Hostname: page-component-cb9f654ff-nr592 Total loading time: 0 Render date: 2025-08-27T18:35:19.616Z Has data issue: false hasContentIssue false

Bibliometric Insights into Human Metapneumovirus Interventions: Trends, Gaps, and Future Directions

Published online by Cambridge University Press:  13 August 2025

Sridevi Gnanasekaran*
Affiliation:
Department of Community Medicine, https://ror.org/00nf20x22Indira Gandhi Medical College & Research Institute (IGMC&RI), Puducherry, India
Vignesh Murugan
Affiliation:
Department of Community Medicine, https://ror.org/00nf20x22Indira Gandhi Medical College & Research Institute (IGMC&RI), Puducherry, India
Surendran Venkataraman
Affiliation:
Department of Community Medicine, https://ror.org/00nf20x22Indira Gandhi Medical College & Research Institute (IGMC&RI), Puducherry, India
Vinoth Rajendran
Affiliation:
Department of Community and Family Medicine, https://ror.org/000trq935All India Institute of Medical Sciences, Gorakhpur, UP, India
Jayaraj Vinothini
Affiliation:
Department of Community and Family Medicine, https://ror.org/000trq935All India Institute of Medical Sciences, Bibinagar, TG, India
Kavita Vasudevan
Affiliation:
Department of Community Medicine, https://ror.org/00nf20x22Indira Gandhi Medical College & Research Institute (IGMC&RI), Puducherry, India
*
Corresponding author: Sridevi Gnanasekaran; Email: srilakshan25@gmail.com

Abstract

Background

Human metapneumovirus (HMPV) is a significant cause of respiratory tract infections, particularly in young children, the elderly, and immunocompromised individuals. Despite its global impact, research on therapeutic, diagnostic, and preventive interventions remains fragmented. This study conducts a bibliometric analysis to evaluate global trends, advancements, and gaps in HMPV intervention research.

Methods

Bibliometric data were retrieved from the Scopus database using keywords related to HMPV interventions, including “treatment,” “vaccine,” and “diagnostics,” for the period 2000–2025. Data were analyzed using Biblioshiny, the graphical interface of the Bibliometrix R package. Descriptive metrics, keyword analysis, thematic evolution, and collaboration networks were assessed, with results visualized as charts, maps, and network diagrams.

Results

A total of 2482 publications were analyzed. Research output accelerated markedly after 2015, driven by advances in molecular diagnostics and global interest in respiratory viruses. The United States, the United Kingdom, and China emerged as leading contributors, while low- and middle-income countries (LMICs) remained underrepresented. The most productive journals were Journal of Clinical Virology and Journal of Medical Virology. Prominent themes included vaccine development, antiviral therapies, and molecular diagnostics. However, key research gaps were identified in the areas of coinfections, long-term sequelae, and interventions tailored for high-risk and resource-limited populations. Collaboration networks highlighted concentrated partnerships among high-income countries, indicating limited global equity in HMPV research.

Conclusion

While progress in HMPV research is evident, critical disparities remain in global collaboration and focus areas. Future efforts should prioritize inclusive partnerships, increased research in LMICs, and the development of affordable diagnostic and therapeutic solutions. This bibliometric analysis serves as a roadmap to guide equitable and impactful global HMPV research.

Information

Type
Review Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Society for Disaster Medicine and Public Health, Inc

