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NOTES ON EXTENSIONS OF HOPF ALGEBRAS 

NICOLAS ANDRUSKIEWITSCH 

ABSTRACT. This article contains examples and applications of the notion of exact 
sequences of Hopf algebras. 

0. Introduction. This paper, a sequel to [AD], contains examples, applications and 
farther developments of the notion of exact sequences of Hopf algebras. In Section 1, 
we recall notation and facts on quantum groups and on the definition of exact sequences. 
In Section 2, we prove that any Hopf algebra has a maximal central Hopf subalgebra, 
which shall be called the Hopf center. Section 3.1 is devoted to recall the construction of 
extensions from cohomological data ([Mj], [AD]) and to the notion of deftness ([AD], 
[By], [Sch2]); in Section 3.2 we discuss cleft extensions of *-Hopf algebras. Section 3.3 
contains several basic results on quotient theory of Hopf algebras. The Frobenius mor-
phism defined by Lusztig from the quantized enveloping algebra at an odd root of unity 
to the usual enveloping algebra and its dual version give rise to exact sequences of Hopf 
algebras. This was asserted by some authors but the rigourous verification, contained in 
Section 3.4, follows from the present definition (and the existence of a PBW type basis). 
It follows from previous work of Schneider (for extensions of algebras by Hopf algebras) 
that any extension of finite dimensional Hopf algebras is cleft. Therefore, one sees that to 
classify the Hopf algebras up to certain finite dimension, one needs to classify the simple 
ones (in the sense of Hopf algebras, i.e. without normal Hopf subalgebras) and then to 
construct inductively the non-simple ones by the extension method. As for the first task, 
we prove in an Appendix, written jointly with H.-J. Schneider, that the Frobenius-Lusztig 
kernels (modulo irrelevant central Hopf subalgebras) and their parabolic subalgebras are 
simple. This was proved in [T4] for Frobenius-Lusztig kernels of type A and in the first 
version of the present paper for Taft's finite dimensional Hopf algebras [Tf| (recall that 
Taft's Hopf algebras also appear as the +-part of the Frobenius-Lusztig kernels for SL(2)). 
This result implies, in particular, that the inclusion of the algebra of regular functions on 
a semisimple algebraic group in its quantum analogue at a root of 1 is the Hopf center 
of the later. As for the second task, I begin to analyze the cohomological meaning of 
the construction above. If A is commutative and B cocommutative, one has a nice coho-
mology theory by taking the total complex associated to a certain double complex. This 
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4 NICOLAS ANDRUSKIEWITSCH 

idea goes back to Singer who worked out the graded case; the translation to our setting 
offers no difficulty (Section 5.1, see [Hf]). The double complex arises because one has a 
cocycle for the algebra structure, another for the coalgebra structure and a compatibility 
condition for them. By a spectral sequence argument, we prove in Section 5.2 that Hopf 
algebras of dimension/^, with/? and q primes,/? < q9p and q — 1 coprimes, are commu­
tative and cocommutative, provided they are not simple (compare with [H, p. 57]). For A 
and B general, the interpretation of the extensions in cohomological terms is a "double" 
version of the non-abelian group cohomology problem. 

I wish to thank E. Bifet, F. Cukierman, B. Pareigis, Nanhua Xi, and specially H.-
J. Schneider for very valuable discussions on the material presented here. 

1. Preliminaries. 
1.0 Notation and conventions. Our main reference for the general theory of Hopf alge­
bras is [Sw]. Let us fix a commutative field 1; then "Hopf algebra" will mean Hopf alge­
bra over 7, unless an explicit mention. We shall use the following notation: m, A (or <S), 
e,S denote respectively the multiplication, comultiplication, counit, antipode of a Hopf 
algebra (or an algebra or a coalgebra), specified with a subscript if necessary. The oppo­
site multiplication or comultiplication are indicated by a superscript "op", resp. "cop". 
We shall also use the following convention: if c is an element of a tensor product^ (g) B9 

then we write c = c, (8> c\ omitting the summation symbol. An exception is the case 
c — A(x), where we use Sweedler's "sigma" notation but dropping again the summatory. 
We also denote by A" the ^-iteration of the comultiplication, e.g. A2 = (A (g> id)A. The 
kernel of the counit of a Hopf algebra A is denoted by A+. 

We shall abbreviate "finite Hopf algebra" for a finite dimensional one. 
Let A be an algebra, B a coalgebra. We shall always consider the algebra structure 

in Jlom(B,A) given by the convolution product/ * g(b) = f(b(\))g(b(2)) [Sw], unless 
explicitly stated. (An exception: S~l will denote the inverse of the antipode—always 
assumed bijective—for the composition). The group of invertible elements will be de­
noted by Reg(B,A); its unit will be sometimes denoted by 0. Suppose in addition that A 
and B are Hopf algebras; then we denote Regj (B9A) = {<j> e RQg(B9A) : </>(l) = 1}, 
Reg£(B9A) = {</>€ Reg(B9A) : e<j> = e}9 Regu(B9A) = R e g l 0 M ) n R e g , ( £ , ^ ) ; these 
are subgroups of Reg(B,A). 

The left (resp., right) adjoint action of a Hopf algebra on itself is Ad(b)a = 6(i)#5(6(2)) 
(resp., Adr(b)a = S(b(i))ab(2))', the right (resp., left) adjoint coaction is ad(a) = a^ (8) 
5(a(i))a(3) (resp., ad/(a) = a{2) ® a(i)5(fl(3))). 

1.1 Quantized enveloping algebras. In this subsection, we recall the construction of 
some algebras related to quantum groups at roots of 1. 

Let q be an indeterminate. Given r9s9d G No, we denote (as usual) 

r + s\ = [r + s]ld 

r \d V\\d\_s\\d 

(fr _ -ar 

q Q \<h<r 
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NOTES ON EXTENSIONS OF HOPF ALGEBRAS 5 

Let g be a complex simple finite dimensional Lie algebra of rank n; let A = (ay) be the 
correspondingCartan matrix. There exists a diagonal matrix D = (d\,...,dn) G ~Lnxn 

such that DA = AD and detZ) ^ 0. We shall further assume that the rf/'s are positive and 
relatively prime. 

Let UQ be the universal enveloping algebra of the split Q-form of g. It is well-known 
[K] that ZIQ has a Z-form Ui (of the Hopf algebra structure). One can therefore consider 
&R = &L ®z R, for any ring R. Let ei,fh ht, be the usual generators of g; let e|r) = -ft, 
frt = £9 (*.-) = W-iH*r^i)? r € f̂ 0> xhese will be also the notation for their images 
in ZIR. The subalgebra spanned by the e^p (resp.,^r), (^)) will be denoted UR^ (resp., 
&R-, ilR,o)' It is known [K] that the following elements form a basis of UR. 

where the a/'s, fey's and Q'S are non-negative integers. Here {eai,...eaN} U {/*/} U 
{fax, • • - ^ } is a Chevalley basis of g. 

Let P (resp. Qv) be the free abelian group with basis a;,- (resp. a)\ \ < i < n. Let 
(, ): P x g v —» Z be the bilinear pairing defined by (ui9 aj) = Sy. Let ay G P be defined 
by (ay, aV) = a,y and let g (resp. g+) be the subgroup (resp. the subsemigroup) of P 
generated by ct\,..., a„. 

Let Si be the linear automorphism of P defined by st(uj) = ojj — ^ a , ; let W' be the 
subgroup of GL(P) generated by the s,'s. Let II = {a\,..., an}, R = 'M T̂l (the set of 
roots) and R+ = R H Q+ (the positive roots). 

For i 7̂  j , let wzy = 2,3,4,6 whenever a,yay/ = 0,1,2,3. Let (8 be the group presented 
by generators 7} and relations 

TiTJTi'.. = TjTiTj.--9 i±j 

with rriij factors in each member of the equality. It is well-known that 7} \—> s,- defines an 
epimorphism from the braid group # onto the Weyl group *W. 

Let (| ):P x g —• Z be the bilinear non-degenerate form defined by (t4-| ay) = d&j; 
we have (a,-|ay) = dtdy = -̂ay,*; ( | ) is ^-invariant. 

DEFINITION 1.1.1 ([DR], [J], SEE ALSO [L5], [DCKP]). The simply connected quan­
tized enveloping algebra Up is the associative Q(^)-algebra given by generators Ei9 F/, 
Li, Li~~l and relations 

L,£, = ^ £ , L , - , Z,F, = g-^F/L, , 

E,F, -FjEi = h^._^di, 

and if i^j 

£ (-l)hE<e)EjE<h) = 0, £ ( - l y ^ F / f = 0. 
h+l=\-Oij h+l=\-au 
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6 NICOLAS ANDRUSKIEWITSCH 

Here £f} denotes E) divided by [h]\di (idem for i f 0 ) ; furthermore, for /? = E « G P, 
one denotes^ = 11/V', andT^/ = Kar 

For any lattice M,PD MD Q,UM denotes the Q(g)-subalgebra of Up generated by 
Ei, F; and Kp (1 < / < n, (3 G A/)- Thus U = UQ is the adjoint quantized enveloping 
algebra, as first defined by Drinfeld and Jimbo. Let U+ (resp., (/_, C/M,O) be the Q(#)-
subalgebra of Up generated by Eh 1 < / < n (resp., by the F/'s, by the Kp for /3 G A/). 

It is well-known that £/> (and a fortiori any (7M) carries a Hopf algebra structure, with 
comultiplication A, antipode S and counit e defined by 

A(Ei) = Ei®l+Ki®Ei A(F/) = F/®«r-1 + l ® F / AZ,/= Z,/<g> Z, 
S(F,) = - t f r 1 ^ 5(F/) = - F A S(L/) = I /"1 

e(£/) = 0 e(F/) = 0 £(! /)= 1. 

Now we recall the action of *B by algebra automorphisms on UM defined in [LI]. (It 
is well-known that Mis ^-stable). Denoting still by 7} its image in PKXA{UM), one has 

TiiKp) = Ks.(p), Tj(Ei) = —FjKi, 7/(F/) = —Kf £/, 

and if/ ^ y 

W ) = E (-Vfq-*'tfpEtf\ UFj)= £ (-lY^Ff^j^. 

Fix a reduced expression H>O = 57, • • • ^ of the longest element of W; thus TV is 
the number of positive roots. Then one has an ordering {/?i,... ,(3N} ofR+ by setting 
/3t = sh • • • $/,_,(«/,). Let Ep = Th • • • 7},_, (£/,), Fp = Th--- Tit_x(Fit). Let us also denote 

4* ) = r/l-..rl^1(4*>). 
Now let us introduce some Z[^,^_1]-forms of (/A/. First we present a form due to 

Lusztig. Let Kr,0 
h 

Kr,c 
h 

, where 

n 
qd,(c+i-s)K. _ q-di(c+i-s)Kri 

\<s<h Q Q 

DEFINITION 1.1.2 (cf. [L1 ]). Let U be the Z[q, q~l ]-subalgebra of U = UQ generated 
by Jgf >, Ff\ Kf\\<i<n,he N0. It is known that 

(1) Zl is a Hopf subalgebra of 17. Precisely (c/ [L5], [dCL]), 

A(^}) = £ qW-n^K] ® £f>, 
T=o 

A(/f >) = Ys^^F?®^^' 
j=0 

h .r r 1 . . 
®KhrJ 

(1.1.3) 

4 ( [*] ) -5^ 
(2) 1/ is a form of [/, i.e. W ®Z[,,,-i] Q(tf) ^ t/. 

A - 7 

https://doi.org/10.4153/CJM-1996-001-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1996-001-8


NOTES ON EXTENSIONS OF HOPF ALGEBRAS 7 

(3) The elements 

withh\,...,hN,ti,...,t„,l\,...,lN € No, 5, = Oor 1, form a basis of W. 
We recall now some more notation, this time from [dCP]: 

£, = total*)/2 - q-^I^Ei- F, = (q(a'^l2 - q^^F,; 

and more generally, 

£ A = fo<MA>/2 - 9"(ftWr)/2)EA; /% = (<7W')/2 - q^liyp^ 

DEFINITION 1.1.4 (c/ [DCP]). Let .% be the smallest ^-stable 2[q, #~ ̂ -subalgebra 
of UM generated by Ei9 Ft and Kp91 < i < n, /3 G M. It is known that 

(1) J?A/ is a Hopf subalgebra of UM> 

(2) .% is a form of Ifo, i.e. .% ®z[ĝ ->] Qfa) - ^ 
(3) The elements 

withAi,...,/*ATJI,• -.JN€ NO,j8 € Af,formabasisof.%. 
We shall abbreviate J? = J3p. 

Let i? be a ring, v Gi?an invertible element, and Z[<7,g~l] —> i? the ring homo-
morphism sending q \—> v. The Hopf algebra over i? obtained by extension of scalars 
U ®z[q#-\-\ R is denoted by UR. In the same vein, J%R denotes J? ̂ zfo,?-1] R- The ma*11 ex­
ample we are interested in is the cyclotomic field B = Q(v), where v is a primitive £-root 
of unity (£ is odd and coprime to 3). We shall denote by the same letters the images of E, 
etc. in the respective specializations. %% has a central Hopf subalgebra Zo generated by 
the monomials El£ • • • E^K^^ • • • F^1 (see [dCP]), which is in fact isomorphic to 
the algebra of functions on the group dual (in the sense of Drinfeld) to the group corre­
sponding to g. This algebra plays an important role in representation theory of quantum 
groups at roots of 1, see [dCP], [dCKP]. 

