No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
Let g be an element of a group G and [g, G] = 〈g-1a-1ga | a ∊ G〉. We prove that if G is locally nilpotent then for each g,t ∊ G either g[g, G] = t[t, G] or g[g, G] ∩ t[t, G] = Ø. The converse is true if G is finite.