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

van den Hoogen, BG, de Jong, JC, Groen, J, et al. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat Med. 2001;7(6):719724. doi:10.1038/89098CrossRefGoogle ScholarPubMed
Boivin, G, De Serres, G, Hamelin, ME, et al. An outbreak of severe respiratory tract infection due to human metapneumovirus in a long-term care facility. Clin Infect Dis. 2007;44(9):11521158. doi:10.1086/513204CrossRefGoogle ScholarPubMed
Yim, KC, Mousa, JJ, Blanco, JCG, et al. Human metapneumovirus (hMPV) infection and MPV467 treatment in immunocompromised cotton rats Sigmodon hispidus. Viruses. 2023;15(2):476. doi:10.3390/v15020476CrossRefGoogle ScholarPubMed
Williams, JV, Harris, PA, Tollefson, SJ, et al. Human metapneumovirus and lower respiratory tract disease in otherwise healthy infants and children. N Engl J Med. 2004;350(5):443450. doi:10.1056/NEJMoa025472CrossRefGoogle ScholarPubMed
Madhi, SA, Klugman, KP, Group, Vaccine Trialist. A role for Streptococcus pneumoniae in virus-associated pneumonia. Nat Med. 2004;10(8):811813. doi:10.1038/nm1077CrossRefGoogle ScholarPubMed
Falsey, AR, Erdman, D, Anderson, LJ, et al. Human metapneumovirus infections in young and elderly adults. J Infect Dis. 2003;187(5):785790. doi:10.1086/367901CrossRefGoogle Scholar
Hall, CB, Simőes, EAF, Anderson, LJ. Clinical and epidemiologic features of respiratory syncytial virus. Curr Top Microbiol Immunol. 2013;372:3957. doi:10.1007/978-3-642-38919-1_2Google ScholarPubMed
Shahani, L, Ariza-Heredia, EJ, Chemaly, RF. Antiviral therapy for respiratory viral infections in immunocompromised patients. Expert Rev Anti Infect Ther. 2017;15(4):401415. doi:10.1080/14787210.2017.1279970CrossRefGoogle ScholarPubMed
Ren, J, Phan, T, Bao, X. Recent vaccine development for human metapneumovirus. J Gen Virol. 2015;96(Pt 7):15151520. doi:10.1099/vir.0.000083CrossRefGoogle ScholarPubMed
Gootenberg, JS, Abudayyeh, OO, Kellner, MJ, et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science. 2018;360(6387):439444. doi:10.1126/science.aaq0179CrossRefGoogle ScholarPubMed
Chakraborty, C, Sharma, AR, Bhattacharya, M, et al. A Detailed overview of immune escape, antibody escape, partial vaccine escape of SARS-CoV-2 and their emerging variants with escape mutations. Front Immunol. 2022;13:801522. doi:10.3389/fimmu.2022.801522CrossRefGoogle ScholarPubMed
Deffrasnes, C, Hamelin, ME, Boivin, G. Human metapneumovirus. Semin Respir Crit Care Med. 2007;28(2):213221. doi:10.1055/s-2007-976493CrossRefGoogle ScholarPubMed
Moriyama, M, Hugentobler, WJ, Iwasaki, A. seasonality of respiratory viral infections. Annu Rev Virol. 2020;7(1):83101. doi:10.1146/annurev-virology-012420-022445CrossRefGoogle ScholarPubMed
Otsubo, R, Yasui, T. Monoclonal antibody therapeutics for infectious diseases: Beyond normal human immunoglobulin. Pharmacol Ther. 2022;240:108233. doi:10.1016/j.pharmthera.2022.108233CrossRefGoogle ScholarPubMed
Wu, Z, Harrich, D, Li, Z, et al. The unique features of SARS-CoV-2 transmission: Comparison with SARS-CoV, MERS-CoV and 2009 H1N1 pandemic influenza virus. Rev Med Virol. 2021;31(2):e2171. doi:10.1002/rmv.2171CrossRefGoogle ScholarPubMed
Azizan, A. Mapping the muscle mass: A birds-eye view of sarcopenia research through bibliometric network analysis. Int J Disabil Sport Health Sci. 2024;7(1):134143. doi:10.33438/ijdshs.1362539Google Scholar
Azizan, A. Challenges and opportunities in sensor-based fall prevention for older adults: A bibliometric review. JET. 2024;18(4):306318. doi:10.1108/JET-02-2024-0011CrossRefGoogle Scholar
Azizan, A, Fadzil, NHM. What stops us and what motivates us? A scoping review and bibliometric analysis of barriers and facilitators to physical activity. Ageing Res Rev. 2024;99:102384. doi:10.1016/j.arr.2024.102384CrossRefGoogle Scholar
Dehghanbanadaki, H, Seif, F, Vahidi, Y, et al. Bibliometric analysis of global scientific research on Coronavirus (COVID-19). Med J Islam Repub Iran. 2020;34:51. doi:10.34171/mjiri.34.51Google ScholarPubMed