1.2 Exact sequences. We recall here the definition of short exact sequences given in 
[AD], [Sch]. Consider a sequence of morphisms of Hopf algebras 

( O 0—>A^C-?-*B—>0 

where 0 denotes the trivial Hopf algebra T. We shall say that (Q is exact if and only if 
the following conditions hold 
(1.2.1) i is injective. (Identify in such case A with its image.) 
(1.2.2) 7r is surjective. 
(1.2.3) ker7r = Q(^)+. 
(1.2.4) L(A) = LKer(7r) = {x e C: (TT ® id)A(;c) = 1 <g> x}. 
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8 NICOLAS ANDRUSKIEWITSCH 

Either (1.2.3) or (1.2.4) imply m = eA \B (the trivial morphism of Hopf algebras). More­
over, if A —L—> C (resp., C -^-> B) is faithfully flat and i{A) is stable by the left adjoint 
action (resp., faithfully coflat and B is stable by the left adjoint coaction), then (1.2.1), 
(1.2.2), (1.2.3) imply (1.2.4) (resp., (1.2.1), (1.2.2), (1.2.4) imply (1.2.3)) andvr is faith­
fully coflat (resp., t is faithfully flat) (see [AD, 1.2.5, 1.2.14], [Sch], [T5]). Notice that 
L(A) = LKer(7r) implies L(A) = RKer(7r) and hence A is stable for both adjoint actions; 
(1.2.3) implies the dual statement. 

One says that a Hopf subalgebra A ^ C (resp., a quotient Hopf algebra C —» B) 
is (left, right, or strong) normal (resp., conormal) if A is stable for the left, right, or 
both adjoint actions (resp., B is a quotient comodule for the left, right, or both adjoint 
coactions). 

EXAMPLE. Let us consider the algebra generated by three elements x and g±1 with 
relations gg~l = g~lg = 1 andgxg~l = q2x, for some q £ 1. It has a Hopf algebra 
structure given by 

Afe) = g 0 g , S(g) = g~\ e(g)=l, 

A(x) = JC ® g + 1 ® JC, 5(x) = — xg~l, e(x) = 0. 

Then by the quantum binomial formula one has 

A(x") = E ^ " - 0 

t=0 
Jt"- '®^- ' * ' . 

Assume further that q2 is a primitive «-root of 1; then A(JC") = x w 0 g / l + l 0 x w . LetX>„>OT 

be the Hopf algebra generated by x and g, with the preceding relations and structure plus 
x" = 0, g1™ = 1, for some m £ Z. This algebra has dimension /i2m and it is isomorphic 
to the dual of the quiver Hopf algebra constructed in [Ci] (use [Ci, 3.8] to prove the 
isomorphism). The Hopf algebra T)„ := £)Wji was introduced in [Tf] generalyzing an 
example of Sweedler (namely, the case n = 2). It is isomorphic to the +-part of the 
Lusztig kernel corresponding to s£(2) discussed in Section 3.4. The Hopf subalgebra 
of ^n,m generated by g" is central (indeed it is the Hopf center by 3.3.9 below and the 
Appendix) and one has an exact sequence 

0 — • l[g*] —> ^n,m — ©„ —> 0. 

The preceding notion of short exact sequence is supported by the following more 
general definition. A sequenced —> C — • B is exact if and only if (1.2.3), (1.2.4), 
(1.2.5) and (1.2.6) hold, where 

(1.2.5) ker tC^(HKerO+^. 
(1.2.6) HKer(HCoker7r) C TT(Q. 

/ 
Here, for a morphism of Hopf algebras X—+ 7, one denotes 

HKer(/) = {x £ X: (id 0 / ® id)A2(x) = JC(D ® 1 ® x{2)}9 

HCoker(/) - Y/Yf(X+)Y, LCoker(/) = Y/Yf(X*). 
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This definition is stronger than the one given in [AD] because it also requires ir to have 

a Hopf image. A long sequence • • • —> A\ —'-* Ai+\ -^-> Ai+2 —> - i s exact if 

and only if each "piece" At —^ Ai+\ -^-> Ai+2 is. Thus for infinite sequences exactness 
means the same with respect to the preceding definition or to [AD]. Observe also that 
. . . —> ^. __!_> ^ /+1 —> . . . is exact if and only if both • • • —> At —-> V —» 0 and 
0 —> V —> y4/+i —»• • • are exact, where V = Imfi = HKer//+i. 

LEMMA 1.2.7. (i) The sequence 

(deft) o - ^ A ^ c ^ B 

is exact if and only if(1.2.1), (1.2.3), (1.2.4), (1.2.6) hold, 
(ii) The sequence 

(Gight) A^C^-*B—+ 0 

is exact if and only if (1.2.2), (1.2.3), (1.2.4), (1.2.5) hold. 

PROOF, (i) is left to the reader. 
(ii) C -̂ > B —• 0 is exact if and only if -K is surjective and ker7r C C(HKer7r)+C. 

Assume that (Gight) is exact; then ker7r C Ci(A)+C C Ct(A)+ and the other inclusion 
holds because L(A)+ C ker TT. Conversely, assume (1.2.2,3,4,5). As ker7r is a two-sided 
ideal,^ -^C^Bis exact; by (1.2.3, 5) C-^ B - - 0 also is. • 

We collect a number of results about faithful (co)flatness due to Nichols-Zoeller and 
Schneider. 

THEOREM 1.2.8. (i) (fNZJ) Let B c-^ H be an inclusion of finite Hopf algebras. 
Then every left (//, B)-Hopf module is free as left module over B. In particular, H is free 
over B. 

(Recall that a (i/,Z?)-Hopf module M is a left ^-module and a left //-comodule such 
that the coaction M —* H ® M is a morphism of ^-modules.) 

(7/> ([Sch, 3.3]) Noetherian Hopf algebras are faithfully flat over its central Hopf 
subalgebras. 

(in) ([Sch, 2.1(2)J) Hopf algebras are free over finite strongly normal Hopf subal­
gebras. 

(iv) ([Sch, 2.1 (1)J) Hopf algebras are faithfully coflat over its finite strongly conormal 
quotient Hopf algebras. 

2. Invariants. 
2.1 . Let A be an algebra, B a Hopf algebra. Recall that a weak action of B on A is a 
morphism of vector spaces —KB<S>A—>A, b®ay-*b^ a, satisfying 
(2.1.1) b-^aa = (b{\) —* a)(b{2) -* a\ 
(2.1.2) b-^l = e(b)l, 
(2.1.3) 1— a = a. 
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We shall say that it is an action if in addition it satisfies the module axioms (no confusion 
should arise between actions on modules and actions on algebras, the latter including in 
addition the axioms (2.1.1, 2)). 

The significance of (2.1.1), (2.1.2) is the following [Sw]: Let Q:A —• Uom(B9A) be 
defined by 

(2.1.4) ®(a)(b) = b — a. 

Then 0 is a morphism of unital algebras if and only if (2.1.1), (2.1.2) hold. 
Now suppose that A is also a Hopf algebra. One is naturally led to consider some Hopf 

algebra structure on Hom(B,A). Let A: Hom(B,A) —> Hom(Z? ® B,A ® A) be defined by 

(2.1.5) A(f)(b®b) = A(f(bbj). 

Hom(B,A) is a complete topological algebra with respect to the topology defined by 
the annihilators of finite dimensional subspaces of B [Tl]. This topology will be called 
the finite topology. Moreover, Hom(2? ® B,A ®A) is the completion of Hom(Z?,,4) ® 
Hom(B,A) with respect to the product topology. It is not difficult to see that (2.1.5) pro­
vides Hom(B,A) a structure of topological Hopf algebra; the counit is given by 

(2. 1. 6) (£Hom(ZM), 1) = (£A, T(lB)) 

and the antipode by 

(2. 1. 7) SHom(BJ)(T) = SA TSB-

However, 0 , defined by (2.1.4), is not, in general, a coalgebra morphism. This is, how­
ever, true if —* is the trivial action b -^ a = e(b)a; the morphism yl —• Hom(B,A) for 
the trivial action will be henceforth denoted by Y. 

In some circumstances, it is possible to twist the comultiplication of Hom(B9A) in 
order to have a morphism of Hopf algebras. Assume further the existence of an algebra 
C containing A as a subalgebra, and \ £ Reg(2?, Q such that 

b - - a = X(b(i))ax~\b(2)). 

Define Ax: Hom(£, A) —> Hom(# (8) B, C ® Q by 

LEMMA 2.1.8. Assume that ImAx C Yiom(B®B,A ®A). Then (Hom(5,^), Ax) is 
a Hopf algebra, with counit given by (2.1.6) and antipode by 

SxWW) = xibm)S{x~\Sb(,m^))x{Sb(2)))X-\b(5)). 

Furthermore, © is a morphism of Hopf algebras. 

PROOF. Left to the reader. • 
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2.2 The Hopf algebra of invariants. We want to attach, to a Hopf algebra B acting on 
a Hopf algebra^ as in the preceding subsection, a Hopf subalgebra AB of A such that 
b —̂  a = e(b)a for all b G B, a G AB, and maximal with this property. We can not take 
directly profit of Hopf equalizers (cf. [AD], [Sch]) because the Hopf algebra structures 
on Hom(2?,,4) making © and Y morphisms of Hopf algebras are in general different. 

Let A be a Hopf algebra, C an algebra,/, g:A —> C two algebra morphisms. Define 

Equal(/*,g) = {aEA: a({) ®f(a{2)) ® a{3) = a{X) ® g(a{2)) ® a(3) G A ® C ® A}; 

it is not difficult to show that Equal(/*,g) is a sub-bialgebra of A (since our base ring is a 
field). To obtain a Hopf subalgebra we use the following recipe (compare with [M], [A]). 

LEMMA 2.2.1. Let A be a Hopf algebra, E CAa sub-bialgebra. Then SlE is again 
a sub-bialgebra, for any i G Z, and 

H(E)= p|5'£ 
iez 

is a Hopf subalgebra of A. IfH is any Hopf subalgebra of A contained in Et then H C 
H(E). 

PROOF. &E is a sub-bialgebra because S is antimultiplicative and anticomultiplica-
tive. Therefore H(E) is a bialgebra (cf. [Sw, p. 45]) and clearly S(H(E)) = H(E); thus it 
is a Hopf subalgebra. The rest is obvious. • 

Here one takes negative powers of the antipode because of the convention on the 
bijectivity of the antipode. 

COROLLARY 2.2.2. LetHEqxxa\(f,g) = H(Equa\(f,gj), a Hopf subalgebra of A. IfH 
is any Hopf subalgebra of A such thatf(x) = g(x)for anyx G H, then H C HEqual(/",g) 
(and clearly HEqual(/*, g) satisfies this property). m 

Let B act weakly on A as above and denote 

A(B) = Equal(0, Y), AB = HEqual(0, Y). 

Then A^ (resp., AB) is the maximal sub-bialgebra (resp., Hopf subalgebra) of A among 
those whose elements a satisfy b—*a = e(b)a for all b G B. We shall say that AB is the 
Hopf algebra of invariants (of the weak action of B on A). 

DEFINITION 2.2.3. Let B = A act on itself by the adjoint (cf. Section 1.0). In this case, 
^(4) _ ^A WJJJ b e caiie(j the Hopf center of A. It is the maximal central Hopf subalgebra 
of A. 

PROOF OF THE EQUALITY. Observe first that A^ contains any coalgebra consisting 
of central elements. For, if H is such a coalgebra and a G H then 

fl(l) ® 0(fl(2)X*) ® 0(3) = «(!) ® *(1)0(2)5(A(2)) ® fl(3) = 0(1) ® e(A>*(2) ® 0(3). 
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12 NICOLAS ANDRUSKIEWITSCH 

The elements ofA^ are central, and a fortiori those of S(A(A)): if 0 £ A^ and h £ A 
then ha = h^aSQi^h^) = ah. T h u s y ^ =AA. m 

EXAMPLE. Let A be either the universal enveloping algebra of a Lie algebra g or 
the group algebra of a group G, and suppose that char 7 = 0. Then from the fundamen­
tal theorem of cocommutative Hopf algebras, we infer that its Hopf center is either the 
universal enveloping algebra of the center of g, or respectively the group algebra of the 
center of G. 

2.3 The Hopf algebra ofcovariants. Now we pass to the dual version of the material 
presented above. 

Let A be a Hopf algebra, B a coalgebra. A linear map p.B —» B ®A is a weak coaction 
if 
(2.3.1) (8 ® id)p = m24(p ® p)S9 where m2A:B®A®B®A - * B ® B ®A is the map 

c®/*®d®£i—> c ® d <g) hk. 
(2.3.2) (eB®id)p = eB® 1. 
(2.3.3) ( id®^)p = id*. 
Again, we shall say that it is a coaction if in addition it satisfies the comodule axioms. 

Let us consider Hom(A9B) with the coalgebra structure given by (2.1.5). Let 
Homjin(A,B) be the subspace of maps with finite rank; Homfin(A,B) ~ A* ® B. Then 
A (Hom^„ (/*,£)) C Hom^„(^ ® 4̂,2? ® 5). Indeed, the image of A(/) is contained in 
C®C where C is the coalgebra generated by Im/; and C is finite dimensional if Im/ is 
[Sw, Corollary 2.2.2, p. 47]. (Observe that in fact A(a ® &)(* ® jO = (a9xy)b(\) ® Z>(2)). 

Now for any p: 5 —>5 ® A, let S: Hom^,(/4, B) ~ A* ® 5 —* 5 be the map defined by 

5 (a ® b) = (id® a, p(Z?)). 

