Hostname: page-component-84c44f86f4-w4mlg Total loading time: 0 Render date: 2025-10-14T22:06:12.364Z Has data issue: false hasContentIssue false

Anisotropic area-preserving flows for plane curves and entropy inequalities

Published online by Cambridge University Press:  23 September 2025

Yunlong Yang
Affiliation:
School of Science, Dalian Maritime University , Dalian 116026, PR China e-mail: lnuyylong425@163.com
Yanlong Zhang*
Affiliation:
Institute of Mathematics, Henan Academy of Sciences , Zhengzhou 450046, PR China

Abstract

This article describes two anisotropic area-preserving flows for plane curves, both of which are considered to deform one convex curve into another. Different monotonic entropy functions are identified under these flows, which can be utilized to derive two significant entropy inequalities: the log-Minkowski inequality and the curvature entropy inequality, as well as the Brunn–Minkowski inequality.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Y.Y. is supported by the Educational Research Projects of China Transportation Education Research Association (Grant No. JT2024YB103), the Fundamental Research Funds for the Department of Education of Liaoning Province (Grant No. LJ212410151007), and the Fundamental Research Funds for the Central Universities (Grant No. 3132024198). Y.Z. is supported by the High-Level Talent Research Start-Up Project Funding of Henan Academy of Sciences (Grant No. 241819112) and the Natural Science Foundation of Henan Province (Grant No. 252300420903).

