THE STEINITZ-GROSS THEOREM ON SUMS OF
VECTORS

F. A. BEHREND
1. Introduction. @, ay, ..., o, are n-dimensional vectors,

Y4
> e =0, ler] <1 (1< 7 < p);
=1

they are arranged to form a closed polygon

OA:ds. .. Ap 1O (OA1 = ary . . ., Ayids =y . . ., A)10 = ay).

Denote by R(ei, as, . . ., a,) the radius of the smallest circumscribed hyper-
sphere with centre at O; by R(ay, a2, . . . , &) the minimum of
R(aly Opgy o ooy Oy gy az})

for all possible reorderings

Oy ooy Oy,
of as, . . ., a,_1; and by ¢, the least possible constant such that
R(an az . ..,0p) < 6y
for all possible choices of p and a3, s, . . ., .

Steinitz (1) proved that ¢, < 2(n + 1); using induction with respect to #,
Gross (2) obtained the weaker estimate ¢, < 2" — 1; by the same method
Bergstrom (3) obtained the result ¢,? < 4¢,—* + 1. Trivially, ¢; = 1. ¢a = /2
was proved independently by Gross (2), Bergstrém (4), and Damsteeg and
Halperin (5). For # > 3 the exact values of ¢, are not known; from Bergstrém’s
estimate it follows that c; < 3, ¢4 < v/37; for n > 5, Steinitz's estimate gives
the best result.

By a refinement of Steinitz’s original method it will be shown in this paper
that, for » > 3, ¢, < #n (Theorem 1), and particularly, ¢; < (5 + 2v3)t =
2.90 . .. (Theorem 2).

The lower estimate ¢, > (n + 6)% given by Damsteeg and Halperin (5),
and other examples make it likely that the true order of ¢, is 7.

2. Notation. Greek letters except «, A, g, v, # denote z#-dimensional vectors
(n>3);a,b,c,d,ef g x, v,z real numbers; <, j, k, I, m, n, p, q, 7, s, ¢, k, \, u,
v, w natural numbers.

Ia’ denotes the length of «; of the scalar product of «, 8.

The vectors 8y, 02, . . ., 8, will be called positively dependent (p.d.) if they are
linearly dependent with non-negative coefficients; positively independent (p.i.)
means not p.d.
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3. Lemmas.

(I) From any m( > n + 1) p.d. vectors 01, s, . .., 0, n+ 1 p.d. vectors
Burs Ouss - « - o Ouur, can be selected.

Proof. 1t is sufficient to show that m — 1 of the given vectors are p.d. If,

in the given relation
m

Zdu0u=0 d, >0,

nu=1

(at least one d, being positive), one d, is zero, this is trivial. If all d, > 0,

choose any linear relation between 6y, . . ., 0,41,
n+1
> a8, =0 (not all @, = 0),
y=1

and consider the relation
n+1 m

> @ —xa,)0,+ 2, df, = 0.

==l y=n+2

For x = 0 all coefficients are positive; hence x can be chosen such that one
coefficient vanishes, the others remaining non-negative (and d,, positive);
the ensuing relation expresses the p.d. of m — 1 of the vectors.

(1.1)

Ouir s Ouaa

in (1) may be prescribed to include 0.
Proof. Suppose 8, is not already included. Let

n+1
Z by, =0
i=1
be the relation expressing the p.d. of
0[‘11 R | 0#.1»:'
If one b, = 0, the term 0-6, may be substituted for 4.0,,. If all b; > 0, consider
any linear relation between 6,,,, . . ., 0,,, 61:
Z efu; + eny101 =0 (not all e; = 0).
i=1

It may be assumed that e,y > 0. Ifalle; > 0,
0#:7 ce ey ouny 01

are p.d. If one ¢; < 0, consider the relation
121 (b‘ + xei) 0/‘.’ + bn+10/4.+, + xe,,+101 = 0.

For x = 0 all coefficients in the first sum are positive; hence x > 0 can be
determined so that one coefficient vanishes, the others remaining non-negative
(and b,41 positive). The following corollary is obvious:
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(1.2) In (1) and (1.1) 6,, may be excluded from
Oy o ooy Ounss
unless 0y, . . ., 0,1 are p.i.