LEMMA 2.3.4. E is comultiplicative if and only if p satisfies (2.3.1), and preserves 
the counit if and only if p satisfies (2.3.2). 

PROOF. Left to the reader. • 

When p is the trivial coaction (p(b) = 1 ® b\ we shall denote 77 instead of S. Then 
r](a®b) = (a,l)b. 

LEMMA 2.3.5. Let B be a bialgebra, C a coalgebra, f,g: C —• B two coalgebra 
maps. Let Coeq(/*,g) = B/BJB, where J is the image off ~ g. Then Coeq<f,g) is a 
quotient bialgebra ofB. Moreover, ifq: B —> D is any morphism ofbialgebras such that 
qf = qg, then itfactorizes through Coeq(/*,g). 

PROOF. Left to the reader. • 

LEMMA 2.3.6. Let B be a Hopf algebra, p.B —» C a quotient bialgebra and let I 
denote the kernel of p. Let J = T,„ez SnI andH(C) = B/J. Then H(C) is a quotient Hopf 
algebra ofB. Ifq: C —> His a morphism ofbialgebras to an arbitrary Hopf algebra H, 
then qfactorizes through H(C). 

PROOF. Left to the reader (use [Sw, 4.0.4]). • 
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In particular, we denote HCoeq^g) = //(Coeq(/*,g)). 
Now let p: B —•> B ® A be a weak coaction of a Hopf algebra A on a Hopf algebra 5 

and set 
£(i4) = Coeq(H, rj), BA = HCoeq(S, i;). 

Let D be a quotient coalgebra of B. We say that D trivializes the coaction p if the following 
diagram commutes: 

B -?-> B®A 

q | 14®id 
_. trivial ,_ ^ . 

D —• D®A. 

LEMMA 2.3.7. B(A) (resp., BA) is the minimal quotient bialgebra (resp., Hopf alge­
bra) among those trivializing p. 

PROOF. Let b e B, x = p(b)i ® p(by - 1 ® b. Let (aj) be a basis of A, (a/) its dual 
basis; then* = £yx, 0 ay, where JC,- = (id(8)o/,x). With this notation, D trivializes p if 
and only if x ekerq®A (for any b e B), if and only if Xj E ker# for ally, if and only if 
ker# 2 (H — 77X0/ ® 6), for any j , b eB. m 

DEFINITION 2.3.8. Let ad:A—+A ®A be the right adjoint coaction. T h e n ^ ) = AA 

will be called the Hopf oocenter of A. 

PROOF OF THE EQUALITY. (Compare with [AD, before Proposition 2.16]). Let us say 
that a quotient bialgebra q: A —> C is cocentral if #(tf(i)) 0 0(2) = q(a(2)) <8> 0(i) for any 
a E A. We claim that q:A^> C is cocentral if and only if trivializes the adjoint coaction, 
i.e. if and only if 

q(a{2)) ® 5(tf(i))a(3) = q(a) <8> 1. 

For, let JC, j : >4 —+ C <g) ̂ 4 be the applications x(c) = q(c) ® 1, y{c) = 1 (g) c; >> is invertible 
with respect to the convolution product, and in factj-1(c) = 1 ® 5 c But "£> cocentral" 
is equivalent to x * j = j> * JC, whereas D trivializes the adjoint coaction if and only if 
y~l *x *y = JC. Thus, in particular, ̂ 4 —* y^) is the minimal cocentral quotient bialgebra. 
Let I = kerA —* A(Ay, then A—>A /S(I) is also a quotient bialgebra. Thus S(I) = / and 
A(A)=AA. m 

REMARK. More generally, the Hopf centralizer of a quotient Hopf algebra/?: A —> C 
is Ac, where p = (1 <g>p)ad:A -^ A®C. One still has Ac = A^Q, with the same proof 
as above. 

2.4 Hopf systems. We introduce here a formalism inspired by the approach of [dCKP], 
[dCL], [dCP] to representations of quantum groups at roots of 1. The contents of this 
subsection will be not used in the rest of the paper. 

A Hopf system is a family of unital A:-algebras (Ag)g^G, where G is a group with 
identity e, provided with morphisms of A:-algebras 

$g,h = Agh -*Ag®Ah, g,h e G, 

ee = Ae • k, og = Ag • g - i ' 
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14 NICOLAS ANDRUSKIEWITSCH 

subject to the axioms which can be expressed by the commutativity of the following 
diagrams, for any g,h,E € G 

AgM 

(2.4.1) 

(2.4.2) 

Aghi > Ag®Ahi 

A to A 6g*m 

Agh®At —> 
Ag®Ah ®At 

A -^-> Ag 0 Ae Ag ^ A-e <> " j? 

1 1 id ®Ee 1 l ^ i d 

Ag -^-> Ag®k ^4g —> A: ® Ag 

Ae 
eelg 

—> Ag 
Ae —> ** 

i 

Ag®Ag-i 

]mg 
id ®5 i 

—> Ag ® Ag 

5^_i <8>id 
^! g - i <&Ag > 

]mg 

Ag®Ag 

(2.4.3) 

Here, lg and mg are, respectively, the unit and the multiplication of Ag. Note that in 
particular^ is a Hopf algebra and eachv4g is anv4e-bi-comodule. On the other hand, a 
Hopf algebra is the same thing as a Hopf system over the trivial group. We will always 
assume that Sg is bijective, for every g. 

Let us denote, for/? G N, 

= la: Gx ••• x G—• J\ Agl <g> • • • ®Agp : a(gu...,gp) eAgl 
i <. v < >4r. 

ft.-* 
/?—times 

and r = Y\. When necessary, we will write TP(G, Ag) instead of 1^. Each Tp is a ̂ -algebra 
with pointwise operations. The elements of Tp will be called sections. The support of a 
section a is, as always,the set {g G G : a(g) ̂  0}. Let A: T —> T2, e.T —+ k,S:T —+ r°p , 
be the morphisms defined by 

(Aa)(g,h) = ^ ( a f e A ) ) , e(a) = ee(a(e)), S(a)(g) = S^(ofe"1)). 

and let also A12, A23 = T2 —> T3 be given by 

A12(a)fe, A, £) = ( ^ ® id)a(gA, £), A2 V ) & , A, t) = (id®SM)afe, A*) 

Then the axioms (2.4.1)-(2.4.3) imply 

(2.4.4) 

(2.4.5) 

(2.4.6) 

A12A = = A23 A. 

(id®£)T = (e <g> id)A = idr, 

r id®5 
1 2 • 1 2 1 2 • A2 

Aj [m 4 I' 
r ^U r r -^ r 
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Here e ® id and id ® e denote the moronisms from T2 to F given by (e 0 id)(a)(g) = 
(£e®id)(a(e,g)),(id(g)e)(a)(g) = (id®ec)(a(g,e)); 1,/ware defined by l(A)(g) = Alg, 
where lg is the unity oL4g; ma(g) = mga(g,g), where mg is the multiplication of Ag\ and 
S® id (resp.,id ®S) denotes the morphism given by (S® id)a(g, h) = (£g-i ® id)a(g_1, h\ 
(resp. (id ®S)afe, ft) = (idOSlk-iOffe,*-1)). 

Let (Ag)geG, (Bg)geG be two Hopf systems. A morphism of Hopf systems (Ag) —> (Bg) 
is a collection of morphisms of A>algebras ipg: Ag —• Bg satisfying the natural compatibil­
ity requirements. Such morphism gives rise to algebra maps x/jp: Tp(G,Ag) —> TP(G, Bg). 
Let t/>i = t/>; V> verifies A't/> = ifeA, S'V> — tftS, e'lp = X/JE, with the same conventions as 
above. 

On the other hand, (Ag ® Bg)gec is also a Hopf system, and the category of Hopf 
systems over a fixed group G is monoidal. 

Identify T®p with its image in Tp under the monomorphism which sends ct\®-—®ap 

in the function G x • • • x G —> UAgl ® • • • ®Agp, (g\,...,gp) •—• <*i(gi)® • • • ® <*/»(£/»). 
Sometimes it is possible to find subalgebras Tf of r such that ATf C Tf ® ry, 5(1/) = I / ; 
axioms (4), . . . , (6) guarantee that they are actually Hopf algebras. 

Let X be a set, (Vx)x£X a family of A: vector spaces, and denote T(X, Vx) = {s:X —* 
rL FJOSOO G Fx}. Let 5xv(v G FX,JC G Jf) denote the element of r(X,(Kx)) defined by 
(8xv)(y) = SXyV. Let (v/)/G/j be a basis of Fi. Then the family (Vi8x)x£x,ieix is linearly 
independent and if Xis finite, is a basis of the vector space T = T(X, Vx). In particular, 
the natural application T ® F —> T(X x X, Vx ® Fy) is a bijection. It follows that for a 
Hopf system(v4g)g£G over a finite group G, T(G,^g) is a Hopf algebra. 

Conversely, let Cbe a Hopf algebra and let A be its Hopf center. Assume that A is the 
algebra of regular functions on an algebraic group G (this will be always the case under 
certain "finiteness" assumptions). Let g G G, fM% the corresponding maximal ideal of 
A, Ig the two-sided ideal of C generated by </>(̂ Q> and^4g = C/Ig. If ft also belongs 
to G, there exists a morphism 8gih:Agyh —* Ag®Ah making commutative the following 
diagram: 

c - ^ c^c 

C//g» ^ > C/Is®C/Ih 

Let 2? = ,4,,; one has an exact sequence of Hopf algebras 0—* A —• C —> B —» 0 (use 
Schneider's theorem 1.2.8(H); so in the preceding one should assume C noetherian). Fi­
nally let Sg:Ag —»v4°?, be the morphism in the bottom horizontal arrow of the following 
commutative diagram, whose top horizontal arrow is the antipode of C: 

C — C 

I I 
C/Ig -^ C/Iri 

The introduced morphisms of algebras <Sgj/,, ee, Sg satisfy the axioms expressed by (2.4.1— 
3). There exists an algebra morphism a: C —• T(G,Ag) given by a(c)(g) = class of c in 
Ag. 
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16 NICOLAS ANDRUSKIEWITSCH 

Now assume further that C is a Poisson-Hopf algebra. Then A inherits the Poisson 
structure and therefore, G is a Poisson algebraic group. Indeed, if x G C and z E Z := 
the center of C, then 

{x,z}y = {x,zy} - z{x,y} = {x,yz} - {x,y}z = y{x,z}. 

Consider the intersection T of all the Poisson subalgebras of Z containing A; this possible 
by the preceding computation. Then T is a Hopf subalgebra, by the following argument 
(taken from [dCP]): the algebra U = {t G T: A(f) G 71® T} contains^ and is closed by 
the Poisson bracket, so it equals T\ thus T — U. But by definition of Hopf center, T — A. 

3. Extensions of Hopf algebras. In this section, we pursue the study of extensions 
of Hopf algebras begun in [AD]; cf Section 1.2. 

3.1 Construction of cleft extensions. Let A, B be two Hopf algebras. Let also be given 
a weak action —K B ® A —> A (cf Section 2.1) and a weak coaction p:B —* B®A (cf 
Section 2.3). Let a: B x B —> A be a bilinear map; assume that 

(unitary condition) 

(3.1.1) a(K\) = a(\,h) = e(h)\\ 

(cocycle condition) 

(3.1.2) [A(1) - - o-(/(i),/w(i))]a-(̂ (2),/(2)/W(2)) = <KAo),/(i)MA(2)/(2),w); 

(twisted module condition) 

(3.1.3) (h{X) - - (/(i) — aj)a(h(2h /(2)) = cr(h(ih /(i))(A(2)/(2) - " *), 

for any h,l,m £B and a G ^4. 
Furthermore, let r: 5 —»̂ 4 ® ̂ 4; assume that 
(counitary condition) 

(3.1.4) ^(6)1^ = (eA ® idM*) = (id ®eAy{b)\ 

(cycle condition) 

(3.1.5) m^3 (A ® id ®r ® id)(r ® p)A = (id <8)/ŵ®2 )(id ® A ® id ® id)(r ® r)A; 

(twisted comodule condition) 

(3.1.6) (id ®mA& )(id ® A ® id ® id)(p ® r)A = ro^2 (id ® id ® p ® id)(r ® p)A, 

wheremx^2:A <®A®B®A®A —> 2? ® ̂ 4 ® v4 sendsA®&®c®A®£t-»c®AA®££. 
Further, assume that the following compatibility conditions hold: 

(3.1.7) p(\) = r(l) = 1 ® 1, e o <r = e ® e, e(fl — 6) = e(a)e(6), 
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(Parts of this axiom are redundant, see [T2]). 

(3.1.8) A(6(i) — ayr(b(2)) = r(6(1))((p(fe(2))/ — a(l)) ® p{b{1)y{b^ — a(2)j). 

(l ® <K6(i) ® ki)))p(b(2)b(2)) 

= p(bi)(p(Bi)k ® (6(2) — p(5l)*))(l ® 0(6(3) ® 5(2))). 

(3.1.10) (l ® 6(1) — fl)p(6(2)) = p(6(i))(l ® 6(2) — fl). 

(3.1.11) 
A((T(6(i)®5(i)))r(ft(2)6(2)) 

= T(6(1))(p(i(2))/ - 7(5(1)), ® P (W(*0) - ^ ( 1 ) / ) 

(<T(P(6(4))/ ® P(5(2)),) ® p(b(4)y(b{5) — p(5(2))*)) (l ® (7(6(6) ® 5(3)))-

(In all the preceding formulas, we use implicitly the usual tensor product multiplication 
in A® A.) 

