalent in the sense that pc(z, ¢, p) (Y + sh2) does not involve the parameter b, and thus can be suppressed.
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and

My by, p,T,v) =E[My1 by, p,T,0)].

In addition, under Assumptions 3 and 7, we have
E[Mpyy (b.y,p.T,v)]

*© ’ 1 W'y
= E|Dpc(z,v,p) (Y —X b+sh2)ak1 T ko (s)ds

—0o0
o0 1 W/

—/ E|Dpc(roy. o) (Y +5hy) —ki [ —2 ) |k (s)ds
—0 hy hy
o0

= / E[Dpc(p,z,v) (Y = X'b+shy) W'y =0]py,, (0)kz (s)ds (a.6)
—0o0

o
/ E[Dpc(p,z,v) (Y + ) W'y = 0]p,y, (0)ky (s)ds + O(hy")
—0o0
o0
=/ E[Dpc(p,z,v) (Y =X'b) IW'y =0]pyr, (0)ka (s) ds
—00

o0
- f E[Dpc(p,z,v) V) IW'y =0]pyry (0)ka (s)ds+ O(h}' +h3?),

—0oQ
where py,/,, (0) = p (—W'y,W). Let
MY (b,y,p.7.v) = E[Dpc(r,v, p) (Y = X'b) W'y = 0] pyry, (0)
—E[Dpc(e,v,p) V) IW'y = 0] pyry (0),
with
M) by v).p.7.7)

=E[H{V > v}oc(r,v,p) (Y = X'B) W'y (v) = 0] pyry, (1) (0)
—E[1{V >} pc(z,v, p) MWy (V) = 0] pyry, (1) (0).

Then, (a.5) and (a.6), together with Assumption 5, imply that

Vu
/ M1 (b,7 (), p.7,v) 0 (V) dy
Vi

Vu
= f M by )9, TV @ W) dv+ Op (S + ()™ 2 inn ! + 1),
1

uniformly in (b, p, 7). And fv‘;“ M? b,y (v),p,t,v)® (v)dv is continuous in b with a unique
minimizer 8 (z, p) as all terms involving with pc(¢,y, ) (¥) are independent of b. Thus, an
application of the standard argument for consistency (e.g., Newey and McFadden, 1994)
implies

B(z,p)—B(t,p) =0p(1).
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Furthermore, by Lemma A0 (Lemma Al in Carroll et al., 1997), we obtain the uniform

consistency
sup _sup 6@.0) =B @) =0p (D).
ez, 7] Pee

Next, we proceed to prove (b), the asymptotic linearity (a.2). The first-order condition of
the objective function (10) with respect to § (7, o), obtains the estimating equation,

n Vu X/A _Yi W/A
> [oxi(x BPEDZI) e ) 2k (S ) oy =0,
n=J, hy hy hy

i=1
(a.7)

Then, since the above uniform consistency result of ﬁ (t,p), a mean-value expansion of
(a.7) with respect to B (z, p) at B (z, p), yields

B (z.p)— B (T, p) = =Sy (b* (z,0))On(B (z, p). p, ),

where b* (z, p) lies on the line segment between ﬁ (t,p) and B (7, p) and

Su(b) = / " 55,9 ) ) d,

1

and

0u(b. 1) = / " 0n (.7 (). p. TV () d,
vi

where
1 o 1 Xb—Y; Wiy
Spb,y) =~ DiX;X'——ky | - k =,
n(b,y) n; iy 2( Iy 1 hy
and

Xib— 1 Wy
On(b,y,p,T,v) = ZDX<K2< T >—C(r,v,p))hlk1(hl )

Then, similar to (a.5) and (a.6), the following class of functions:
Fo={s(D,Y,W;h1,hp,b,y): hj,hy e RT,be By € G},
with
X'b-Y w’
s(D,Y, W:hy,hy,b,y) =DXX/k2< : >k1 ( : V>.
2 1

Thus similar to F7, 77 is Euclidean with a bounded envelope function. Hence, using the
uniform law of large numbers in Pollard (1995), under Assumptions 3 and 7, we can show
that uniformly in (b, y)