0= db,#0, 0<d. <1,
p=1

then 6 can be expressed in the form
[0<d/ <1, u<i+mn,

0 = p’
2, 0" U ar=1 wsitn
where 1 < | < m, and the 8,/ are a rearrangement of the 0,.

Proof. Let r be the number of d,’s with 0 < d, < 1. If » < =, then the re-
quired relation is obtained from the given one by omitting the terms with
coefficient 0. It is therefore sufficient to show that, for » > # + 1, the value
of r can be diminished. Suppose that 0 < d, <1 for 1 < u <z + 1; using

a linear relation
n+1

> b, =0 (not all a, = 0),

w=1

form
n+1 m

0= Z (dn — xa,) 0, + Z a0,
p=1 p=n+2

For x = 0 the first n 4+ 1 coefficients lie between 0 and 1; hence x can be chosen
such that one coefficient becomes equal to 0 or 1, the others remaining > 0,
< 1. As 0 £ 0, the final representation of 6 contains at least one term, i.e.,
I < m.

(I1.1) The representation
0= >.d,/6,’
w=1
in (11) may be so chosen that either 6, = 6, or 6, does not occur at all.

Proof. Suppose 0; occurs in the relation obtained. (II.1) is obvious if the
coefficient of 6, is less than 1 or if fewer than # coefficients are less than 1 (only
a trivial reordering of the 6,’ being required). If the coefficient of 6, is 1, and
exactly 7 coefficients are less than 1, i.e.,

0<d/ <lforu=1...,14+n—1,
01=0s’y S>l+n) d8=1)
use a linear relation
+n—1

> bb,+ b8 =0 (ba, b, not all 0),
w=1l

to form
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+n—1
w-2<w—xwo-+u—w>m+§:ww
p=Il+n
BFES

It may be assumed that b; > 0; letting x increase from 0, either 6; can be
eliminated from the relation, or one of the first # coefficients can be made equal
to 0 or 1 (the others remaining > 0, < 1); in this case 6; can be incorporated
in the first # terms and be renamed 6,’.

(1) If k> 2, |6 < (1<« < k),
k

n=dbh— 2 db, 0<d<1,0<d, <1 (x>1),
k=2

then
L0+ 6 > 1, 1 <<k
implies
In| < V(& — 3k +3) + 1.
Proof. For k =2, |n| < |di6y| + |dofs] < 2 = v/1 + 1; for k> 3,
01+ 6,)° = 6,° + 20,0, +6,° > 1, 1 <k <k,
implies
""‘2010,‘ < 012 + 012 - 1 < 11

whence

l
- k—1 k—1 2) %
<4d:%6.° — D di1d.200,+ | X dd. +1
k=2

k=2

In| <

k—1
di6 — Y db,
k=2

<14+ E=-2)+E-2+1=EF —3+3)+ 1.
(111.1) If the condition ]01 + 0k| > 1 15 added in (111), then
Il < (& — &+ 1L
Proof. By obvious modification of the proof of (III).
(V) Ife>2 6 < 1<«<Fk),

77’=Ed010 §_Z(1_d)0n 0<dx<11

k=2

7 =06+n7, {=-—-06+7¢,
then |¢| > 1, implies
In| <k—(2=+2).
Proof. For k = 2,

= (=0 + (1 —do)8)’ = 0," — 2(1 — d2)66: + (1 — d2)%6,° > 1
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implies 1 — d» > 0 and

9,° — 1 A
20,0, < f—_——d—Q (0 =d) 0’ < (1 —do) b
whence
772 = 912 + 2d.0,0, + d22022 < 012 + d2022 < 2,
ie.,

l <vV2=2—-(@2—v2).
Letk > 3. Asn’ = 0 would imply lnl = [01| < 1, it may be assumed that " = 0.
Similarly, [{l > 1, implies ¢’ # 0. Let 65, ..., 6, be the projections of 6, . . .,
6, into a plane containing %" and {’. Then

k k k
n = X_;d, 0., ¢ = Z—; 1—=dyb, »+¢ = 220 6] < 1.

It may be assumed that the component of every 6,” (2 < « < k), and hence the
component of {/, in the y’-direction is positive, as otherwise |7'| < & — 2 and
Inl = [01 + 17’| <k—1<k— (2—+/2). The 6/ may then be so renumbered

that they form a convex polygon which encloses the parallelogram formed by
7', {’. Defining o’ as shown in the Figure,

(1) 7 = + 2, 2> 0,
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where
2) o] < ;2 6] <k —2,
3) [+ 4+ D[] < ; 6] <k — 1.