Zyoud, SH, Al-Jabi, SW. Mapping the situation of research on coronavirus disease-19 (COVID-19): A preliminary bibliometric analysis during the early stage of the outbreak. BMC Infect Dis. 2020;20(1):561. doi:10.1186/s12879-020-05293-zCrossRefGoogle ScholarPubMed
Li, H, Zong, Y, Li, J, et al. Research trends and hotspots on global influenza and inflammatory response based on bibliometrics. Virol J. 2024;21(1):313. doi:10.1186/s12985-024-02588-4CrossRefGoogle ScholarPubMed
Zhang, Z, Tan, J, Li, Y, et al. Bibliometric analysis of publication trends and topics of influenza-related encephalopathy from 2000 to 2022. Immun Inflamm Dis. 2023;11(9):e1013. doi:10.1002/iid3.1013CrossRefGoogle ScholarPubMed
Azizan, A. Exercise and frailty in later life: A systematic review and bibliometric analysis of research themes and scientific collaborations. IJPS. 2024;11(1):1. doi:10.36922/ijps.3282CrossRefGoogle Scholar
Hamelin, ME, Prince, GA, Gomez, AM, et al. Human metapneumovirus infection induces long-term pulmonary inflammation associated with airway obstruction and hyperresponsiveness in mice. J Infect Dis. 2006;193(12):16341642. doi:10.1086/504262CrossRefGoogle ScholarPubMed
Heikkinen, T, Österback, R, Peltola, V, et al. Human metapneumovirus infections in children. Emerg Infect Dis. 2008;14(1):101106. doi:10.3201/eid1401.070251CrossRefGoogle ScholarPubMed
Stepanova, E, Matyushenko, V, Rudenko, L, et al. Prospects of and barriers to the development of epitope-based vaccines against human metapneumovirus. Pathogens. 2020;9(6):481. doi:10.3390/pathogens9060481CrossRefGoogle Scholar
Hijano, DR, Maron, G, Hayden, RT. Respiratory viral infections in patients with cancer or undergoing hematopoietic cell transplant. Front Microbiol. 2018;9. doi:10.3389/fmicb.2018.03097Google ScholarPubMed
Agoti, CN, Munywoki, PK, Phan, MVT, et al. Transmission patterns and evolution of respiratory syncytial virus in a community outbreak identified by genomic analysis. Virus Evol. 2017;3(1):vex006. doi:10.1093/ve/vex006Google Scholar
Glassy, MC, Gupta, R. Technical and ethical limitations in making human monoclonal antibodies (an overview). Methods Mol Biol. 2014;1060:936. doi:10.1007/978-1-62703-586-6_2CrossRefGoogle ScholarPubMed
Borchers, AT, Chang, C, Gershwin, ME, et al. Respiratory syncytial virus—a comprehensive review. Clin Rev Allergy Immunol. 2013;45(3):331379. doi:10.1007/s12016-013-8368-9CrossRefGoogle ScholarPubMed
Ahmadi, S, Bazargan, M, Elahi, R, et al. Immune evasion of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2); molecular approaches. Mol Immunol. 2023;156:1019. doi:10.1016/j.molimm.2022.11.020CrossRefGoogle ScholarPubMed
Alvarez, R, Tripp, RA. The immune response to human metapneumovirus is associated with aberrant immunity and impaired virus clearance in BALB/c mice. J Virol. 2005;79(10):59715978. doi:10.1128/JVI.79.10.5971-5978.2005CrossRefGoogle ScholarPubMed
O’Brien, KL, Wolfson, LJ, Watt, JP, et al. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet. 2009;374(9693):893902. doi:10.1016/S0140-6736(09)61204-6CrossRefGoogle ScholarPubMed
Petrova, VN, Russell, CA. The evolution of seasonal influenza viruses. Nat Rev Microbiol. 2018;16(1):4760. doi:10.1038/nrmicro.2017.118CrossRefGoogle ScholarPubMed
Pantaleo, G, Correia, B, Fenwick, C, et al. Antibodies to combat viral infections: development strategies and progress. Nat Rev Drug Discov. 2022;21(9):676696. doi:10.1038/s41573-022-00495-3CrossRefGoogle ScholarPubMed
García-García, ML, Pérez-Arenas, E, Pérez-Hernandez, P, et al. Human metapneumovirus infections during COVID-19 pandemic, Spain. Emerg Infect Dis. 2023;29(4):850852. doi:10.3201/eid2904.230046CrossRefGoogle ScholarPubMed
Li, X, Yu, X, Du, Z, et al. Prevention of respiratory syncytial virus from 1991 to 2024: A systematic review and bibliometrics analysis. Transl Pediatr. 2024;13(10):18581869. doi:10.21037/tp-24-271CrossRefGoogle ScholarPubMed
Azizan, A. Exploring the role of social media in mental health research: A bibliometric and content analysis. J Scientometric Res. 2024;13(1):0108. doi:10.5530/jscires.13.1.1CrossRefGoogle Scholar