Su(b.y) =S(b.y) +0p ((nhlhz)_l/z Inn+ /! + h§2> , (a.8)
where
S(b,y) = E[DiXiXfy=(X;b, Wp)|Wjy = 0] pyy,, (0), (a.9)
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where PW'y (0) denotes the density of W’y at 0. Using (a.8), (a.9), (a.1) of Lemma A1, and
Assumption 5,

Sn(b* (T,0),7 () =SB (r,p),y () = Su(B* (z,p), 7 () = SB* (z,p), 7 (v))
+8B* (r,0),7 (W) =SB (z,0),y ()
=op (1),

uniformly over (p, t,v). Thus
S (0" (2.0)) = S(B (x.p) +0p (1),

uniformly over (p, 7).
Next, we consider Q, (B (z, p), p, T), where

Onlb.p.7) = f On(p b 7). TV (V) dv,
v

/ 4
—Y 1 (W
—Crv.p) | —k [ =2 ).

1 o X!b
Qn(psbvyvrsv)ZEZDin [Kz( !
i=1

Note that O, (8 (z, p), p, T) can be further decomposed into four components after a Taylor
expansion with respect to y at y (v),

with

Qn(ﬂ (tvp)vps t) = Qno(pvr)—’_in(pvr)—’—an(le 1")+Qn3(pst)s

where

0u0(p7) = f 1 00, T. V)0 () d,

and

01 (o) = / IV" 01 (9 7.9) (7 0) — ¥ ))& () v,
and

O (p.7) = / [ 0 (p. 7,0 () dv,

and

03(p7) = / 1 03 (P, T, V)0 W) d,

with

1B (.0 = Wir @)
0n0(p.T,v) = ZDX |:K2< ) C(t,v, ,O)i| —ki ( B v >,
I | (XiB@ P Y Wiy @)
in (p,‘[’V) = ; lzleleWl [Kz (]/,2) C(T v, ,0)1| 1 < l’ll )7
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1 ¢ XiB(t.p)~Y;
On(p V) =~ Y DiXi [Kz (lhz) —C(r,v,p)}

i=1
Wiy (v)
hy

o k//

* ) (W[ () = Wiy ()%,

and

1 X[B(z,p)~Yi
0u3(p,T.v) =~ > DiXi [Kz (hz) - C<r,v,p)}

i=1

o Wiv 0) . /
h4k”( - )(W{y(v)—wiy(v)ﬁ,

where y (v) is on the line segment between y (v) and y (v).

i. First, we consider Q,,0(p, 7): Note that Y* = W’y (V), and let F Y; (y2,w) denote the
cdf of Y; evaluated at y;, given W = w, then we have F’ Y: Wy ),w)=vorw'y(v)=

F;;l (v,w), with Pw) := E[DIW=w]=1— FYE‘ (0,w). With a change of variable

Wiy
%() =uy, 0rv=Fy§(h1u1,W,~), we have

X/
Ono(p,7) = Z/ [ ( ﬁ(thf) >_C(TvFY§(hlulei)sp):|Xz

x ko (ur) e (Fyg (hiaer, W) ) frg (haaan, W)
Let
qo(D, Y, W:hy, ha, b, p, T)
_/ D; [Kz (Xb Y>_C(‘[,Fy§(h1u1,Wi)yp):|

uy,
xXiky (ur) @ (Fy; (hiu, Wi))fyg (hyuy, W)
and also note that
ho
XiB(x.p)-Y;
h
=/ P ko(u)du =/1{Yi <X/B(z,p) — houz } ko (u2)dur.
—00

Define
F3={qo(D.Y,W:h1,hy.b,p,7): hi,hy e R*,be B.p € 0.7 € [1]. 7]},
and

Fi= {qo(D, Y,W;p,t1):p€o,T€ [1:1*,1:;]},
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and

n

- 1
0n0(p, ) =~ S qo(Di, ¥is Wis p, ),
i=1

where
q0(D,Y,W; p,7) = D[1{Y =X'B (z,p) <0} = C(z,1 =P, p)] fr; (O, W)Xw (1 = P).