By assumption,
= (-a+ ) =6" - 20 + ¢ > 1,

whence
20,8 <01+ ¢ —1< ¢
and
4) (5" + 61" = 2" + 220, + 6" < &+ 2)¢° + 1

<E+DY +1I< k-1 [ +1,
by (3). By (1), (4),
Il ="+ 6] = |0 + 2" + 6]
< o[+ ="+ 6] < o' + ((k = 1 = [o])* + 1)L
The last expression increases with |o’| and takes its greatest value, by (2),
for o] = & — 2, ie,
Il <k—24 2
V) If )
m=E+ 20t <o hl<85>0 6 <1A<u<m),
1< m< 2a(e—0b)
(which implies a > b), then 6, = 61’ can be selected such that [2 + 01'] <a.
Proof. Select 8, = 0, such that (¢ 4+ 6,)> < (¢4 6,)2 for 1 < u < m; then

E+6)'< i 2 (E+6) = 1—<m22 + 20— &+ 3, ef)
=1 m p=1

2),p, 2 _2) 2,2
<(1—m>$+m5n+l<<1 m)a+mab+1

= 2_2a_(9_-mb)—m<a2’
provided that m > 2. Form = 1, 6," = 6, le+6/| =[] <8 <a.
(V.1) Under the conditions of (V) a rearrangement 6y, . . ., 8, of 6y, . . ., O,
exists such that
q
£+ 2.6/ <q, 1<g<m.
pres

Proof. Successive application of (V).
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It can easily be verified that the conditions of (V) and (V.1) are satisfied
in the following two cases:

V2) a=@"=3n+3)* +1, b=(@F —3k+3)F+1,
2<kLn -1, 1<m<K<2n — k.

(V3) a=@—-3n+3)¥+1, b=1, 1<m<2’ —4n+3.
(VD) If m> 1,16 <1 (1 <u<m),a>00b>0,
n=£§+ z_:lﬂ,., 2" <d’, £<d 40,
then 6, = 60, can be selected su:}: that
(E+60) <o+ bf=""dp 41

Proof. For m=1, ((4+6/)?=(¢+0)?=9<a*®<a*+1=a>+4 b2
If m > 2, select 6,/ = 6, as in (V); then

(s+01')2<(1—->e +—z +1
< (1 —%)(a2+b2) +%a(a2+b2)*+1

<(1—3)(a2+b2)+3(a2+lb2)+1

=ad* + b +1=2ad +0"
(VID) If m > 1,6, <1 (1<u<m),
n=E+ 0. hl<a ld<a,
then a rearrangement 6, . . ., 0, of 04, . . ., 0, exists such that

fim)® = max <£+ 20 ) <d+i4+etm— 1),
form > 1, and in partzcular
fW* < @) <d+1,
F <a i f@ <a'+
Proof. Applying (VI), with & = 0, 6, can be selected such that
B o= (E+6/) <+ b, b = 1;
applying (VI) again, 8;’ can be selected such that
= (b4 06))" = (E + ,.;21 0,,')2 <a® + b, by = ;n——:—l b+ 1;

and continued application of (VI) will lead to
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[ 2 _
f=(a4+wf=<ﬂ+2¥0 <al+dl, b= bt L

for ¢ < m. Hence,

fm)* < a* + b/, b} = max b,
N 1<g<m
ow
5) = (m —q) E —
and

b L1
bort” — b -1—;n—‘_q l-ém_x,

i.e., b2 first increases, then decreases, and reaches its maximum &,2 when
q ’

T 1 r—1 l
1- <0<1- )

x=1M — K oim— «
i.e.

r—1 1 T 1
©) ;m—x<1<;m—-x'
Now

51 f‘“dx i+ 1

xz=:s>\< -3 X —-logs_%,
hence, by (6),
m—}
1< logm Y
whence
@) m—r<ellm—131) + 3
and

r—1

fm)? <ad®+0b=a +1—|—(m—r)E

im — «
<@+1+(Em-D+tHI=d+i+e'(m— D),
by (5), (6), (7). The relation f(1)? < a@? is trivial. For

m=2,b2=0b2=1, whence f(2)? < a? + 1;
m=3,b02=10bt=30b=1, whence f(3)? < a?
m = 4, b? = 1, b? =§ bs? = 11, b = 1, whence f(4)? < a? 4 1L
(VIL.1) If, in (VII),
a=(n2—3n+3)*+1, n>3 m<mn,
then

q
£+§W

where g(n) is defined in the following proof.

