Hostname: page-component-6bb9c88b65-kfd97 Total loading time: 0 Render date: 2025-07-28T02:25:10.665Z Has data issue: false hasContentIssue false

Notes on Extensions of Hopf Algebras

Published online by Cambridge University Press:  20 November 2018

Nicolás Andruskiewitsch
Affiliation:
FAMAF Medina Allende y Hay a de la Torre 5000 Ciudad Universitaria Córdoba Argentina, e-mail: andrus@mate.uncor.edu, andrus@mpim-bonn.mpg.de Mathematisches Institut Universität München D-80333 München Germany, hanssch@rz.mathematik.unimuenchen.de
Ruskie Witsch
Affiliation:
Mathematisches Institut Universität München D-80333 München Germany, hanssch@rz.mathematik.unimuenchen.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This article contains examples and applications of the notion of exact sequences of Hopf algebras.

Information

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1997

References

[A] Andruskiewitsch, N., Some exceptional compact matrix pseudogroups, Bull. Soc. Math. France 120(1992), 297325.Google Scholar
[AD] Andruskiewitsch, N. and Devoto, J., Extensions of Hopf algebras, Algebra i Analiz (1) 7(1995), 2261.Google Scholar
[BCM] Blattner, R.J., Cohen, M. and Montgomery, S., Crossed products and inner actions of Hopf algebras, Trans. Amer. Math. Soc. 298(1986), 671711.Google Scholar
[BM] Blattner, R.J. and Montgomery, S., Crossed products and Galois extensions of Hopf algebras, Pacific J. Math. 137(1989), 3754.Google Scholar
[Bou] Bourbaki, N., Groupes et algébres de Lie. Chapitres 4, 5 et 6 Hermann, Paris, 1968.Google Scholar
[Br] Brown, K.S., Cohomology of groups. Graduate Texts in Math. 87, Springer, Berlin, Heidelberg, New York, 1982.Google Scholar
[By] Byott, N.P., Cleft extensions of Hopf algebras, J. Algebra 157(1993), 405429.Google Scholar
[By2] Byott, N.P., Cleft extensions of Hopf algebras II, Proc. London Math. Soc. (3) 67(1993), 277304.Google Scholar
[CE] Cartan, H. and Eilenberg, S., Homological algebra. Princeton Univ. Press, 1956.Google Scholar
[CM] Chin, W. and Musson, I., The coradical filtration for quantized enveloping algebras, 1994. preprint.Google Scholar
[Ci] Cibils, C., A quiver quantum group, Comm. Math. Phys. 157(1993), 459477.Google Scholar
[dCKP] de Concini, C., Kac, V.G. and Procesi, C., Quantum coadjoint action, J. Amer. Math. Soc. 5, 151189.Google Scholar
[dCL] de Concini, C. and Lyubashenko, V., Quantum Function algebra at roots of, Adv. Math. 108(1994), 205261.Google Scholar
[dCP] de Concini, C. and Procesi, C., Quantum Groups, Matem. 6, Scuola Norm. Sup. Pisa, (1993), preprint.Google Scholar
[DG] Demazure, M. and Gabriel, P., Groupes algèbriques. Masson & Cie, Paris, 1970.Google Scholar
[DT] Doi, Y. and Takeuchi, M., Cleft comodule algebras for a bialgebra, Comm. Algebra 14(1986), 801818.Google Scholar
[Dr] Drinfeld, V.G., Quantum groups. Proc. of the ICM, Berkeley, 1986. 798820.Google Scholar
[Gr] Greither, C., Extensions of finite group schemes, and Hopf Galois extensions over a complete discrete valuation ring, Math. Z. 210(1992), 3767.Google Scholar
[H] Hall, M., The theory of groups. MacMillan, New York, 1959.Google Scholar
[Hf] Hofstetter, I., Erweiterungen von HopfAlgebren und ihre kohomologische Beschreibung, Dissertation Universität Munchen, 1990. J. Algebra 164(1994), 264298.Google Scholar
[Ho] Holt, V.G., An interpretation of the cohomology groups Hn(G,M), J. Algebra 60(1979), 307320.Google Scholar
[J] Jimbo, M., A q-difference analogue of U(g) and the Yang-Baxter equation, Lett. Math. Phys. 10(1985), 6369.Google Scholar
[K] Kostant, B., Groups over Z, Proc. Sympos. Pure Math. 9(1966), 9098.Google Scholar
[Kc] Kac, V., Infinite dimensional Lie algebras. Cambridge Univ. Press, Cambridge, 1985.Google Scholar
[Li] Lin, Z., Induced representations of Hopf algebras: applications to quantum groups at roots of 1,J. Algebra 154(1993), 152187.Google Scholar
[Lo] Loday, V.G., Cohomologie et groupes de Steinberg relatives, J. Algebra 54(1978), 178202.Google Scholar