Let C = AT#aB denote the vector space A ® B provided with the multiplication 

(a ® 6X« ® 5) = a(6(i) -^ 5M*(2), 5(i)) ® 6(3)5(2) 

and the comultiplication 

A(fl ® 6) = fl(l)T(6(i))y ® p(6(2))/ ® ai2)T(b{i)yp(b(2)y ® 6(3). 

Let i: >4 —* C and TT:C—*B be given by i(a) = a ® 1, 7r(<z ® Z>) = £(a)&. v4#aZ? (resp., 
J4T##) denotes the same space considered merely as an algebra (resp., as a coalgebra). 

PROPOSITION 3.1.12 ([MJ], [AD]). C = AT#aB is a bialgebra. Moreover, if a and r 
are invertible with respect to the convolution product, then C is a Hopf algebra and its 
antipode is given by 

S(a#b) = [a-\Sp(b{2))h ® P(6(3))y) ® 5p(6(i))/] 

[^^^^(^^(^^^^(^/^(^yr-1^)/) ® 1]. 

In this case, 

(C) 1 — > A - ^ C - ^ B —> 1. 

is an exact sequence of Hopf algebras. 
Conversely, let (C) be an exact sequence of Hopf algebras and assume that in addition 

it is cleft (see below). Then there exist —% cr, p, r satisfying the conditions above, such that 
C~Ar#aB. 

In addition, the description of exactly which data produce isomorphic extensions is 
given in [AD, Theorem 3.2.14] (previous work under abelian restrictions was also done 
in [Si], [By], [Hf]). 
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The following definition was independently found by the authors of [AD], [By]; the 
author of the second paper was inspired by the one given in [Sch2], [Sch3] for algebraic 
groups. 

DEFINITION 3.1.13. The extension ( O is cleft if 
(a) there exists \ G Reg! (2?, Q such that (id ®7r)Ax = (X ® id)A (such x is called a 

section); 
(b) there exists £ G Reg£(C,A) such that £(ac) = a£(c\ Va G A,c G C (£ is then 

called a retraction); 

(c) CX = £BU. 

One deduces from (c) that £(1) = 1, ex = e, and henceforth 7rx = id# and ^ = id^. 
The following lemma was first proved by Byott; the author rediscovered indepen­

dently part of it before the publication of [By]. See also [Sch3, 2.1]. 

LEMMA 3.1.14. Let ( Q be an exact sequence ofHopfalgebras. The following state­
ments are equivalent: 

(i) ( O is cleft. 
(ii) there exists \ € Reglj£(fl, C) satisfying (3.1.13)(a). 

(Hi) there exists £ G Regj £(C,A) satisfying (3.1.13)(b). 
(iv) there exist a morphism ofA-modules %\C—*A and a morphism of B-comodules 

X'B-^Csuch that £x = £BU and(iQ * (x?r) = idc-

PROOF. By definition, (i) implies both (ii) and (iii). We shall show that (iii) => (i); 
(ii) => (i) is similar and will be left to the reader. 

Assume (iii). Let x- B —• C be defined by x(itc) = £-1(c(i))c(2)- X is actually well-
defined: if c G ker7r, then c — Efl/C/ for some at G A+ and hence £-1(c(i))c(2) = 
^_1(^(i))^/(i))^/(2)^(2) = 0 by the formula £~l(ac) = Z~l(c)S(a) [AD, 3.2]. Clearly, 
X(l) = 1 and ex = £'9 moreover x is invertible and x " 1 ^ ) = ^(c(i))£(c(2))- Finally, 
(id®7r)A(x7rc) = ^ ( ^ o X i ) ^ ) ® TT^" 1 (c(i))(2))7r(c(3)) = C_1(qi))c(2) ® 7r(c(3)) = 
(X <8> id)A(7rc) because £-1(c) G ,4 = LKer7r. 

We refer to [By, Lemma 4.5] for a proof of the equivalence between (i) and (iv). • 

It follows from (iv) in the preceding lemma that, in the setting of Proposition 3.1.12, 
C = AT#aB has an antipode if and only if a and r are invertible. If the last holds, then C 
has an antipode [AD], see Proposition 3.1.12. For the converse, let £: C —»A, ̂ (a ®b) = 
ae(b), x'B —* C, x(b) = 1 ®b. Clearly, \ (resp., £) is a morphism of Z?-comodules (resp., 
of ^4-modules), and they satisfy (iv) above. Therefore x and £ are invertible. But it is 
known that a (resp., r) is invertible if and only if x (resp., £) is, see [BM, Proposition 1.8] 
(resp., its dual [AD, 3.2.5]). 

In any case let x:B —> C be another morphism of right 5-comodules. Then, using 
the formula c = £(<?(i)) 0 TT(C(2)), one sees that x(b) = f(b(\)) <8> 6(2) for some/: B —* A 
(explicitly, f(b) = £x(6)). Conversely, any linear map/: B —> A induces a morphism of 
comodules x> B —y C by that recipe; and x(l) = 1 if and only if/(l) = 1. Assume that 
X is invertible. Then x is invertible if and only if/ is (observe that x = (if) * x)- Tims 
the set of sections is in bijective correspondence with Reg^B.A). 
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Back to the general situation, let £: C —* A be a morphism of left v4-modules and set 
g(b) = £(1 <8> *)• O n e has £ = £ * g7r and therefore, if the extension is cleft, the set of 
retractions is parametrized by Reg£(B,A). 

Assume now that a is trivial, i.e. that x is a morphism of algebras (such extensions 
are called in the literature—under commutativity assumptions—Hochschild extensions 
[DG]). Then \ is a morphism of algebras if and only if 

(3.1-15) Abb)=f(b(l))(b(2)-f(b)), 

and/(l) = 1. Dually, if r is trivial (that is, if £ is a coalgebra map), then £ is a coalgebra 
map if and only if 

(3.1.16) A(f(bj) = (1 O/ft ,))) (f{pib(2))j) ® P(b{2)y), 

and eg = e. 
In a cleft extension like (C), C is free as a left module over A.1 There are examples of 

commutative, cocommutative Hopf algebras which are not free over some Hopf subal-
gebra [OS] (this example was rediscovered in [T3]); thus there are extensions which are 
not cleft. On the other hand, there are some important positive results, for example the 
following is a consequence of [Sch4, Theorem 2.2], whose proof is based on a result by 
Kramer and Takeuchi (the commutative case was first treated in [OS]): 

THEOREM 3.1.17. An extension of finite dimensional Hopf algebras is always cleft. 

Other useful criteria are stated in [Sch4, Theorem 4.3]. These criteria apply in our 
setting because in any exact sequence (C), C is an 5-algebra extension of A (and an A-
coalgebra extension of B). Moreover, the Hopf algebra extension is cleft if and only if the 
algebra extension is (this is the content of Lemma 3.1.14). Now an extension of algebras 
is cleft if and only if 

(1) it is Galois, 
(2) it has a normal basis. 

(See [DT], [BCM], [BM]). In the case of our interest (exact sequences like (C)\ one does 
not need to wonder about the Galois property: if i is faithfully flat, then C is a Galois B-
extension of A by [T3]. Now "normal basis" means that C is simultaneously isomorphic 
to A ® B as yl-module and B-comodule. Thus the notion of extension managed by several 
authors, beginning by Singer [Si], coincides with that of cleft extensions, as in this paper. 
The interested reader could find more examples of extensions which are not cleft arising 
from the theory of algebraic groups in [Sch3] (even of Hopf algebras which are free, but 
not cleft, over a suitable Hopf subalgebra). A nice survey on what is known about Hopf 
Galois extensions is [Sch5]. Finally, we quote a result which follows from [BM] and will 
be useful later. 

The following remarks are well-known to specialists in Hopf algebra theory. 
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PROPOSITION 3.1.18. Let (C) be a cleft extension of finite Hopf algebras. If A and 
B are semisimple, then C also is. 

3.2 Extensions of *-Hopf algebras. In this subsection, we shall use results quoted in 
the previous section to construct extensions of *-Hopf algebras. We will assume that the 
base field is C. 

Let A be a *-algebra and C a *-coalgebra {i.e., C has an antilinear involution JC i—*x° 
such that X(i)° (g) xpf = *°(2) ® *°(i))- Then one endows Hom(C, A) with an involution * 
defined by 

f(c)=f(c°)*9 feUom(QA). 

Ifg also belongs to Hom(C,^4), then 

<f*gf{c) = <r*gxcy = g(c(l)yf(ci2)y = &* *rxo. 
That is, Hom(C,^4) is a *-algebra. In the same vein, Hom(^4, Q is a (topological) *-
coalgebra—notice that A°P(/)(JC ®y) = Aop (f(y ® JC)) . 

Recall now that a *-Hopf algebra is a pair (^, *), where A is a Hopf algebra, * an 
antilinear involution making it a *-algebra, and A is a morphism of *-algebras (here 
(JC ®J/)* = JC* (g)/8). Given a Hopf algebra^, it is equivalent to specify a *-Hopf algebra 
involution, or an antilinear involution JC \—> x° such that (A, o) is a *-coalgebra and m is 
a morphism of *-coalgebras. Indeed, the correspondence is given by 

x* = (5 - 1JC)°. 

On the other hand, A —> Aop is a morphism of (real) bialgebras, hence preserves the 
antipode [Sw, 4.0.4]. That is, 5(JC)* = 5_1(JC*) (compare with [W]). 

Observe also that if A, B are *-Hopf algebras, then Hom(A,B) is a (topological) *-
Hopf algebra, by f*(c) =/(c°)* as above. 

It is clear what a morphism of *-Hopf algebras is; for example, the counit and the unit 
are. Also, the various kernels and cokernels of morphisms of *-Hopf algebras inherit the 
*-structure. We shall say that a sequence of morphisms of *-Hopf algebras 

( O 0—>A-^C-^B—>0 

is exact if it is exact as a sequence of the underlying Hopf algebras. Let us fix two *-Hopf 
algebras A, B and seek for conditions on a data —% cr, p, r as in Proposition 3.1.12, in 
order to get an extension of *-Hopf algebras. 

First, we look the algebra case. It seems reasonable to impose 0 (cf. 2.1.4) to be a 
*-morphism. This translates into the following condition: 

(3.2.1) (6 — af =b°~- a*. 

Equivalents, (b -* a)* = S(bf — a\ or b - - a* = (S(b)* ~- a)\ or . . . . Let 
a:B<g)B —* A satisfy (3.1.1-3) and assume in addition that a is invertible. Analyzing the 
corresponding section x, one sees it is plausible to ask 

(3.2.2) a(b ® By = a"1 (S(b)* ® 5(5)*). 
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LEMMA 3.2.3. Let B be a *-Hopf algebra, A a *-algebra, —^:B®A —> A a weak 
action satisfying (3.2.1), a a cocycle satisfying (3.2.2). Then C = A®aB is a *-algebra 
with involution 

(3.2.4) (a ® bf = G-\b\2) ® S-X(b\x))(b0) - a*) ® b\Ay 

PROOF. The lengthy but straightforward verification is left to the reader, as well as 
that of the following dual statement. • 

LEMMA 3.2.5. LetBbea *-coalgebra, A a *-Hopf algebra, p:B —> B®Aa weak 
coaction satisfying 

(3.2.6) # ° ) = # , ) ° 0 # T . 

Let T:B —• A® Abe an invertible cycle (i.e., it satisfies (3.1.4-6)), satisfying 

(3.2.7) T{b°) = T-\bf. 

Then C = AT ®B is a %-coalgebra with involution 

(3.2.8) (a ® 6)° = Siapib^r-^b^^-^b^ ® p(6(i))/°. • 

REMARK. (3.2.6) means that S is a moronism of *-coalgebras. 

PROPOSITION 3.2.9. Let A, B be *-Hopf algebras, and —*, a, p, r as in Section 3.1. 
Assume in addition they satisfy (3.2.1, 2, 6, 7). Then C = AT#(TB is a *-Hopf algebra and 
(O is an extension of *-Hopf algebras. 

PROOF. We need only to check that the convolutions given by (3.2.4) and (3.2.8) 
agree, i.e. that {a ® b)* = 5((fl ® 6)°). Again, this is a lengthy computation which will 
be omitted, (use the formula for the antipode given in [AD, 3.2.17]). • 

3.3 Basic properties of extensions. We collect in this subsection a number of facts about 
extensions of Hopf algebras. For brevity, we shall refer to an exact sequence (C) as in 
Section 1.2. If (C) is cleft, \ a nd £ will denote respectively a section and a retraction 
satisfying (3.1.13)(c). 

(3.3.1). Let (O be a sequence with i injective and IT surjective. IfC is finite, then 
the following are equivalent 

(a) ( O is exact. 
(b) ker?r = Ct(A)+. 
(c) t(A) = LKer(Tr). 
(d) (C*) is exact, where 

(C) "T —>B* - ^ C -^->A* —• T. 
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PROOF. By the discussion in Section 1.2, the equivalence between (a), (b) and (c) 
follows from the Nichols-Zoeller theorem. However, there is a more elementary proof. 
It can be found in [By, 4.1]; the non-trivial implication between (a) and (b) follows from 
[Sw, 16.0.2]. We sketch, for further use, the proof of (a) => (d). 

We check first (1.2.4), i.e. that B* = LKer t\ Let /? G B\a £A,c G C Then 

((i* <8 id)A(/3), a®c) = (/?, ir(ac)) = (\®f3,a®c). 