Similar to /| and F,, we can show JF3 and }'3* are Euclidean with a bounded
envelope. Then, by Theorem 4.4 in Pollard (1989), we obtain uniformly over (p, 7)

(0n0(p. ™) = Q0. 0) = (Qu0 (0. T) = Qo (p,0)) = 0 (™12, (a.10)
where Qo (p,7) = EQno(p,T) and Q_o(p,r) = EQ,0(p,7) = 0. Furthermore, using

Assumption 8, we have Qy(p,7) — Qo(p,7) = O (h}' +h3}) =0 (nfl/z) uniformly

in (p, 7). Hence Q,0(p,7) = Qno(p, 7) + 0p (n~/?) uniformly over (p, 7).
ii. Now we consider Q1 (p, 7). Note that

I ¥
On(p == [ OmpT (7 )=y M) dr,

i=1V
where

1 & ~ XB(t,p)—Y; 1 Wiy ()
n ,T, = - Dl'Xl'Wi K B -C ¥ *k/ : .
O (p.T.v) n; [2( T ) (rvp)]h%« o )
Note that

Gi(b,p,T,v,w1, W)
=E[D; (1{Y; <X/b} — C(x,v,p)) W = (w1, W) | p(w1, W)x (w1, W) W

Similar to (a.5), we can show that

~12
0ui (0, 7,9) = Q1 (0, T, V) + 0 ((nh?) Inn+ ! +h§2> :

where

d

Ql(pvrsv) =FE |:87G1 (;3 (Ty p)wos T,v, — Wl’f(vl Wl)] 5
w1

which, together with Assumptions 5 and 8, implies

O (p.T.v) (P ) —y ()
= 01(p. 7. (7 1) =y (1) +o0p (n™12)

1 < _ 1 (Wym) -~ _
:—H;Ql(p,r,V)Qvl(D,-—(l—v))hk(h)Wi-i-op(n ‘/2).
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Furthermore, similar to (a.10) in (i), using Assumption 8, we can show that uniformly
over (7, p),

(W{V Q)

I3 [Toiee e -0 k(2

i=1"

) Wiw (v)dv

1< .
= =3 01 (r.0) (D = P) Wify; 0. W (1= P+ O (") +0, (n™'12)

i=1

1 n
== 3 a1 (D Wip.0)+0p (n'12)),

i=1
where 01 (r, p) = —Qi(p, 7,1 = PNOT ..
iii. We now consider Q2 (p, T) and Q3 (p, T) and show they are negligible. Note that

dy,

On(p TV =Y (PO =y M), M=y ™),

Jik

1 n
X~ @i (T.0),y (), p,7,V),

i=1

and
dy,

0T =Y (T =1 1);(7 )=y ), (7 1) =y ),
Jok,1

1 n
X~ @i (B (T.0),7 (), p.T.V),

i=1

where 7 (v) lies on the line segment between  (v) and y (v) and

Xb—Y; L (Wi~ -
@ik (b, v, p,7,v) =D; | K3 I —C(z,v,0) Xih?kl — | WiiWi,
1

h
and
Xb—Y, L, (Wiy\- ~ -
@ik (b, v, p,T,v) = Di | K2 n —C(z,v,p) Xihjkl Iy Wi Wi Wi
1

Again similar to the arguments in (i), we can show that uniformly over (p, 7,v),
1 n
=2 BB (T.0).y ().p.T.V)

i=1

= g3 (B (0.0).7 (),p.7.9) +Op (i /m) P 1nn)

and

1 n
=2 BB (T.0).7 (). p.7.7)

i=1

= Eq3ja(B (7.0). 7.9, 7.0 y=p ) + Op ((tn /m) ' Inn).
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where

Dik (b, v, p, T V) = h Gy by, T V),

and

@i (b, p. T v) = by gy (b, v, p. T, 0).

On the other hand, since uniformly over (p, 7,v),

qullk(ﬂ (T! 10)’ 14 (V), P, T, V)

92 L
:E[az—WlGl (/3 (T.p),p,T,v, — Wiy (v),Wi)] +0(hy' +13),

and

Eqsiu(B (T, 0), 7,0, TV |y=5)

93 L -
:E|:83w1 Gy (ﬂ (T.p),p.T,v, — Wiy (v),W,')i| +0(h“;1 _|_h§2).

Therefore,

1< 9? - ,
;Zqzl]k(ﬁ (Tvp)sy (v)’pvrvv) :E|:827\/VIGI (/3 (t’p)vpvtvv’ _Wl/); (V)!Wi)]
i=1