< gln) <m, 1<qg<m,
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Proof. Forn =3,

q 2
(é + 2_310) <(VB+ 1 +i=4+2v3=¢0), £B3) <299 <3
For n = 4,

q 2
(z + 210) <SWTHD 45 =%+2v7=24) g(4) <389 <4

For n > 5,

(“ ;0) <HE' =3 +3) + 1 + e (n - B) + 3= ¢(m)’,

where
(<= +etn-H+i=n-CG-emt+h-4
< —H+3et <l
ie., g(n) < n.

4. THEOREM 1. Forn > 3, ¢, < n.

The proof is in several steps.

4.1. Let
r
> o =0, o] < 1.
r=1
A rearrangement
61 = Qay, 62 = Olgyy ceey 50—-1 = Qxy_yy 6? = ap

is to be constructed such that
q

> b

r=1

<gln)y<n

for 1 < ¢ < p. We use induction with respect to p. For p = 1, in fact for p <
2n — 1, the result is trivial as no reordering is necessary:

Sar =3 o

r=1 r=q+1

<min(g,p—¢ <min(g,2n — 1 —qg) <n — 1.

In the following it will be assumed that the result is true for ' < p.
If a partial sum

q
=a+t Do, 2<g<p—2,
has a modulus < 1, then the result may be applied to

[4
art 2+ (=) =0 ' =1+q<p),

and to
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p—1
C+ 2o tap=0 @ =p—g+1<p),

i=g+1
prescribing a; and — ¢ in the first case, { and o, in the second case, as first and
last vectors of the rearrangement; combining the two arrangements and omitting
the vectors — ¢ and ¢, the desired rearrangement of the a, is obtained. In the
following we may therefore make the assumptions:

(VIII) If ¢ is a partial sum of the ar containing exactly one of oy, o, and at
least 1, at most p — 3 other vectors, then |¢| > 1.

In particular,

(VIIL.1) lor + ax| > 1, 2<r<p—1.
Also, )
(VIIL.2) No partial sum is 0, except possibly ay + o, and

p—1

S .

=2

For let { be a partial sum other than the above, and { = 0. The following

cases may arise: (a) { contains neither a; nor a,; in this case Ig“ -+ ax[ <1,
contradicting (VIII); (b) ¢ contains one of ai, a,; this directly contradicts
(VIII) unless { =a1or¢{ =apor{=oar+as+...+ap10r¢{=ay+ as+
...+ a,, which implies a; =0 or @, =0 and reduces the number of vectors
to p’ = p — 1; (c) ¢ contains both «; and @, and at least another a,; removal
of a, gives |5“ — a,,l < 1, again contradicting (VIII).

4.2, The desired rearrangment of the o, will be obtained in three stages:
(1) a rearrangement 1, B, . . ., Bp;
(2) a trivial alteration i, v2, . . ., v, of (1) obtained by placing a; first;
here certain special partial sums

q [d
PIETEED DT P
k=1 k=1

with not too distantly spaced values of ¢, ¢/, . . . have a modulus less than »
(more precisely, less than a bound somewhat smaller than #n);

(3) the final rearrangement &y, 8, . . ., 8, obtained from (2) by reordering
the vectors within each group vygt1, - . ., v leading from one special partial
sum to the next.

The B, vr, 6» will be defined inductively as follows. Suppose an index 1,
1 < 1 < p, has been found such that

(1) B, have been selected from the a, for v < ;

(i) the non-selected vectors, ¢, . . ., €, say, satisfy a relation

?
E €y € = 01
v=1i

where
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@)0<e, Llforv<it+n e, =1forv>i+ n:
(iv) e, is one of the ¢,; and if the ¢, other than @, are p.d. then o, = ¢,;
(v) if @1 is one of the ¢,, then a; = €;;

(vi a) if a; is one of the e, then vy, . . ., v; are the vectors ay, By, - . ., Bi_1;
and

i i—1
£= ;1%:6!1‘*" ;Bv

is the special partial sum belonging to the index 7;