On the other hand, if 7 G LKer L* then 1(A+C) = 0 and hence 7 = (3n for some /? G 5*. 
To prove (1.2.3) notice that (ker L*)1 = A and (7r*(£*)+C*)x = LKerTr. • 

(3.3.2). (i) Let D be another Hopf algebra. Then 

(C) 1 — > D ® A - ^ - > D ® C - ^ B — > 1 

is exact, where i' = id <8>t, 7r7 = e (8 7r. 
(7/) The following sequence is also exact: 

(C") 7 — > A - ^ D ® C ^ + D ® B — - O , 

w/iere f/7 = 1 <8n, 7r77 = id 07r. 

PROOF, (i) Clearly, 7r7 is surjective and t' is injective. Now ker n' — D+ <8> C + D <g> 
ker 7r = (D <g> ̂ 4)+Z) (8) C. Finally, let a, be a basis of Z) and let x = £/ a; 0 c,- G LKer 7r7. 
Applying ED (8) id to both sides of the equality defining LKer, one sees that c, G LKer IT = 
,4. 

(ii) Similar to the preceding. • 

(3.3.3). # X O « another exact sequence, then 1 —* A ®A —* C<g>C —* B ®B —> 1 
is also exact. m 

Now we give a generalization of (3.3.1). Let / /be a Hopf algebra and J a family of 
finite dimensional representations of// closed by finite direct sums, tensor products and 
taking the contragredient; we shall say that jF is tensorial. Then the linear span Tj of 
the matrix coefficients of representations in 5 is a Hopf algebra contained in the dual of 
H. Sometimes we will emphasize T j = Tj(//) . If/://' —• H is a morphism of Hopf 
algebras, then/^^F is the family of representations of//7 obtained composing with/. 

Consider tensorial families of representations iF7, 7" of 5, Cas in (C)> respectively, 
and set 7 = ^*5" . 

(3.3.4). Assume that 
(a) i?T C J77, 
(Z>; 7r*(r 7 / (5) )=r^ / (on7r*(5*) . 
/jfyl is finite then 

(C*) 1 — r > ( * ) - ^ i>„(C) -iU i > ( ^ ) — i . 
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is exact. 

PROOF. By definition of jF, L* is well defined and surjective. By (a), n* is well de­
fined, hence injective since is the restriction of an injection. One sees, as in the proof 
of (3.3.1), that LKert* = I > ( Q n TT*(£*). TO prove the assertion, we show finally 
that Tcf(A) is a quotient comodule for the adjoint coactions. But this follows from the 
following general observation: 

Let i\A —> Cbe an inclusion of Hopf algebras and let A' C A*, C C C* be dual 
Hopf algebras such that L* induces an epimorphism C* —> ^' . If A is stable by the adjoint 
actions, then A! is a quotient comodule for the adjoint coactions. Indeed, let a G ker t* = 
C" H A1. Then ((*,* ® id) ad a, a ® c) = (a, Adr(c)a) = 0 and hence (t* ® id) ad a = 0, 
which is our claim. • 

REMARKS, (i) The hypothesis on A is in order to apply Theorem 1.2.8(iv) and can 
be replaced by any requirement insuring that i* is faithfully coflat. 

(ii) By(a),onealwayshas7r*(rj,(£)) C r^,(Qri7r*(£*).Let</> G I>,(Qri7r*(£*). 
Then <j> G ir*(B°) (the image of the restricted dual of E). Indeed, ifR denotes the right 
action of a Hopf algebra on its dual, then clearly 7r* {RTT(C)(J3)) = Rc(n*(J3)) and the claim 
follows from [Sw, 6.0.3]. 

For a Hopf algebra H, let If* (resp., If0*) be the Hopf algebra obtained by taking 
the opposite multiplication (resp., comultiplication); let If** = (#°p)cop. Define (Cop), 
(Ccop), (C^P) in a similar way. One proves easily that the three are exact if ( O l s - More­
over, 

(3.3.5). If{C) is cleft, then (Cop), (Ccop), (C^) are. 

PROOF. A section for (Cop) is £op(c) = C\S~xc)\ a retraction for (Cop) is 
Xcop(b) = S-l(X-lb). 

(3.3.6). Retain the notation and hypothesis of (3.3.4). If(C) is cleft, x*(r«p/(Q) C 

Tr{E) or C(f?(A))Q Tr,(C), then (p**) is also cleft. 

PROOF. The candidates for retraction and section are respectively \* and £*. Let 
P G I> (5 ) , 7 G Tr,{C). Then <x*0r*/J.op7),6) = <7 ® /?,(id®7r)A(X6)) = 
(7 ® j3,(x ® id)A(Z>)} = (/?.OpX*00>£) for all 6 G 5. In a similar way, one proves 
that £* is a section. • 

(3.3.7). Let J C A be a Hopf subalgebra stable by the left adjoint action of C. 
Assume that 

(a) there exists £:C—+A such that £(1) = 1, £(ac) = a£(c)for all a EA, C G C. 
Assume further that A is finite. Then the sequence 

(G) 0—tA/f-A - ^ CjfC^B —• 0 

is exact; moreover it is cleft if(C) is. 

PROOF. First, A DJ+C = J*A. Indeed, let x = E M G ^ , withy, £ A ct G C. 
Then* = £(x) = Ey/Cte) G .7^4. Therefore f is well-defined and injective. It is clear 

https://doi.org/10.4153/CJM-1996-001-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1996-001-8


24 NICOLAS ANDRUSKIEWITSCH 

that ker ir = L(A+ /J+A). Thus (Cj) is exact because I is faithfully flat Theorem 1.2.8(iii). 
Finally, if £ G Reg£(C9A), then it defines £: C/7+ —•» CA/f'A and this a retraction of 
(O), which is then cleft by (3.1.14). • 

The condition (3.3.7)(a) holds of course if (Q is cleft, e.g. if C is finite dimensional. 
But also holds if B has a functional /i G B* such that b(\)/j,(b(2)) = n(b)l (i.e. ifB* has 
a left integral) and JI(1) = 1. For, let £: C —-> ^ be given by £(c) = (id <g>/i7r)A(c); it is 
easy to see that it satisfies (a). This admits a generalization to non necessarily normal 
Hopf subalgebras and integrals in their quotient coalgebras, whose explicit formulation 
we leave to the reader. 

The following statement should be certainly improved; it should be useful to prove a 
sort of Jordan-Holder theorem for finite quantum groups. 

(3.3.8). Let A, D be finite dimensional Hopf subalgebras of a Hopf algebra, such 
that Ad(A)D C D. Assume that there exists &AD —• A such that i(ad) = a£(d), £(1) = 
1, £(D+) CA(AHD)+. ThenA/A(AnD)+ ~DA/DAD+. 

PROOF. By the bijectivity of the antipode, DA = AD and this is a Hopf subalgebra. 
Clearly, (DA)D+ = D+A = AD+. The map q:A —• DA/(DA)D+ is surjective; let x G 
kerq = A HAD+. Then* = £ a z 4 = £(*) = £<*,-£(</,•) G ^ n / ) ) + . • 

(3.3.9). TjT/4 is central in C andB has trivial Hopf center, then A is the Hopf center of 
C. (Dually, ifB is cocentral and A has trivial Hopf cocenter, then B is the Hopfcocenter 
ofC.) 

PROOF. Let A' ~D A be the Hopf center of C; then TT(A') = "T and hence A' C 
LKer7r=^. • 

(3.3.9) applies when B is simple (as Hopf algebra) and noncommutative. 

3.4 The Frobenius morphism. Lusztig [L4, Theorem 8.10, 8.16] has shown the exis­
tence (and uniqueness) of a Hopf algebra homomorphism Fr: Ifa —> ZIB such that 

Frf£W) = { of'0* i f * d i v i d e s N 

' 10, if not; 

F r O = ('«<)• if£di' 
U ^ J J 10, if not; 

} if I divides iV 
if not; 

divides N 

FitfT,) = 1. 

It is known that UR is generated by £,, Ft, Kt, £ ^ , F)e\ Let u be the Hopf subalgebra of 
ZlB generated by £,, Fh Kt [L4]; it is known that dim u = 2" £dim«. 

LEMMA 3.4.1. The sequence 

( 7 3 0 O^u^lh^ih—>0 
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is exact. 

PROOF. (1.2.1,2) being clear, we proceed with (1.2.3). It is known that kerFr = 
UBU+ZIB [L4, 8.16]. Thus, from the formulas [L4, 5.3 and 5.4] (see also [L2, 4.1]) 
(1.2.3) follows. However, and in order to use Schneider's theorem 1.2.8(iii) we prove 
the following lemma (see [Li]); it will imply also (1.2.4). • 

LEMMA 3.4.2. The finite dimensional Hopf subalgebra u is stable by the right and 
left adjoint actions. 

PROOF. We give the proof of the stability by the left adjoint and leave that of the right 
one (which is very similar) to the reader. It suffices to show that Ad(£^)u C u. Recall 
first that Ad(xy) = Ad JC Ad>>. Let us consider the Q-algebra isomorphism Q: UQ —> lf£ 
given by 

£/•—>F/, Fi*->Ei9 KiY-^iq-1, q^q~X. 

As Q(£^) = Ff\ Q leaves stable 11 and gives rise to an automorphism of £ZB> still 
denotedQ, which in turn leaves stable u. Now Q(AdF/(x)) = AdF/(Q(x)) and therefore 
Q(Ad£f }(JC)) = A d i f }(Q(JC)). Hence, if Ad(£f })u C u, then Ad(/f })u C u. But <UB 

is generated as an algebra by E^9F^. 

Let x G UB be such that KtxKy1 = <f*imix for some integers ml•. It follows from (1.1.3) 
that 

Ad(£f >)(*) = ^-\yq
d^-X)^~J^xK;jF^ 

7=0 

7=0 

Let x be either Eh with h = i or a^ = 0, or Fh with h ^ i, or any Kh. Then, as 
rt'-W> *? = o, 

di 

we conclude that Ad(J5^)(jc) = 0. Now let x = Eh with a,/, ^ 0. Applying either the 
commutation relation [L2,4.1(g)], or [L4,5.3(f)], or [L4,5.4(a6)] (depending on whether 
—ath = 1,2 or 3) we see that Ad(E^)(jc) G u; here one uses that u is preserved by the 
action of the braid group [L4, 8.12]. For x = F„ one uses instead [L2, 4.1(a)]. So we 
have proved that Ad(F^)(jc) G u for JC in a family of generators of u. But 

i 
Ad(^e))(xz) = £ y ^ ~ y ) Ad(^-%^)(x)Ad(£f)(z) 

y=o 

and we are done. • 

REMARK. In fact, one could avoid the use of Theorem 1.2.8(iii) to prove the exact­
ness of (7$0 because UB is free over u (use the PBW type basis). 
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LEMMA 3.4.3. Consider U& as a U^-comodule algebra via 7 = (id ® Fr)A. Then 
ZIB is an algebra cleft extension ofu by Z1B. 

PROOF. We need to define \ € RegjC&B, ^ B ) such that 7x = (X ® id)A. We will 
proceed by steps. 

(i) There exists an algebra homomorphism x+'- ^B,+ —> ^h uniquely defined by 
*+(<?,) = K^Eff*. This follows from [L4, 8.6] since Kt

 l is central. Now 

lX+(ed = ( i d ® F r ) ( £ q^^^K] 0£</)\ 
7=0 ' 

= A ^ ^ ® 1 + 1 ® e,- = (x+ ® id)A(^). 

As x+ is multiplicative, 7x+ = (x+ ® id)A. 
(ii) There exists an algebra homomorphism x-'. U^- —> ^ B uniquely defined by 

X-(//) = ff}. (Same proof as for [L4, 8.6].) Again, 7 x - = (X- ® id)A. 

(iii) Let xo- ^B,O —> *% be the algebra homomorphism such that xo(A/) = Kf ' ' 

Using (1.1.3), one has again 7xo = (Xo ® id)A. 
(iv) Letx: &B —> ^ B be defined by x(*+*o*-) = x+(*+)Xo(*o)X-(*-)> for */ E ilBj, 

7 = + , 0 , - . Then 

7x(*+*o*-) = 7(x+(^))7(xo(^o))7(x-(^-)) 

= (x+ ® id)A(x+)(xo ® id)A(jt0)(x- ® id)A(jt_) = (x ® id)A(x). 

(v) Being a morphism of algebras, x+ is invertible and \+l = X+S> Thus \ is invert-

ible, and x-1(*+*o*-) = XZl(x-)xol(xo)xTl(x+). • 

The last result also follows from a general result in [Sch4,4.3]. From Lemma 3.1.14 
one deduces immediately (compare with [Li, 5.5]): 

PROPOSITION 3.4.4. The exact sequence (9-9Q given by the Frobenius morphism is 
cleft. • 

It is interesting to see the failure of x to be a morphism of algebras. First, one deduces 
from [L4, 6.5(a2)] 

[Xfe ilx(fj)] = Sij(x(hd-KTe £ i f 
V K K H 

Ki-,2{t-E) r*). # -

Next, 

Mhilxiej)} 

= f ( "**;*«/ 
£ 

-
) 

= < 
|'<T M'~ 0 '-lay + t-

t 
-r /:-< - J = ^yx(^)-
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Here, the first equality follows from [L2, 4.1(c)]; the second, from 
Knc 

t 

£i</<K-l)V -ivV(/-') 

-latj + t - 1 

, for c < - 1 , t > 0 (this is [L3, 1.3 (g9)]); in 

= 0 if 1 < t < l9 that 
-latj + l - 1 

= -«» 
r — Vn.. -4- / _ 

the third, one uses that 

[L2, 3.3] and that t is odd. 