+0 (h‘“ TH2 4 (nh5>7]/2 lnn)
P 1 2 1 ’

and

3

1 n 3 o .
;Zq&]kl(ﬁ (77)0)7)/(")”0, f,V) ZE[BTVVIGI (ﬁ (‘E,p),p,‘[,v, _Wl/]/ (V)7Wi>]
i=1

S1 52 7\ "1/?
+0p (0 +1 1%+ (n])“inn ).
Consequently, by Assumption 8, we have uniformly over (7, p),
—-1/2
On2 ('07 T) = Op <65y + 83}, (I’lh?) lnn) =0p (n—l/2)7
and
3,83 7\~1/? —12
0n3(p,7) =0, Sny +5ny (nhl) Inn) =o, (n )
Finally, combining the above analysis (i)—(iii), we obtain uniformly in (z,p) €
[7/". 7] xe.
B(z.p)—B(x.p)
_ 1 _
= =571 B(0.T)~ Y (@0 (D Yi Wi p. 1) +41 (D Wiz p.7) +0p (n712)).
i=1

(b) is concluded, if denote ¢go; (0,7) = qo (D;, Yi, Wis p, 7) and ¢gy1; (0, T) = q1(D;, Wis
05 T). O
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Proof of Lemma A2. Given the uniform consistency of B (t,p) and y (v), by differen-
tiating the estimating equation for § (z, p) with respect to p, we obtain

X/ B —-Y; 11%87 .
Z/ DiXiX[ 7 (M) ]k1< '”V))w(wv B (x.0)
ha hy hy

(a.11)

1 [ 1 (Wyom
== Z/ DiCp (t,v,0)Xi—ki | ——— Jo () adv,
n= Ju hy h
with probability approaching one when sample size increases to infinity. Therefore, we have
Bo @.0) =S4, (B@.0)) Cuap (0,
where

Sndp (/§ (z, P))
=fvusn (B(r,p),ﬁ(v))ww)dv
Vi

X'B —Y; 1148,
72/ DXX{ 2( lﬂ(f,p) t)kl( ly(V)>a)(V)dv,
hihy hy hy

and

1 n Vu 1 W/); (V)
Ondp ()=~ / DiX;Cp (r.v.p) —ky | — ® (v)dv.
ni v h n

In the proof of the Lemma A1, we’ve shown that uniformly over (z,v, p),

Su(B@.p. 7)) =S (B.p). 7)) =0p (k)™ Pinn-+ iyl +43).
Thus, together with Assumption 5 and the (a.1) of Lemma A1, we have
Sudp ((B(T.))) = Sap (B .00 +Op (8 + (w1 )1+ 1}) +1?),
and similarly
Qudp (P) = Qup(P)+Op (Sny + ()2 I+ k1),
where
Sap(B (x.p) = E (Difys (XiB (.0, Wi) 0 (1 = P fyr; (0. W) XiX;).
and
Qup(p) = E(DiCp (r.1= Py p)oo(1 = Pi) fyy O.W X;).

and

3G (z,p) )1 0G1 (r.p).

Sgp (B(T.0)Qdp(p) = ( 9 9
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Thus
By (2.0) = Bp (.0 = Op (S + Gihi ) ™2 inm+ 1! 447

Next, differentiating equation (a.11) with respect to p again, we obtain

Ies (Y 1 (XB@p =Y\ 1 (WP 5
[;f D’/«zk2<hz W\ T e P )

(a.12)

I e 1, (Yi=XB@o) /o, 21 (WP
+n;/;[ Di%kZ (hz (X,',Bp(l',p)) Xiakl I w)dv

1 [ 1L (Wrw
= 72/ D;Cpp (t,v,p) X;—ki @ (v)dv.
n= h hy

Thus,

Boo (v.0) = Sy, (B @.0)) Quaap (B (.02 0).
where

Onddp ((ﬁ (fsp)),p> = On2ddp (3 (f,p)) — Onlddp (0),
with

Onlddp (/5 (z, p))

I e 1, (Yi=XB@p) /. 2.1 (WP
_ 2 D—k | i) (e , X;—k ! dv,
Vl;/w 2 2( I (XiBo (2. ) i = Jemdy

and

1 n Vu 1 W/)//\ (v)
Onzddp (P) == / DiCpp (t,v,p) —ki [ = X (v)dv.
n hy hy

Then similar to the above proof of Bp (z,p) — Bp (7, p), it can be shown uniformly over
(T.p),