(vib) if a; is one of the B8,, ay = B, say, then vy, . . ., v:-1 are the vectors
a1, By - -+ Br-1, Bra1, - -+, Bi—1; and

i—-1 i—1
E = ”21 Yy = ;1 Bv

is the special partial sum belonging to 7;

(vii) [g < (2 —3n+3)F + 1;

(viii) 8y, . . ., 841, (8,) are a rearrangement of vy, . . ., Y1, (y¢) wWith 8; =
Y1 = arx,

(ix) <gn)<n g=1,...,72—1, (4).

q
2.0
v=1

Such an index 2 will be called a special index.
The index 7 = 1 is special: (7) is void as no §8’s have to be selected; the given
relation

Y4
Z oar =0
=1

plays the role of (ii) (ar = &); (iii), (iv), (v) are satisfied; defining 6; = v, =
a; = ¢, (vi) and (viii) are satisfied; (vii) and (ix) are trivial.

To every special index 7, with 7z < p — 2%, a new special index j > 7z will
now be constructed (the construction will preserve the vectors 8,, v, 8, already
selected for the index 7).

4.3. Relation (ii) contains p— t—1)>2n+71— (¢ —1)=2n+1
terms. Applying (I) to €;, . . ., €, we select z + 1 p.d. vectors
€uiy ooy €upiyy

where we wnclude

€ = €uyyyy

by (I.1), and exclude ,, by (1.2), if possible (i.e., certainly when «, = ¢, and

€i - - -, &1 are p.d.). If the relation of expressing p.d. is

8) aoe; + z": aje; = 0, a; > 0,notalla; =0,
then, for all x, !

9) yz::i e e, — x(aoe; + JZ::Iaj &) = 0.
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For x = 0 all coefficients are positive and < 1; hence a positive value of x can
be determined for which (at least) one coefficient becomes 0, the others remaining
> 0, < 1. At most 2z coefficients can be less than 1 (those of €, . . ., €1,
€.y - - - €u), SO that at least two coefficients remain equal to 1. Renaming the
€& €y €41, . . ., &, taking first the vector or vectors with coefficient 0, then
the remaining ¢, from e;, . . ., €440-1, €., - - -, €, and then the remaining ones
with coefficient 1, (9) will read

y4
(10) XY e'e’ =0, 0<e’  <lforv<i—+2m e =1forv>i+ 2n.

r=i+1
4.4. Put

i+2n—1

(11) € = E ey' ev’ (O < eF, < 1)1
r=1+1

so that (10) may be written

V4

(12) € + Z fv’ = 0

y=1+2n

oy cannot be contained in the partial sum

?

’-
€,

v=1+2n
for if @, occurs in (9), then a; = €; by (v), i.e. ey isone of ¢/, . . ., € yy2,_1; by
(VIIL.2) the partial sum cannot vanish, whence ¢ % 0. By (II) € can be written
in the form

i+2n—1

(13) e= 2 fud,, 0<f,<lforv<i+l+4mn, f,=1forv>i+1+mn,
v=1+1

where
(14) 1<1<2n—1,
and ¢4y, - - -y Piton—1 is a rearrangement of € g1, . . ., € 12,1 By (IL.1) it may

be assumed that
(15) if oy is still present in (13), then a; = ¢4

Define
(16) =1+
then, by (14),
an 1+ 1<j<i+2n — 1.
It will now be shown that j is a special index. The properties (i), . . ., (ix) relating
to j will be denoted by (i), . . ., (ix’).

4.5. (i) By (i), B, is defined for » < 7; defining
Bi=¢€', Bi1= b1, ..., Bj1= by,

B, are selected for » < j.

https://doi.org/10.4153/CJM-1954-013-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1954-013-0

120 F. A. BEHREND

The non-selected vectors are ¢,, . . ., ¢ir2,—1 and € i1ay, . . ., & which will be

renamed @ iyon, - - -, p. Substituting (13) into (12), we get
4

(ii') ;fvd’v =0,
where

(1ii") 0<fi<lforv<j+mn f.=1forv>j+ n;
note also that
(18) fv=1forv > i+ 2n;
in particular,
(19) forr=fp =1

(iv") @, is one of the ¢, (v > 7). For, either the ¢, other than o, are p.i.;
then, a fortiori, the ¢, other than e, are p.i.; but (ii’) expresses the p.d. of the
¢, other than o, unless e, is present in (ii’); or the ¢, other than «, are p.d.;
then a, = ¢, by (iv), and «, was excluded from (8), so that e, = ¢, = ¢,/ = ¢,.
This latter case certainly arises if the ¢, other than e, are p.d., for this implies
the p.d. of the ¢, other than .