We want now to present another exact sequence, dual to OF^O- Let Fbe a W-module. 
Let A e P. Set 

veV:Kfv = 4 AW) 
r v, 1 < i 

dt 
i<n\. 

For any lattice M, P D M D Q, let ^ be the category of TZ-modules V, free over 
Z[q9q~l] of finite rank, such that V = ©A<EM FA- Let ^F" = 7M be the category of 
WB-modules obtained from ^A/ by extension of scalars. Let y = ^ be the category 
of finite dimensional fZB-modules whose weights belong to M. Let f = L*!F". Let us 
denote B[G] = I\p(£Zu), BV[G] = r\p(£iB), v = ry(u). (That is: G is the connected 
semisimple algebraic group with Lie algebra g whose 'Vi" equals P/M). 

PROPOSITION 3.4.5. Assume that M= P. The sequence 

W) 0 —> B[G] — • Bv[G] 

PROOF. This follows from (3.4.4) thanks to (3.3.4). Indeed Fr*( J ' ) C jF" is a con­
sequence of complete reducibility of simple Lie algebras and [L2, 7.2]. On the other 
hand, B[G] = (Cfe)0 and we can apply the second remark after (3.3.4). • 

REMARK. It was proved in [dCL] that BV[G] is projective over B[G] of rank ldimg. 

Let j be the subalgebra of u generated by Kf; it is a central Hopf subalgebra, isomor­

phic to the group algebra of (Z/2Z)". It follows from (3.3.7) that the sequence 

0 -> u / u f c - ^ B / ^ B J + — - ^ B —-> 0 

is also exact and cleft. One can also deduce (3.4.5) from this fact. 

Recall the notation from 1.1.4 and the subsequent lines. 

PROPOSITION 3.4.6. The sequence 0 —• Z0 —• J%B —> u/u j + —• 0 is exacf. 

PROOF. Left to the reader; use Theorem 1.2.8(ii). 
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4. Simple finite quantum groups. Let us a say that a finite Hopf algebra is simple 
if it has no left normal Hopf subalgebra or, equivalently, it has no left conormal quotient 
Hopf algebra; see [AD], [Sch], [By], [T5]. (There is no danger of confusion with simplic­
ity as algebra, because of the counit axiom). Thus the dual of a finite simple Hopf algebra 
is again simple. Suppose that a finite Hopf algebra C is not simple and pick a non-trivial 
left normal Hopf subalgebra^. Then by (3.3.1) C fits into an exact sequence like (C); by 
(3.1.17) this exact sequence is cleft and hence it is possible to reconstruct C from A and 
B and some data. Therefore, to classify all the possible finite Hopf algebras of order (that 
is, dimension) < N, we need first to classify the simple ones, and then glue them via that 
data. (Observe also that by (3.1.18) and [LR, Corollary 2.5] the same strategy applies 
for the classification of semisimple Hopf algebras of order < N). We will discuss some 
basic features of this second step in the next section and give examples of simple Hopf 
algebras in the Appendix. Let us work in this section over an algebraically closed field 
1. If G is a finite simple group, then clearly both the algebra of functions on G, 1[G], and 
the group algebra of G, 1(G), are simple. On the other hand, any Hopf algebra of prime 
order is simple, thanks to the Nichols-Zoeller theorem [NZ]. More precisely 

THEOREM 4.1 [Z]. If the characteristic ofl is 0, then any Hopf algebra of prime 
order is the group algebra of a cyclic group, that is, it is commutative, cocommutative 
and semisimple. 

This was conjectured by Kaplansky. The commutative Hopf algebras of prime order 
over an arbitrary field are well-known; see e.g. [TO]. In particular, they are all cocom­
mutative. It is now easy to deduce the following criteria of simplicity: 

PROPOSITION 4.2. If a finite Hopf algebra of order pq is not simple, where p and q 
are primes, then it is semisimple. 

PROOF. This follows at once from (4.1) and (3.1.17, 18). • 

Some results on the classification of semisimple Hopf algebras of low order can be 
found in [LR], [Ms]. A result more precise than Proposition 4.2, intersecting also [LR], 
is given by Theorem 5.2.7 below. 

5. Cohomology of Hopf algebras. 

5.1 Singer s cohomology. Singer [Si] defined a cohomology theory for a pair of (graded, 
connected) Hopf algebras A, B, with B cocommutative and acting on A, A commutative 
and coacting on B, subject to two compatibility conditions. He also showed that the 2-
cohomology group classifies the extensions of A by B. Singer's cohomology can be also 
defined without the "graded and connected" assumption and again the 2-cohomology 
group classifies the (isomorphy classes of) extensions of A by B. Details can be found in 
[Hf]; the classification theorem is also a particular case of [AD, Theorem 3.2.14]. 

We begin by reviewing Singer's cohomology in the setting of our interest; for the 
moment, we do not suppose that A is commutative and B, cocommutative; we shall later 
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do so. Let us fix two Hopf algebras A and B together with an action —*: B ® A —• A and 
a coaction p:B —*B®A, such that p(l) = 1 ® 1, e{b —^ a) = e(a)e{b\ and 

(5.1.1) A(b — a) = (p(i(i))/ — a(i)) 0 pib^Q)^ "* *(2)), 

(5.1.2) p(6S) - ^ ( 1 ) ) ( p ( % 0 (Z>(2) - p(6)*)), 

(5.1.3) (1 0 (6(1) - aj)p(b{2)) = p(6(i))(l 0 (6(2) — *))• 

Clearly, (5.1.3) is superfluous if A is commutative and B cocommutative. For brevity, 
one says that the pair (A,B) is compatible. 

Let AT be a left ^-module and define an action of B on N ® A by 

(5.1.4) b(n ® a) = p(&(i)),-n 0 p(6(i)y(6(2) -^ a). 

This is a left Z?-module action thanks to (5.1.2) andiV®^ with this action will be denoted 
by N&A. Notice that A: A —> >4®;4 is a morphism of 5-modules by (5.1.1). Let Xbe a 
right ̂ 4-comodule (with structural morphism c) and define a coaction B <&X —* 2? ® X ® ̂ 4 
(still called c by abuse of notation) by 

(5.1.5) c(b ® x) = p(&(i))/ ® c(x)y ® p(b{l))\b{2) — cOcy"). 

This a right y4-comodule (denoted by Z?®X) by (5.1.1); (5.1.2) implies now that the mul­
tiplication 2?®5 —* 5 is a morphism of comodules. 

Now we consider the category Q(A,B). An object M of G(A,B) is simultaneously a 
left Z?-module and a right v4-comodule, such that the action #®M —• M is a morphism of 
y4-comodules, and the coaction M —» M® 4̂ is a morphism of 5-modules. Both conditions 
are expressed by one equality: 

(5.1.6) c(bm) = p(b{l))ic(m)j ® p(b({)y (b{2) — c(m/). 

(The arrows in this category are those linear morphisms which preserve all the structures 
involved; we shall use the notation Hom^ for them). 

If N is a left B-module, then N<g*A belongs to &(A,B) with coaction n ® a *—• n ® 
0(i) ® ^(2)' this is again a consequence of (5.1.1). If X is a right ^4-comodule then it 
follows from (5.1.2) that £®Xbelongs to Q(A, B) by letting B act on the first factor. Thus, 
we have in particular two translation functors S, T:G(A,B) —> Q(A,B)9 S(M) = M®L4, 

T(M) = B&M. Observe that M ~ {z e S(M): c{z) = z ® 1} ~ T(M)/B+T(M). 
On the other hand, if M, P belong to S(A,B) then M ® P (considered as ,4-comodule 

via the multiplication of A and as 5-module via the comultiplication of B) also belongs 
to G(A9B). Here one use for the first time the hypothesis (5.1.3). 

Next, one says that M in G(A,B) is an (/4,Z?)-algebra (resp., coalgebra) if the multi­
plication m\M®M—*M (resp., the comultiplication 8:M—* M ® M) is a morphism in 
Q(A,B). (In such case, we shall denote p instead of c for the coaction and —•* for the ac­
tion). If X is an (A, #)-algebra then S(X) = X<g>A also is, with the tensor product algebra 
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structure; similarly, if Y is an (4,i?)-coalgebra then T(Y) = B®Y also is. Notice that in 
this case, there is an isomorphism 

(5.1.7) Reg(7,X) - ^ R e g ^ T ) , S(X)). 

Here, RQ4{T{Y),S{X)) := Reg(r(7),5(X)) nHom^(r(y),5(^)). Explicitly, 0(/)(Z> ® 

x) = 6 —((/"®id)p(x)). 

REMARK. The monoidal category G(^4,5) is in fact the category of representations 
of a Hopf algebra. Indeed, assume for simplicity that ,4 is finite dimensional (otherwise 
one should consider a structure of topological Hopf algebra on Hom(4, B\ see [Tl]). Let 
H = B<g>A*; following the recipe of [Ma, Proposition 3.13], one considers the matched 
Hopf algebra structure on H induced by the left action —-»:A* ® B —-> B and the right 
action *— \A* ® B —•» 4̂* (see also [T2]). These actions are explicitly 

a - " * = Y, p(b)i(a, p(by), (a <—b,a) = (a,b -^ a), 
i 

and the corresponding multiplication is 

(b ® <*)(</ ® 7 ) = &(c*(i) - > ^(i)) ® (af(2) — </(2))7. 

Thus if M e K ( ^ , B), one defines an action of Hon M by (Z>® a)m = &*((a, c(m)1 )c(m),•; 
(5.1.6) guarantees that this is effectively an action. Conversely, any //-module gives rise, 
by reversing the procedure just described, to an object of G(A9 B), and the tensor product 
in G(A,B) corresponds to the comultiplication of//. 

Consider now the category S1 of (A, 2?)-algebras. The coaction p:N —• N® A gives 
rise to a natural transformation 77 from the identity functor to S. Moreover, there is a 
natural transformation fi:S2 —> S given by /i#: N&A&A —> iV®L4, /z# = id ®£ ® id, and 
(5,17, jz) is a monad (or triple) in Si [McL, p. 133]. Therefore, for each X G Si one can 
form the corresponding simplicial object [McL, p. 171]. For the benefit of the reader, let 
us write down the formulas explicitly. Let F9 = 5^+1(X), for q > 0; the face operators 
^ r / ^ - ^ i ^ a r e 

$j{x ® a0 ® • • • ® aq) = p(x) ® ao ® • * • ® aq, 

ffqix ® a0 ® • • • ® aq) — x ® ao ® • • • ® A(a,-_i) • • • ® aq, 1 < / < q + 1; 

the degeneracy operators g^: F?+1 —+ JF? are 

Q^(x ® a0 ® • * • ® ̂ +1) = x ® ao ® * * * e(fli) • • • ® <Vi, 0 < 1 < <?. 

Similarly, one has a comonad (or cotriple) (r,<5, x) in the category S2 of (A, Z?)-coalge-
bras by setting 6: T —> id, 6y :5®7 —• 7 the action, \: T —• T2, xr :#® ^ —> 5®5®F, 
Xi<* ® JO = * ® 1 ® .y. Let G^F) = 7TH"1 (y). The explicit expressions for the coface 
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operators dfj: G*\Y) —> GP{Y) and codegeneracy operators gj: GP(Y) —• G ^ F ) are as 
follows: 

d?(b0 <s> • • • ® V i ®y)= bo ® • • • feA+i ® • • * ® V i ®y> ° ^ y ^ A 

^+1(^o ® • • • ® V i ® >0 = fto ® • • • ® * • * ® V i ~" ̂ ' 

^(&o ® • • • ® bp ®y) = 60 ® • • • 6y ® 1 ® 6/+i • • • ® V i ® ^ ° ^J ^P-

ForZin 61? Fin G2, set <J« = RQ^(G>(Y),F!(XJ) = RQg^(T^\Y)^+l(X)). 

The family of groups CP,q together with the group homomorphisms 6^, g^, $• and sfj 
is a "double" simplicial group; more precisely we have a bifunctor from G2 x Gi to the 
category of "double" simplicial groups. In particular, the group Autcoaig^F) acts on the 
right on CP,q by group homomorphisms. It follows that CP,q has a 1-action if Y = 1[T], 
with the usual comultiplication, and trivial action and coaction. 

Assume from now on, till the end of this section, that A is commutative, B is cocom-
mutative. The preceding constructions apply in the (full) subcategories G^ (resp., G^) 
of commutative (resp. cocommutative) algebras (coalgebras). 

Let c?{q\ <J>q —> O*1* and &*\ (J* —• (J^x be the differentiation operators 

(5.1.8) ^ ( 0 = ( T o ^ ) * ( r 1 o ^ ) * - - . * ( / i l o ^ 1 ) , 

S W = Kg oy) * <£ o/-1) * • • • * dpx o/*1)]^, 

The (— 1 y guarantees that d2dx +dx d2 = 0 (cf. [CE, p. 63]) and hence (J* is a double com­
plex. The use of monads avoids various tedious computations; however, it is convenient 
to note that, by (5.1.7), this double complex is isomorphic to EP« = R e g ^ T ) , £*(.¥)), 
that is, to 

... ... 

Reg(F,Z(g)^®2) — • Reg{B®Y,X®A®2) —> ••• 

(5.1.9) I I 
Reg(Y,X®A) —• Reg(B®Y,X®A) —> ••• 

Reg(F,*) X Reg(B®Y,X) X ... 