Outadp (B (7.0)) = Q1aap (B (7.0 + Op (S + (ahy 1)~ 2 mn-+ 131 + 13 )
and

Qu2dap (0) = Qaddp () +Op 8y + (i)™ P+ 1),

where

Otadp (B (w.p)) = E (Difn (XiB (1.0, Wi) (XiBp (7. ) (1 = P fy; O W) Xi ).
and

Q2idp () = E(DiCpp (.1 = Piup) oo (1 =P fy; 0. W)X;),

where fy. (t,w) = dfy (1,w) /8t
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Consequently, we obtain

Bop (. 0) = Bpo (.9) = Op Sy + (i) ™2 Inn - bt 4137 ).

Proof of Theorem 1. Recall that

p = argminG ,
P gpeg 21 (0)

where

0= Y [ eu (b s orpmc)| omran
reg

with

n / /
Gon (by,p,v,7) = % ;Di (K2 (Xibh; Yi) —C(t,v, p)) ki (VI;ZI)/) Z;.
Define the class of functions
Gy = {m(D, Y, Wik, ho,b,y,v,7):
(h1,h,b,y,v,T) € RZxBxG x o X [1, Tul X [‘L’l*,‘[:] },

where

X'b-Y w

m(D, Y, W;hy,h,b,y,v,7) =D(K2( ) —C(r,v,m)kl ( y)Z.
ha h

(i). Consistency: Similar Fy, F> and F3, G, is the Euclidean class with a uniformly bounded
envelope, thus we have
Gon (b, y,p,v,T) =Go (b, Y, p.v,T)+0p (1),
uniformly in (b, y, p,v,T) € BX G X 0 X [1], Ty] X [1:]*, r[f], where
Gy (b,y, p.v,7) = E[Di[1{Y; < Xjb} = C(x,v, )] ZiIW]y = 0],y (0).

Then using Lemma A1 and Assumption 5, we have

sup  sup Gon (B (7.0).7 0).p.0.7) = Ga (B (.00, 1), o) | =0 (1),
PECy telv, vl [1} . 7]
and

sup sup
PECy ey vl x[1}. 7]

G2 (B(r.p).7 0).p.0.7) = G2 (B (z.p).¥ (). pv.) | = 0 (1.

Consequently, we have
Gan (p) = G2 (p) +0p (1),

uniformly over p € o. In addition, G (p) is continuous and achieves the unique minimum
at pg (Assumption 9). Consequently, consistency follows from some standard arguments
(e.g., Newey and McFadden, 1994).
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(ii). Asymptotic normality. Given the consistency result, with probability approaching
one as the sample size increases, we obtain the following first-order condition:

d

250 (p)=0, (a.13)
where
4 (o)
dp 2n (P
N dGZn (B\ (‘EJ? ) )/) (V)7 ,07Va Tj)
Z / G2n tj’ )sV(V)vpvaTj)] d w(V)dV,
Vi P

red

and

dGy, (ﬁ (t,0),y V), p,v, 1') P
dp - 87,3/
0 A
+ $G2n (ﬁ (T,0),7 (V),p,v,r) .

G2n (/§ (f, 10)7 ); (V),,O,V,T) 5/) (Iv )0)

A mean-value expansion of (a.13) with respect to p at pg yields

-1
d? d -
Vn(p — po) = [ Gzn(p)} «/E%Gzn(po),

where p lies on the line segment between p and pg.
We first consider \/ﬁ% G, (00).
Similar to (a.8) and from Assumptions 8 and 8, using Pollard (1995)

iGz (3(1 £0).¥ (), po, V. T)
2B " ’ ’ R

—-1/2
ﬁGz(ﬂ(f P0).7 ). p0,v.7) +Op ((thi o)™ I+ B! 41 ).

and
iG2I’l (B (t7 pO) ’ )//\ (V) ’ 1007 v, r)
ap

9 2 5 —172
=%Gz(ﬂ(r,po),y(v),po,v,r)wp((nhl) Pinn-+ ! +45),

where because of Lemma A1 and Assumption 5

@Gz (B.p0).7 ). p0.1.7)

?G2 (B(T,00),¥ (v),po,v;T) + Op (8ny)7
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and similarly,