(v') If ayisoneof the ¢, (v > j), then a; = ¢, by (15), (16).

(vi’ a) If a; is one of the ¢,, then #v4, . . ., v; are the vectors oy, B1, - . ., Bj-1:
and

J j—1
7= ;7v=a1+ ;By
will be defined as the special partial sum belonging to the index j;

(vi’b) if &1 = B, 7 < j, then 74, . . ., v,;_1 are the vectors a1, B, . . ., B:_1,

Br+1y - - - By-1; and

j—1 j—1
n= Z Yy = Z B>

v=1 =1

These definitions are consistent with the definitions (vi).

4.6. We now investigate the special partial sum 7.
In case (vi’ a)

=1 P ?
ﬂ=al+ZBv=al—'Zl¢‘v=-z¢v by (v')
v=1 y=j y==j41
P ?
== 2 ¢+ 2 fids by (i)
v=j+1 v=j

= fion — i 1 —=f)en
v=3j+1

and asf, = 1for v > min (j + n, ¢ 4+ 2x) by (iii’) and (18),
J+k—1

(20) n =fja1 - Z (1 _fv)d’n
r=4j+1

where
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jt+k=1=min(G+n—-1,7i4+2n—1)
i.e., by (16),
(21) =min (n,2% — (j — 7)) = min (n, 2n — [),
whence, by (14), 1 < k& < #n. The case k = 1 can be excluded as it would imply

[nl = ]fjall < 1 where 7 is a partial sum with j = 2z + 7 — 1 terms (2n <
j < p — 2), including «;, excluding «,, which contradicts (VIII). Thus,

(22) 2<kn 1K<IK<2—-2, 14+1<j<i+2n-2.

As |ag) <1 <1,0<f,<1,0<1—f,

> 1, except, possibly, for ¢, = a,, (20) satisfies the conditions of (III), and
we have

(23) In] < (k* — 3k + 3)* + 1.

As k < =, this implies
(vii") || < (0 — 3n +3)1 4+ 1.

In case (vi'b),

=1 4 ? /4
1= 2h === X bt e by (ii’)
» J+k—1

=2 A-f)=e)= 2 A =1)(=2)

by (iii’) and (18), where & is defined by (21); 2 = 1 would imply I(l —-f,)qu|
= ln[ < 1, hence can be excluded as above; thus, (22) will hold and 5 may be

written
: k=2
(24) 7= Z_;j 1 =£)(=¢) + (1 = frr-1) (— Psa—1).

We may assume thata, = ¢, or a, = ¢,4;1, so that the partial sum
(4

c= 2 ¢

v=j+k—1

contains a,, but not a3, and f = p — (j + k& — 1) further terms; j > 2, k > 2
imply f < p — 3; (21) and z < p — 2n imply f > 1; hence, by (VIII),

le] > 1.
Now,
Y4
(25) ¢ = — 2 [
v=j+k—1 y=7j
Jtk—2

= ;j Fi(=a) = (1 = frr-1) (— ¢spa-1)-

(24), (25) satisfy the conditions of (IV); hence,
(26) [n] <k—(@2—~2),
which implies (23) and (vii’).
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4.7. It remains to establish (viii’) and (ix’). By (vi) and (vi’), the three
possibilities are:

j—1
n=£§+ Zz: Vo,
i
(27) 1=Ef4+ 2 v
v=1+41
j—1
n=£&+ Z Y.
v=1i+1

The v, contained in ¢ have already been rearranged as 8, according to (viii)
to satisfy (ix); it therefore remains to reorder the v, under the summation sign
in (27). There are m such v,, where m = j—i=lorm=j—i1—1=1—1,
ie., 1 <m <l (The case m = 0 is trivial, since then n = ¢, 8; = ¢; = a; and
the vectors considered in (viii’), (ix’) are identical with those of (viii), (ix).)
We distinguish two cases:

1) 2<k<n—1. By (@l), k=2rn—-1, 1 <m < 2n — k. Together
with (vii) and (23), these are the conditions of (V.2) for (27) which guarantee
the required reordering (viii’) of the v, satisfying (ix’), the bound obtained
being (n? — 3n + 3)% + 1.