[LI] Lusztig, G., Quantum deformations of certain simple modules over enveloping algebras, Adv. Math. 70(1988), 237249.Google Scholar
[L2] Lusztig, G., Modular representations and quantum groups, Contemp. Math. 82(1989), 5977.Google Scholar
[L3] Lusztig, G., Finite dimensional Hopf algebras arising from quantized universal enveloping algebras, J. Amer. Math. Soc. (1) 3,257296.Google Scholar
[L4] Lusztig, G., Quantum groups at roots of\, Geom. Dedicata 35(1990), 89114.Google Scholar
[L5] Lusztig, G., Introduction to quantized enveloping algebras, In: Proc. of the Third Workshop on Lie Groups Representations and its applications, Carlos Paz, 1989. Progr. Math. 105, Birkhäuser.Google Scholar
[LR] Larson, A.R.G. and Radford, D.E., Semisimple Hopf algebras, (1989), preprint.Google Scholar
[McL] Mac Lane, S., Categories for the Working Mathematician. Springer- Verlag, 1971.Google Scholar
[Mj] Majid, S., More examples of bicrossproduct and double crossproduct Hopf algebras, Israel J. Math. 72(1990), 133148.Google Scholar
[Ma] Majid, S., Physics for algebraists: Non-commutative and non-cocommutative Hopf algebras by a bicrossproduct construction, J. Algebra 130(1990), 1764.Google Scholar
[MjS] Majid, S. and Ya. Soibelman, Bicrossproduct structure of the quantum Weyl group, J. Algebra 163(1994), 6887.Google Scholar
[M] Manin, Y.I., Quantum groups and non-commutative geometry. Les Publications du CRM 1561, Montreal, 1988.Google Scholar
[Ms] Masuoka, A., Semisimple Hopf algebras of dimension 6, 8, preprint.Google Scholar
[NZ] Nichols, W.D. and Zoeller, M.B., A Hopf algebra freeness theorem, Amer. J. Math. 111(1989), 381385.Google Scholar
[OS] Oberst, U. and Schneider, H.-J., Untergruppen formeller Gruppen von endlichen Index, J. Algebra 31 (1974), 1(M4)Google Scholar
[R] Radford, D., Hopf algebras with projection, J. Algebra 92(1985), 322347.Google Scholar
[Se] Serre, J.-P., Cohomologie galoisienne. Lecture Notes in Math. 5, Springer-Verlag, 1964.Google Scholar
[Si] Singer, W., Extension theory for connected Hopf algebras, J. Algebra 21(1972), 1—16.Google Scholar
[Sch] Schneider, H.-J., Some remarks on exact sequences of quantum groups, Comm. Algebra (9) 21(1993), 33373358.Google Scholar
[Sch2] Schneider, H.-J., Zerlegbare Erweiterungen qffiner Gruppen, J. Algebra 66(1980), 569593.Google Scholar
[Sch3] Schneider, H.-J., Zerlegbare Untergruppen affiner Gruppen, Math. Ann. 255(1981), 139158.Google Scholar
[Sch4] Schneider, H.-J., Normal basis and transitivity of crossed products for Hopf algebras, J. Algebra 152(1992), 289312.Google Scholar
[Sch5] Schneider, H.-J., Hopf Galois extensions, crossed products and Clifford theory, Proc. of the Conference on Hopf algebras and their actions on rings, 1992. to appear.Google Scholar
[Sw] Sweedler, M., Hopf algebras. Benjamin, New York, 1969.Google Scholar
[Sw2] Sweedler, M., Cohomology of algebras over Hopf algebras, Trans. Amer. Math. Soc. 133(1968), 205239.Google Scholar
[Tl] Takeuchi, M., Finite dimensional representations of the quantum Lorentz group, Comm. Math. Phys. 144(1992), 557580.Google Scholar
[T2] Takeuchi, M., Matched pairs of groups and bismash products of Hopf algebras, Comm. Algebra (8) 9(1981), 841882.Google Scholar
[T3] Takeuchi, M., Relative Hopf modules—equivalences andfreeness criteria, J. Algebra 60(1979), 452—471.Google Scholar
[T4] Takeuchi, M., Some topics on GLq(n), J. Algebra 147(1992), 379410.Google Scholar
[T5] Takeuchi, M., Quotient spaces for Hopf algebras, Comm. Algebra (7) 22(1994), 25032523.Google Scholar
[Tf] Taft, E.J., The order of the antipode of a finite dimensional Hopf algebra, Proc. Nat. Acad. Sci. U.S.A. 68(1971), 26312633.Google Scholar
[TO] Tate, J. and Oort, F., Group schemes of prime order, Ann. Sci. École Norm. Sup. 3(1970), 1—21.Google Scholar
[W] Woronowicz, S.L., Compact matrixpseudogroups, Comm. Math. Phys. 111(1987), 613665.Google Scholar
[Z] Yongchang Zhu, Hopf algebras of prime dimension, Internat. Math. Res. Notices 1(1994), 5359.Google Scholar