263 (B x.p0).9 ). po.7)
262 (w0 p 01007
)
= G2 B (T.0.y 01,0001+ Op By,

Hence, using (a.3) of Lemma A2, uniformly over (z,v),

4G (B (x.p0).7 (), 0, v,7)

=G (1,0 + 0, <5ny +(nhhy) P nn b +h§2),

dp
(a.14)
where
d
Gop (T,v) = *Gz (B(z,p0), v (v), p0,v,T)
= TIB/GZ (:3 (Tv /00) Y (V) » P05 Vs T) ﬂp (T! p)
d
+ B*GZ (,3 (Tv PO)a)/ (V)vloovva T) .
0
Therefore,
7G2n (0g) = Z / GZn r]v pO) ¥ (v), o, v, 77]) G2p (T], v)o (v)dv
e
+0, (sny +(hyhy) ™ P Inn b +h§2) (a.15)

X Z/ G2n T,,,Oo) 7 (), o, v, T])w(V)dv
5eg "V

Using (a.1) and (a.2) of Lemma A1 and Assumption 5, the first term on the r.h.s of (a.15)
becomes

Z/ Gy, ﬁ(rj,po) ¥ (). po, v, f,) G2y (Tj, V) (v) dv

5ed Vi
Z / G2 (B (%, 00) ¥ (), p0, v, Tj) Gp (T, V)@ (v) dv
ried i
/fVu 9
+ Z [ T],[)O (ijp())] / 8ﬁ G2n (IB (Tj,p()),)/(v),p(),v, T]) G2p(Tj’V)w(V)dV
yeJ "

+ Z/ — G (B(5-£0), 7 V), 00,v,5) G2 (7:v) (7 (v) =y () @ () dv
ried Vi

vop (7).
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Then, similar to (a.10) of (i) and (ii) in proof of Lemma A1, under Assumption 8, we obtain

Z / uGZn(IB(rjva)sy(V)vavvaj)GZp(fjv")w(V)dV
v,

UEVARE
1 Vu X! B(zi, po) —Y;
272 Z/ DiZ;| K, 7"3(] Po) Vi —C(zj,v, 00)
Nl eg v ha '
= -(Jej

1 Wiy (v
X Ekl ( ’;:1( )) G2p (T, V) (V) dv

1 n
=2 > Dizi[1{Y; < XiB (5. ;o) } = €51 =P po)]
i=lgeJ

(a.16)

X G (T, 1 = Pfys (0,Wpe (1 = Pi) +0p (n—l/z)

1 n
= > b0.pit0p ("7]/2>
i=1
and

3 [A(500)— B (g 00) | fv "2 Gy

% (B(5j»00),v ), p0, v, Tj) G2 (Tj, V) (v) dv
1

hed
1 & Vi g
= ;Z > / aTs/G2(/S(ijpO)vV(V)vPO,V,Tj)
=l (@.17)
X G (1. V)gi (P0.7j) @ (V) v+ 0p(n~ /%)
1 n
== b1 pitopn 2,
i=1
and
Vu )
/ 3,7 O (B (%7.0).¥ ). 0.v.7j) G2 (1j.¥) (7 () =y () @ () dv
Ged v 9V
1 n a
= ;Z ) 37,62 (B(zj.p0).v (1 =Py, po. 1 = Pi. 7))
e (a.18)

X Gay (5.1 = POQT . (Di= P Wifiy; (0. W (1 = P) -0, (n™'12)

= igd)z,pi—f—op (n7]/2>.
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By similar arguments of showing (a.16)—(a.18), erej fv‘;u Gy, (ﬁ(rj, 00),7 V),
0, V; Tj)w (v)dv can be treated similarly. Thus the second term in the r.h.s of (a.15) is of the

order op (nfl/z) since (nh1hy) "2 1nn —}—h‘;1 —}—h‘;2 +8ny = o0p (1) by Assumption 8.
We then analyze %Gzn (p). Note that

dGzn (r, 5).7 (). p.v.T
i 2Gzn = / rr y J> V) dv (a.19)
ved v 1Y

d*Gy, (5 (z.5).7 ). f.v. r,)
dp?

w)dv,

n Z/ [Gzn( 7,0),7 (), PvVT/)]

ried Vi

where

PG (B .59 W), 5.0.7)
dp?

