Hostname: page-component-cb9f654ff-mx8w7 Total loading time: 0 Render date: 2025-08-22T06:25:19.058Z Has data issue: false hasContentIssue false

The Steinitz-Gross Theorem on Sums of Vectors

Published online by Cambridge University Press:  20 November 2018

F. A. Behrend*
Affiliation:
University of Melbourne
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

α 1α 2, …, αp are n-dimensional vectors,

, ;

they are arranged to form a closed polygon

.

Denote by R(α 1, α 2, …, α p) the radius of the smallest circumscribed hypersphere with centre at 0 ; by R(α 1, α 2, …, α p) the minimum of

(α 1, α 2, …, α p)

for all possible reorderings

of α 2, …, α p−1 and by cn the least possible constant such that

for all possible choices of p and α 1α 2, … , α p.

Information

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1954

References

1. Steinitz, E., Bedingt Convergente Reihen und konvexe Systeme, J. reine angew. Math. 143 (1913), 128–175; 144 (1914), 140.Google Scholar
2. Gross, W., Bedingt Convergente Reihen, Monatsh. Math. Phys. 28 (1917), 221237.Google Scholar
3. Bergström, V., Ein neuer Beweis eines Satzes von E. Steinitz, Abh. Math. Seminar Hamburg, 8 (1930), 148152.Google Scholar
4. Bergström, V., Zwei Sätze über ebene Vektor poly gone, Abh. Math. Seminar Hamburg, 8 (1930), 206214.Google Scholar
5. Damsteeg, I. and Halperin, I., The Steinitz–Gross theorem on sums of vectors, Trans. Roy. Soc. Can., sec. III, 44 (1950), 3135.Google Scholar