In this presentation, the face, coface, degeneracy and codegeneracy operators are 
given by 

fy{bi ®---bp®y) = (px® id)(f(bi ®---bp®y)), 

&J(bi ®---bp®y) = (id^®,-, ®A ® id)(f(bi ®---bp®y)), 1 < i < q, 

«f !A*i ®---bp®y) =f(p(bi ®---bp®y)k) ® p(bx ®---bp®yf; 

0^*1 ®---bp®y) = (id^^s, ®e ® id)(/"(2>, ®---bp ®y)), 0<i<q; 
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df/(*i <g> • • • V i ®>0 =/ (* i ® • • * *iA-+i ® • • • V i ®^X ! < * </>> 

^ / ( 6 i ® • • • V i ® >0 =/ (* i ® • • • 6P ® V i " " ^ 

s?/(6i ® • • • 6p ®j>) =f(b{ ® • • • 6,- ® 1 ® 6,-+i • • • fcp ®j>). 

The differential d\, 52 are given by formulas similar to (5.1.8). Let Reg+(£^® Y9X®A®«) 
be the subgroup of those/ G Reg(5®^ ® 7,Jf ® ̂ ) such that/(*i ® • • • ® bp ®y) = 
e(y) Uj e(bj) if one of the b/s is equal to 1, and also (idx^A®i ®£®id)(/{&i ® • • • bp®y)) = 
e{y)Y[j e{bj). Adding a subscript + throughout in (5.1.9) (with standard conventions if 
p = 0 or q = 0), one obtains a double complex (5.1.9)+ whose total cohomology is 
the same as that of (5.1.9). This cohomology will be denoted by H*(A,B;X, Y). Observe 
that if A is the trivial Hopf algebra (and hence several actions and coactions are uniquely 
determined) and also Y is trivial, then the cohomology of complex in the lowest row is 
exactly Sweedler's cohomology [Sw2]; it will be denoted //gw. 

Take n o w l = Y = 1 and define H*(B,A) as the cohomology of the total complex 
E"1 = ®p*-q=m-2j>>i4>i D?* • That is, we drop the first column from the left and the 
lowest row in (5.1.9), decrease both the vertical and the horizontal index by 1 and take 
the cohomology of the total complex of the resulting double complex. 

Here is a description of the low index cohomology groups. ZP(B,A) is the subgroup 
of Regj £(B,A) of those maps/ satisfying 

(5.1.10a) f(bb) = (b(l) -f(b))f(b(2)), 

(5.1.10b) A(f(b)) = (1 ®/0t,)))(f(p(bi2))j) ® P(b{2)j). 

By (3.1.15), (3.1.16),/provides simultaneously an algebra map \'.B ~* C and a coal-
gebra map | : C —> A, where C = A#B with trivial cocycle and cycle. Denote \ — X/> 
£ = £y to emphasize the dependence o n / Then the multiplication in Reg(Z?, A) translates 
into ifoXg=g * / 

Next, Zl(B9A) is the subgroup of those pairs (a,r) G Reg+(^02 ,^) x Reg+(B,A®2) 
such that a satisfies (3.1.2), r satisfies (3.1.5), and 

( 5 - L 1 1 > 
A(<j(6(i) ® 5(i)))T<i(2)6(2)) = (*(i) -^ r(5(i)))r(Z?(2))(l ® a(b(3) ® 5(2))) 

(°{p(b{4))i ® p{b0))j) ® p(b{A)j(b{5) — p(5(3)y)). 

So, let 0 —* 4̂ —» C —> 5 —* 0 be a cleft extension. Then there exist --% p, cr, r satisfying 
(3.1.1—9). As 4̂ is commutative, B cocommutative and a and r invertible, one deduces 
from (3 .1 .3 , . . . , 6) that —* is an action and p a coaction; from (3 .1 .8 , . . . , 10) that —•% p 
satisfy (5.1.1, 2, 3) and from (3.1.11) that a,r fulfill (5.1.11). Thus (<x,r) is an element 
of Zl(B,A). Conversely, given (CT,T) G Zl(B,A), C = AT#aB is a cleft extension of ̂  by 
B; indeed, (3.1.8) and (3.1.9) follow from (5.1.1,2,10) because A is commutative and B 
cocommutative. Moreover, it follows from [AD, 3.2.14] (see also [Hf]) that two exten­
sions (with the same action and coaction) are equivalent if and only if the corresponding 
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pairs (cr,r), ((J,,T/) are congruent modulo Bl(B9A). Thus Hl(B,A) classifies extensions 
with given action and coaction. (It is also possible to define a Baer sum translating the 
group operation of Hl(B,A), see [Hf|). 

We record the identities defining H2(B9A). It would be interesting to interpret these 
group in terms of the so-called Whitehead modules (cf. [Ho], [Lo]; the denomination 
varies greatly from author to author). An element of Z2(B,A) is a triple (</>, V>,7), where 
(j> G Reg+iB^A®3), </> e Reg+O^2,^02), 7 € Reg+(B®\A)9 such that 

(A ® id ® id)</>(fc(i))(id ® id ® A)</>(6(2)) 
( 5 ' l A 2 ) = (1 ® ^(i)))(id®A ® id)0(&(2))(^(p(ft(3))y) ® p(%)/) ; 

(5.1.13) 
(6(D — 7(A(i) ® *(i) ® «(i)))7(6(2) ® *(2)*(2) ® (̂2))7(6(3) ® A(3) ® £(3)) 

= 7(6(i)A(i) ® *{i) ® ^(i))7(6(2) ® A(2) ® *&)€(2)); 

(6(D — #A(i)))0(6(2))(l ® t/;(6(3) ® A(2)))(id®A)(^(6(4) ® A(3))) 

(5.1.14) = ^(6(i)A(i)XA ® id)(^(6(2) ® A(2))) 

(V>M%))/ ® p(A(2))y) ® p(6(3>y(6(4) — K W ' ) ) ; 

(5.1.15) 
(6(i) - - ^(A(i) ® *(i)))^(*(2) ® A(2)A(2))A7(A(3) ® A(3) ® *£)) 

= V<6(i)A(i) ® k{X))xj)(b{2) ® A(2))(l ® 7(6(3) ® A(3) ® A:(2))) 

(7(p(6(4))/ ® p(A(4))y ® p(*(3)),) ® P(6(4)y(6(5) — p(A(4)y)(6(6)A(5) — p(*(3))')). 

5.2 Examples. In order to classify all possible cleft extensions between 1[N] and 1(G), 
for some groups G and N9 one should first determine all the possible compatible actions 
as in (5.1.1,2), and then compute the corresponding cohomology group. We discuss now 
some concrete examples to get a flavour of how difficult this task could be. All the groups 
in this subsection will be denoted multiplicatively, unless explicitly stated. 

Assume first that A is a commutative Hopf algebra and B = 7(G) is the group algebra 
of a group G. Then, as is known, it is equivalent to give an action —\- B ® A —-> A or 
a representation ir of G by algebra automorphisms on A. Moreover, —̂  is compatible 
with the trivial coaction if and only if G acts (via 7r) by Hopf algebra automorphisms. 
Now assume that A = 1[N] is the algebra of functions on a finite group N. Then a 
representation 7r by algebra automorphisms is uniquely determined by a homomorphism 
-0: G —» S(AT) (where S(X) denotes the group of bijections of a set X), and G acts, in 
such case, by Hopf algebra automorphisms if and only if 0(G) C A\xt(N). (Explicitly, 

Dually, if B is a cocommutative Hopf algebra and A = 7[iV], then coactions p:B —> 
Z? ® ^ are in bijective correspondence with representations ofNonB by coalgebra 
automorphisms (explicitly, fi(h)(b) = (id ®^)p(6), where e/, denotes the character of 
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1[N] corresponding to h G N); p is compatible with the trivial coaction if and only if 
p(N) C Autnopf a\g(B)> IfB = 7(G), the former condition amounts to an action of TV on 
the set G, namely, eeh(g) = n(h)(eg), and such p is compatible with the trivial action if 
and only if 0(N) C Aut(G). 

So assume that A = 1[N] and B = 1(G) and fix V>: G -» S(A0, 0: JV —• S(G). Then 
(5.1.1), (5.1.2) take the following form 

(5.2.1) ^g{hy) = V>0,(g-i)-i (hWgiy), 

(5.2.2) ft^) = ^ f e \ l W ( 4 

Hereg,x G G, /z,j> G N. Thus, if in addition 

(5.2.3) V>gO)=l, ft(l)=l 

for all g, h, then ,4,5 is a compatible pair. Clearly, (5.2.1) (resp., 5.2.2) are always true 
for h = 1 or v = 1 (resp., for g — 1 or x = 1). (These conditions are equivalent to those 
in [Ma, Theorem 2.1], [T2]). Letting </>(g) = i/)(g)~\ one obtains the more readable 
formulas 

(5.2.1') <Pg(hy) = <pey(g)(h)(pg(y)9 

(5.2.2') eh(gx) = eh(g)e^g(h)(x). 

In particular cases, one obtains from the above discussion some strong requirements; 
for instance, (5.2.3) implies the existence of a group morphism G —> §(N— {1}). Assume 
for example that G has order p and N = Z/#Z, with 2 < p < q. If 0 is non-trivial, then 
some factor of # (different from 1) divides (p — 1)!; thus if q is prime then 0 is always 
trivial. In such case, t/> maps G onto a subgroup of Aut(N) ~ Z/(# — 1)Z. If in addition/? 
and q — 1 are coprime, ^ is also trivial. See [Gr], [By2] for the classification in the case 
p = q prime. 

The conditions (5.2.1, 2) have a cohomological interpretation. Let us consider the 
groups C = {R'- N —•* G} and (D = {T:G —> N}, with pointwise multiplication. We 
let N act on £> and G act on C by /z. J = To 0(h~l\ g-R = Ro (p(g). Let us define 
E.N-^^F.G-^CM 

Eh(g) = <Pg(h~lr\ Fg(h) = 0h(g). 

LEMMA 5.2.4. (5.2.1) (resp., (5.2.2)) holds if and only if E (resp., F) is a (non-
commutative, see [SeJ) l-cocycle. 

PROOF. F is a l-cocycle if and only if F& — Fgg.Fx, if and only if Oh(gx) = 
6h(g)Q<Pg(h)(x\ a n d this is (5.2.2'). The other is analogous. • 

Assume for example that ipg is a group homomorphism. Then (5.2.1) implies that 
(fg = (feyg, for all g,y. Assume further that Fis a coboundary, i.e. that there exists T:H' —> 
G such that 9h(g) = T(h)-lT(ifg(h)). Nowfl^fe) = 0h(0y(gj) = T(h)-lT(^9y{g)(h)) = 
0h(g)l one concludes that 0y = id, for all y. (Of course, the same holds if ip is injective). 
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Now we assume that the compatible actions are fixed. We discuss first the computation 
of the full cohomology and then that of the first cohomology group. The standard tools 
to deal with the total cohomology of a double complex are spectral sequences. Let 

,E™ = /4A0")> ("*p., "^ = tiLHLW 
be the double complex obtained by taking first the cohomology of the rows—with respect 
to the horizontal differential—and then the cohomology with respect to the differential 
induced by the vertical one in the initial complex (resp., interchanging vertical by hori­
zontal throughout). (Here (/)*'• is the double complex arising from (5.1.9) by dropping 
a row and a column as explained above). In practice one needs to show that any of these 
E2 degenerates sufficiently to allow to compute H*(B9A). We include here some remarks 
of how this task could eventually be accomplished. Observe first that 

"**W > \z^(B,A<*), ifp=\. 
Moreover, if B is the group algebra of a finite group G this is isomorphic either to the 
group cohomology group IF{G9(A^)X)9 if p > 2 , o r t o Z 1 ( G , ( ^ ) x ) , i f p = 1, where 
the x indicates the group of units of the algebra in question, cf [Sw2, Theorem 3.1]. 
Assume further that A = 1[N], for some finite group N; then A®q = l[Nq], where Nq 

denotes the direct product of q copies of N, and the group of units of A®q consists of 
the nowhere vanishing functions on Nq, i.e. (1X)T. Now G acts on Nq by bijections; 
let Oi, . . . Od be the orbits of this action. Then as G-module, ("Txyv* ~ ®\<j<dOx)0j 

and the cohomology we are looking for can be deduded, as the cohomology functors are 
additive, from the cohomologies of all the G-modules Ox)°9 O = Oj for somey. Let K 
be the isotropy group of some point in O; that is O ^ G/K. Then by Shapiro's Lemma 
#*(G,0Tx)°) Ĉ  H*(K91

X), with K acting trivially on Tx (see [Br, pp. 73 and 136]; 
here one uses that G is finite, and hence that CTX)° = Ind£CTx) = Coind^(lx), cf. [Br 
p. 70]). Finally one has the universal coefficient exact sequence, cf. [Br, p. 60]: 

0-^Ext{(Hn^(K),lx) _ / T ( ^ , l x ) — > H o m z ( H n ( K ) , l x ) —>0. 

A similar analysis holds for the other spectral sequence; one has to replace [Sw2, The­
orem 3.1] by its dual version, which in turn follows from the following observation: if 
AT is a finite group and B is a coalgebra, then Reg(2?,"T[7V]) is naturally isomorphic to 
Homsets(N, (B*)x), v ia / 1—• (A i—> e>f), where forheN eh denotes the corresponding 
character of 1[N]. This isomorphism gives rise to an isomorphism of complexes, as in 
loc. cit. 

Here is a more precise result. 

PROPOSITION 5.2.5. Consider the compatible abelian pair (1[N]91(G)), where G 
and N are finite groups, with trivial action andcoaction. Then 

^Hq(N9HP(G9l
x))9 ifp >2,q>2, 

Hq(N,Z\G9l
xj), ifp=l,q>2, 

Zl(N9HP(G,lx)), ifq=\,p>2, 

[Z1(N9Z\G91
X))9 ifp=\=q. 

jl£-1*-1 -
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Here G acts trivially on lx and the various groups appearing in the right-hand side 
refer to group cohomology. 