=(Boep) o

2
Apap’

a N _ A _
+55 0 (B9 0).50.7) Bp )
92
+ = Bp Gop (ﬂ(r DB AGNAR r)ﬁp (z,0)
02Gy, (B (2.5).7 0.7
: .

G (B (r.5).7 0. 5.v.7) B (7. 5)

+

ap

Similar to the proof of (a.3) of Lemma A2, under Assumptions 8 and 9, we can show that
uniformly over 7,v and p in the op (1) neighborhood of o,

Gon (B (x.0).7 (). pv7)
=G (B(2.0).7 ). pv.7) +0p ((h)) ™2 I+ B 413 )

= G2 (:3 (Tvp)vy(v)vp’vs T)"'Op (Bny +(nh])_1/21nn+hil +I’l§2>,

and

0 o (5 R
% 2n<ﬂ(f,10)a)/(v),pvvvf>

2 ~ —1/2
ﬁGz(ﬂ(f,p),y(V),p,v,r)+0p((nh1hz) /lnn+hi‘+h§2)

9 _
= 3502 B @Y .p.00)+0) (8ny+(nh1h2) V2 4nn4hS) +h§2),
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and

2 ~
3573, 02 (Ao m).pv7)

92 _
=55, (ﬂ (T,0),7 (), pv, T )+0p ((nhlhz) 1/21nn+h§1+h§2)
2

= 375y 2 B @07 009000+ 0p (g + (i)™ P nn 411 417,
and

2
i CIIORAUNAR)

2 —12
8[38/3’ —Gy (ﬁ (1,p),y V), p,v, 1'> +0p <(nh1h%> lnn—i—hsl1 +h;2)
92 172

8}38,3/ ——G2(B(7,0),y v),0,v,T)+0p <8ny + (nhlhz) lnn—}-hil +h§2>,
and
02Go (B (7.0).7 (). p0.7)

902

92G3 (B (v.0).7 ). po1.7) P
= 952 +0p ((nhl) Inn+hy" +hy )

92Go (B(x.p).y (v).p.v,7) _
A apzy +0p (Bay + (k)™ 2 nn 45 413

411

Since G, (B (,p0),yY (v),po,v,T) = 0, then, together with (a.2) of Lemma Al, (a.4) of

Lemma 2, and Assumptions 5, 8,

d*Gy, (3 (z.5).7 (V). 5.v. fj)

Z/ G2n 8(1j.5).7 (V). 5., r,)] i W) dv=o0p(1).

red Vi

Consequently, using Assumption 8, (a.14), (a.19), and (a.20) imply

2 d2
dp 2G2n p)= 7G2 (po) +op (1),
where
d2 - Vu
72G2 (pg) = Z f [G%p (rj,v)a)(v)dv],
dp eV
J

and where

dGy (B (T, p0),y (v), 00V, T)
Gop (T,v) = 0.7 0 .

dp
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Combining (a.16)—(a.21), we obtain

1 & d* -
Vn(p—p) = 7 > a2 G20 (b0, pi + 1. pi + 92, pi) +0p (1)
i=1

In the following, we denote

0 -1

&2 .
pi = <W62 (/00)) (00, pi + &1, pi + 02, pi) -

Finally, given the asymptotic linear representation of v/n (4 — p), forany 7 € [7;*, 7,f ], using
(a.2) of Lemma A1, we obtain

B(v.5) =B (@) =B (x.po) =B (@) +Bp (x.p0) (5 = po) +0 ([l 6 = po])
= B (x.p0) = B (T 00)+ By (7.00) (5= po) +0p (1),
Then
Vi (B(w.p) - @)
=i (B(e.5) =B (x.5)+B(v.5)— B (x.00)
= (B @00 = B (1.p0) ) + B (7. 0) Vi (5= po) +0p (1)

1 &
— _ﬁz [¢ﬂl (p(), )+ ,Bp (z, PO) ¢pi] + Op )]
i=1

1 n
=== ) g (D +op (D).
ﬁi:l

Therefore, we have

A AN 1 n
ﬁ[ ple0)=p o ] = = 0 () +0p (1),
p = Po Jn ,221 o r

/!
where ¢p; (1) = (‘p;‘}i (T)’d’,; i) . Consequently, Theorem 1 follows by applying the Central
Limit Theorem to the asymptotic linear representations above. (]
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