(2) kE=mn By (21), n <2rn — I, whence m <! < %, and by (vii) and
(vii"), (27) satisfies the conditions of (VII.1) which guarantee the required
reordering (viii’) of the v, satisfying (ix’), the bound g(z) being defined as in
the proof of (VII.1).

As g(n) is greater than (n? — 3n + 3)* 4 1, the bound g(n) may also be
used in case (1).

This completes the proof that j is a special index.

4.8. The procedure of selecting the 8,, v,, 8, can be continued until a special
index 17 is reached for which 7 > p — 2#. In this case 61, . . ., §4—1 0r 8y, . . ., §;
have been correctly selected, and the corresponding special partial sum is

or
i
£ = Zl 5,

If the remaining vectors are called v, . . ., v, = @, Of Y41, - . ., ¥p = a, respec-
tively, then

p—1

R

v=1i

or

p—1
n=—g=t+ 2 v

v=1i+1
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satisfies the conditions of (V.3), because the number of v, is m = p — 7 or
p—1—1, whence m <2n <2n* — 4n 4+ 3 (for n > 3). Reordering the
v, according to (V.3), and choosing «, as the last vector, the rearrangement of
the given vectors is completed.

5. THEOREM 2. ¢3< (54 2+/3) ~2091.

Proof. For any special indexz (1 < 7 < p — 7), relation (ii) of §4.2 reads

(n =3)

42 ?

et D, =0, 0<e <1

v=1 v=1+3
We shall prove (cf. (vii)) that

It <1+ 2,
unless both a;, o, are present in
i+2
€€y

v=1

and the coefficient of the third vector is less than 1 (in this case (vii) gives
|E| < 1+ +/3). If a1 is not present in
i+2

Z €€y,
V=1

the reasoning of 4.6, (vi'b) applies leading to (26), which for 2 < 3 gives the
estimate 1 + +/2. If o, is present, o, absent, then

E=c1 — (1 — ey1) €1 — (1 — e42) €425
if

C=€qs+ ...+ 6= — €1 — €i41€i+1 — €i42€i42,

then |¢| > 1, by (VIII), and |¢§ < 1 4+ +/2, by (IV). If, finally, a1, «, are both
present, but the coefficient of the third vector is 1, then

!EI = |e,-oz1 - (1 - e,-+1) a,,| < 2<1 ‘I’ \/2

The relation between the special partial sums £, 5 belonging to two successive
special indices 7, j is given by (27), where m < I < 2»n — 2 = 4. We distinguish
two cases:

(1) One of the two partial sums, say 5, has modulus less than 1 + /2, i.e.,

El <1+ 3, [nl <1+ V2.
If the v, in (27) are called 64, . . ., 0, then

n=¢+ Zlon.
yres
Let 8/, . . ., 6, be the rearrangement of 6, . . ., 8, according to the principle

used in (V). Then, for m = 4,
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(E+6) < 38 + 3t o] +1
<IWBH1)+ 33+ D(V2+1) +1 <804,
£ + 60| < 284,
(E+6 +6./)° <3 X804+ 7 X284 X242+ 1 <827,
£+ 6 + 6,'| < 2.88,
(46 + 6, +6/)° <288 X 242 + 1 < 7.97,
|46, + 6. + 65| < 2.83;

the maximum estimate, 2.88, is less than (5 + 2 v/ 3)}. The cases m < 4 are
treated in the same way.

(2) The estimate 1 + /2 is not available for either of £, #. This means, by
(vii), that both (ii) and (ii’) contain «; and @, in their first three terms, the
coefficient of the third term being less than 1. By (iv), the ¢, other than «, are
p.1.; hence (8) contains a; = €;, @, = €441, and two other vectors ¢,,, €,. In the
transition from (ii) via (8)-(13) to (ii’), a1, @, are retained together with at
least one of €;12, €, €, l.e., at most two vectors are eliminated. Hence,
m=1=j—1<2; m=1 means n = £ + 6, which requires no reordering;
m = 2 means 7 = ¢ + 6, + 6., and 6, can be selected from 6, 6, such that

E+0") < 1+3)"+1=54+ 23,
£+ 6/ < (5 + 2v3)%
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