PROOF. Let X, Y be two sets. There is a natural isomorphism 

Homsets(X,Homsets(r,Tx)) ~ Hom^F,Homsets(X, taTx)), 

and hence one has a natural isomorphism of double simplicial groups 

Homsets(Gp,Homsets(A^,lx)) ~ Homsets(M,Homsets(Gp,Tx)). 

Taking cohomology with respect to CP and as the functor Homsets(M, _) is exact, one 
gets 

/F(G,Hom se t s(A^7x)) ~ Homsets(A^,/F(G,7x)). 

(Recall the standard resolution of a trivial G-module [Br, p. 59]). Taking now cohomol­
ogy with respect to Nq one has 

/^(^(CHomsetsCAT,^))) ~#*(AT,/F(G,1X)). 

But we have already observed above that /E%~l'q~l coincides with the left hand side in 
the last isomorphism. • 

Now if one is merely interested in extensions, the situation is neatly simpler [CE], 
since there are exact sequences 

(\ , rl ,0 , TT\ , z?0,l ^ r?2,0 ^ r/2 
U >• i£j2 • t l > IEJ2 • 1^2 **• ' 

0 —• utf* — H1 —* ttE\fi — / / 4 2 — H\ 

Thus for a compatible abelian pair 0[N], 7(G)), where G and N are finite groups, with 
trivial action and coaction, one has 
(5.2.6) 
0—>Honv(W,# 2 (G, l x ) ) —>Hl — • J*2(tf,Homgr((j,-T

x)) — • H2(N,H2(G,1*)). 

As an application, we can now prove: 

THEOREM 5.2.7. Assume that the characteristic of! is 0. Let C be a finite Hopf 
algebra of order pq which is not simple, where p and q are primes, 2 < p < q, p and 
q—\ coprime. Then C is commutative and cocommutative. 

PROOF. By (4.1), (3.1.17), and passing to the dual if necessary, we can assume that 
C fits into a cleft extension 0 —> l[Z/qZ] —* C —• l(Z/pZ) —> 0. By the remarks before 
(5.2.4), we know that the action and the coaction are trivial, so we can use (5.2.5). 

Assume first that/? < q. On one hand, H2(Z/qZ,Homp(Z/pZ,lxj) = 0 by [Br, 
10.2]. On the other hand, we can also assume that "T is algebraically closed and hence 
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Uom^(Z/qZ,H2(Z/pZ,lx)) = 0becauseH2(Z/pZ,lx) = lx/(lxf [Br,p.58].Thus 
C is the trivial extension and the claim follows. 

Assume now that p = q. Then the above argument shows this time that Hl ~ 
H2{Z/pZ,Hom&(Z/pZ,lx)) = H2(Z/pZ,Z/pZ), since (we assume that) 1 is alge­
braically closed. The assertion follows now from group theory and (5.2.8) below. • 

We still assume that 1 is algebraically closed. 

(5.2.8). Let G, N be finite groups as above and let A = 1[N], B = 1(G). As­
sume that N is abelian and denote its character group by N. Fix an action ofGonN 
by group automorphisms. Thus one has an action ofGonN by group automorphisms 
and a fortiori a compatible pair structure on (A,B), with trivial coaction. Then there is 
a monomorphism H2(G, N)—>Hl (A,B). 

PROOF. Let 

(5.2.9) 1 — > N — > P — > G — > l 

be an exact sequence of groups. Taking group algebras, one gets an exact sequence of 
Hopf algebras 

(5.2.10) 1 — > l(N) —• l(P) — > 1(G) —• k. 

Clearly l(N) = 1[N], Moreover, two exact sequences like (5.2.9) are isomorphic if and 
only if the corresponding sequences like (5.2.10) are; here one uses that an isomorphism 
of Hopf algebras preserves group-like elements. • 

REMARK. H.-J. Schneider observed that, using the remarks before (5.2.4), one con­
cludes that either the action or the coaction is trivial, without restriction on/7 and q. By 
a result of Chin and Montgomery, this easily implies that C or C* as in the theorem are 
commutative. This also gives an easier proof of Theorem 5.2.7. 

5.3 Remarks on the general case. Let (A, B) be a compatible pair as in the beginning of 
Section 5.1. We define ZP(B,A) as the subset ofRegl£(B,A) of those maps/ satisfying 
(5.1.10). Its elements could be called Hopf 0-cocycles. In the same vein, one can consider 
only the algebra (resp., coalgebra) structure on A (resp., on B% forgetting the compati­
bility conditions (5.1.1-3), and hence the algebra (resp. coalgebra) cocycles, which are 
the elements of Reg^i?,^) (resp., RQg£(B,A)) satisfying (5.1.10a) (resp., (b)); they are 
non-commutative versions of those in [Sw2]. 

EXAMPLE. Let C = 2?°p <g> A with the product Hopf algebra structure and define 
- - : £ <g) C —• Candp:£ —> £ ® Cby b-^(d®a) = d®b~* a, p(b) = pu(b). Then 
(C, B) is a compatible pair. Moreover p:B —> C is an algebra cocycle (whose inverse is 
((5 0 id)p). There is an analogous dual statement. This generalizes (5.2.4). 

Let Zl(B,A) = {((j,r) G Regl£(B ® B,A) x Regl£(B,A ®A): a satisfies (3.1.1, 2), 
(5.3.1); T satisfies (3.1.4,5), (5.3.2) and both satisfy (3.1.11), (5.3.3,4)}. Here 
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(5.3.1) (resp., (5.3.2), (5.3.3), (5.3.4)) 

is the condition which follows from 

(3.1.3) (resp., from (3.1.6), (3.1.8), (3.1.9)) 

using that —>• (resp., p, (A,B)) is an action (resp., a coaction, a compatible pair). Let 

B°(B,A) be the group of those <j> e Regle(B,A) such that <j)(b^))b^) —"• a — b(\) —x 

a<j>(b(2)), (l <g> 4>{b(\))p{b(2) - p(b(i)(l <g> <f>{b(2)). Let Hl(B,A) be the quotient space of 

Z\B,A) by the following action of B°(B,A) (see [AD]): <£(CT,T) = ( V *T)> where 

*o(b ®d) = 4>(.b{l))(b{2) — </»(J(1)))a(%) ® d(2)W\b^dQ)), 

*71 <*) = A ^ D M ^ O T 1 ® id)^(3))(l ® <T'(V)))-

It is clear how a morphism of compatible pairs should be defined. Fix a Hopf algebra B 
and consider the category 5Q whose objects are triples (A, p, —*) giving rise to a com­
patible pair (^4,5) and whose arrows are the Hopf algebra morphisms which preserve the 
action and the coaction. Defined as above, Z° gives rise to a functor from this category. 
Let 

0—>A\ -^A2-^A3—>0 

be an exact sequence of Hopf algebras in Hl(B,A). In particular, it follows that the coac­
tion py.B —> B ®A$ is trivial. One checks easily that the sequence 

0 —> 2?(B9Ai) - ^ &(B9A2) - ^ Z?(B,A3) 

is exact. One would be happy to extend this sequence to an exact sequence involving Hl. 
However, Hl, at least as defined here, is not functorial. Let/: A —+ A' be a map in Ms and 
let/1 denote the map Reg(id,/) x Reg(id,/®/):Reg1 e(£®£,,4) x Regj £(£,,4(g),4) —> 
Reg! e (5®5,^ / ) x Regi ̂ (S,^7®^7)- Then the conditions (3.1.1,4) are clearly preserved 
by / 1 . The same is true for (3.1.2,5,11); this is more transparent when expressing this 
axioms in the following way: 

(3.1.2) doa*d2(T — d3o*d\o, 

(3.1.5) 81T*8*T = 62T*&T, 

(3.1.11) fjla*d\T = d2T*doT*62a*6°a. 

(5.3.2,4) also follow easily. But (5.3.1,3) are apparently true only if/ is surjective. These 
problems seem to be similar to those arising in the non-abelian group cohomology theory. 
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Appendix: Simplicity of some pointed Hopf algebras [Nicolas Andruskiewitsch 
and Hans-Jurgen Schneider]. 

Here we prove that the simplicity of the Frobenius-Lusztig kernels and their parabolic 
subalgebras under some mild technical assumptions. By a Frobenius-Lusztig kernel we 
understand the finite Hopf algebra u = u/uj+, see the paragraph before Proposition 3.4.6. 
For Frobenius-Lusztig kernels of type An this was proved in [T4]. We conclude from 
(3.3.9) that B[G] is the Hopf center of BV[G] (resp., that Z0 is the Hopf center of J%). 
We begin by some easy technical Lemmas which could be useful in other settings. 

LEMMA A. 1. Let Ubea Hopf algebra, H a normal Hopfsubalgebra, K a group-like 
element in H. Let X £ U be a skew-primitive element (that is, there exists a group-like 
element G £ U such that A(X) = 1®X+X®G). Assume that KXK~X = qX, for some 
q £k,q ^ 1. Then X and G also belong to H 

PROOF. It is well-known that S(X) = -XG~l; hence AdX(K) = -KXG~l + 
XKG'1 = (1 - q)XKG-\ It follows th^iXKC1 £ #and 

A ^ G - 1 ) = KG'1 ®XKG~l +XKG~X ® GKG~X £ H® H. 

Therefore KG~l £ H and a fortiori X and G belong to H. • 

NOTATION. We shall say thatX as in Lemma A. 1 is a (1, G) skew-primitive element. 

LEMMA A.2. Let Ubea Hopf algebra generated as an algebra by elements E\, Ft, 
Kf\ i £ I, such that 

(1) The Ki 's are group-like elements; the E\ s are non-zero (AT/, 1) skew-primitives; 
the Fi's are non-zero (l9Kj~l) skew-primitives. (This implies that the group of 
group-likes elements is generated by the Kj 's). 

(2) There exist qij £ k, ij £ I, such that 

KtEjK-x = quEj, KtFjKi' = q?Fj 

(3) For any group like element G, there exists i £ I such that GEi ^ EtG (or equiv-
alently, GFt ^ FtG). 

(4) I is connected in the following sense: given ij £ I we say that i ~j if there exist 
elements l\ — i, ti,--,£t+i = j such that qih,i^x ^ 1, 1 < h < t. This is an 
equivalence relation; "I is connected" means that for any ij £ I, i ~j. 

(5) U has no primitive elements. 
Let J CI and let Uj be the subalgebra of U spanned by Ej, Fif Kfl,i £l,j £ J; Uj is a 
Hopfsubalgebra ofU. Let 1 =^ H C Ujbea normal Hopf subalgebra. Then H = Uj. 

PROOF. First, H contains a non trivial group like element, say G. This follows from 
(5) by looking at the coradical filtration. Thus, by (3), we can choosey £ I such that 
GFj = qFjG with q ^ 1. By Lemma A. 1, we conclude that Fj, Kj £ H. 

This appendix was written during a visit of the second named author to the FAMAF, University of Cordoba, 
in September 1994. We thank the support of the DAAD (Germany), the Antorchas Foundation and the Secre-
taria de Ciencia y Tecnica (U. N. Cor.). 
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Let now £ G / such that qjt ^ 1; by Lemma A.l again, we see that Fi.Ki G H. As / 
is connected, this shows that Fi9Kj G H for all /. Next, take j G J. By (3) again, we can 
choose / G / such that KtEj = qEjKt with q ^ 1, and Lemma A. 1 implies that Ej G H. • 

The connectedness argument is inspired in [Kc, Proposition 1.7], see also [CM, The­
orem C]. On the other hand, (5) is always true if the base field has characteristic 0 and U 
is finite dimensional. 

Recall that u is an algebra over the cyclotomic field B = Q(v), where v is a primitive 
£-root of unity and £ is odd and coprime to 3. 

PROPOSITION A.3. Assume that £ and the determinant of the matrix (rf/%) are co-
prime. Then u and any of its parabolic subalgebras iij are simple. 

PROOF. We have to verify the hypothesis of Lemma A.2. (1) holds by definition, and 
(4) because the Lie algebra g is simple. As £ is odd and coprime to 3, (2) follows. Finally, 
an easy linear algebra argument implies (3), provided £ is coprime with the determinant 
of (diatj). m 

REMARK. If u is not of type A, then £ (being odd and coprime to 3) and the deter­
minant of the matrix (</2-a,j-) are coprime, as follows by inspection; see [Bou, Tables]. 

Assume that (ay) is a symmetrizable, indecomposable, generalized Cartan matrix. 
Let 11 be the Hopf algebra defined in the same way as in Section 1.1. Let 7 be a field 
of characteristic 0, let q G 1 be an invertible element which is not a root of 1, and let 
111 b e t n e corresponding Hopf algebra over 1. Then Zl-j has no non-trivial normal Hopf 
subalgebra. This is again a consequence of Lemma A.2. Indeed, conditions (1) to (4) 
are again easily verifiable; use [Kc, Example 2.1] for condition (4). To prove that Zl-j 
has no primitive elements, one repeats word by word the first part of the proof of [T4, 
Theorem 6.2]. 

There is a stronger version of simplicity for Hopf algebras, which is having no quotient 
Hopf algebra at all. This is in fact the property proved in [T4] for u of type A (and the 
above restrictions on £). This property clearly fails for parabolic subalgebras, but should 
be true for u of arbitrary type. A way to prove this would be to extend [CM, Theorem A] 
to u. 
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