References

Andrews, B., Evolving convex curves . Calc. Var. Partial Differ. Equ. 7(1998), 315371.Google Scholar
Andrews, B., Chow, B., Guenther, C., and Langford, M., Extrinsic geometric flows, AMS, Providence, RI, 2020.Google Scholar
Böröczky, K. J. and Kalantzopoulos, P., Log-Brunn-Minkowski inequality under symmetry . Trans. Am. Math. Soc. 375(2022), 59876013.Google Scholar
Böröczky, K. J., Lutwak, E., Yang, D., and Zhang, G. Y., The log-Brunn-Minkowski inequality . Adv. Math. 231(2012), 19741997.Google Scholar
Böröczky, K. J., Lutwak, E., Yang, D., and Zhang, G. Y., The logarithmic Minkowski problem . J. Am. Math. Soc. 26(2013), 831852.Google Scholar
Brendle, S., Guan, P., and Li, J., An inverse curvature type hypersurface flow in space forms. Preprint, 2020.Google Scholar
Bryan, P., Ivaki, M. N., and Scheuer, J., A unified flow approach to smooth, even ${L}_p$ -Minkowski problems . Anal. PDE 12(2019), 259280.Google Scholar
Cao, F., Geometric curve evolution and image processing, Lecture Notes in Mathematics, 1805, Springer, Berlin, 2003.Google Scholar
Chen, C. Q., Huang, Y., and Zhao, Y. M., Smooth solutions to the ${L}_p$ dual Minkowski problem . Math. Ann. 373(2019), 953976.Google Scholar
Chen, H. D. and Li, Q.-R., The ${L}_p$ dual Minkowski problem and related parabolic flows . J. Funct. Anal. 281(2021), 109139, 65 pp.Google Scholar
Chen, S. B., Huang, Y., Li, Q.-R., and Liu, J. K., The ${L}_p$ -Brunn-Minkowski inequality for $p<1$ . Adv. Math. 368(2020), 107166, 20 pp.Google Scholar
Chou, K.-S. and Zhu, X. P., The curve shortening problem, Chapman & Hall/CRC, Boca Raton, FL, 2001.Google Scholar
Ding, S. W. and Li, G. H., A class of inverse curvature flows and ${L}_p$ dual Christoffel-Minkowski problem . Trans. Am. Math. Soc. 376(2023), 697752.Google Scholar
Dittberner, F., Curve flows with a global forcing term . J. Geom. Anal. 31(2021), 84148459.Google Scholar
Gage, M. E., On an area-preserving evolution equation for plane curves, Contemporary Mathematics, 51, American Mathematical Society, Providence, RI, 1986, pp. 5162.Google Scholar
Gage, M. E., Evolving plane curves by curvature in relative geometries . Duke Math. J. 72(1993), 441466.Google Scholar
Gage, M. E. and Hamilton, R., The heat equation shrinking convex plane curves . J. Differ. Geom. 23(1986), 6996.Google Scholar
Gage, M. E. and Li, Y., Evolving plane curves by curvature in relative geometries II . Duke Math. J. 75(1994), 7998.Google Scholar
Gao, G. L. and Pan, S. L., Star-shaped centrosymmetric curves under Gage’s area-preserving flow . J. Geom. Anal. 33(2023), 348, 25 pp.Google Scholar
Gao, L. Y., Whitney-Graustein homotopy of locally convex curves via a curvature flow . Math. Res. Lett. 30(2023), 10451062.Google Scholar
Gao, L. Y., Pan, S. L., and Tsai, D.-H., On an area-preserving inverse curvature flow of convex closed plane curves . J. Funct. Anal. 280(2021), 108931, 32 pp.Google Scholar
Gao, L. Y. and Zhang, Y. T., On Yau’s problem of evolving one curve to another: Convex case . J. Differ. Equ. 266(2019), 179201.Google Scholar
Grayson, M. A., The heat equation shrinks embedded plane curve to round points . J. Differ. Geom. 26(1987), 285314.Google Scholar
Green, M. and Osher, S., Steiner polynomials, Wulff flows, and some new isoperimetric inequalities for convex plane curves . Asian J. Math. 3(1999), 659676.Google Scholar
Guan, P. and Li, J., A mean curvature type flow in space forms . Int. Math. Res. Not. 2015(2015), 47164740.Google Scholar
Guan, P. and Li, J., Isoperimetric type inequalities and hypersurface flows . J. Math. Study. 54(2021), 5680.Google Scholar
Guang, Q., Li, Q.-R., and Wang, X.-J., The ${L}_p$ -Minkowski problem with super-critical exponents. Preprint, 2022. arXiv.2203.05099. https://doi.org/10.48550/arXiv.2203.05099 Google Scholar
Henk, M. and Pollehn, H., On the log-Minkowski inequality for simplices and parallelepipeds . Acta Math. Hungar. 155(2018), 141157.Google Scholar
Hernández Cifre, M. A. and Lucas, E., On discrete log-Brunn-Minkowski type inequalities . SIAM J. Discret. Math. 36(2022), 17481760.Google Scholar
Hosle, J., Kolesnikov, A. V., and Livshyts, G. V., On the ${L}_p$ -Brunn-Minkowski and dimensional Brunn-Minkowski conjectures for log-concave measures . J. Geom. Anal. 31(2021), 57995836.Google Scholar
Hu, Y. and Li, H., Geometric inequalities for static convex domains in hyperbolic space . Trans. Am. Math. Soc. 375(2022), 55875615.Google Scholar
Hu, Y., Li, H., and Wei, Y., Locally constrained curvature flows and geometric inequalities in hyperbolic space . Math. Ann. 382(2022), 14251474.Google Scholar
Ivaki, M. N., A flow approach to the ${L}_{-2}$ Minkowski problem . Adv. Appl. Math. 50(2013), 445464.Google Scholar
Ivaki, M. N., Centro-affine curvature flows on centrally symmetric convex curves . Trans. Am. Math. Soc. 366(2014), 56715692.Google Scholar
Kolesnikov, A. V. and Livshyts, G. V., On the local version of the log-Brunn-Minkowski conjecture and some new related geometric inequalities . Int. Math. Res. Not. 2022(2022), 1442714453.Google Scholar
Kolesnikov, A. V. and Milman, E., Local ${L}^p$ Brunn-Minkowski inequalities for $p<1$ , Memoirs of the American Mathematical Society, 1360, American Mathematical Society, Providence, RI, 2022.Google Scholar
Krylov, N. V., Nonlinear elliptic and parabolic equations of the second order, D. Reidel Publishing Co., Dordrecht, 1987.Google Scholar
Kwong, K.-K., Wei, Y., Wheeler, G., and Wheeler, V.-M., On an inverse curvature flow in two-dimensional space forms . Math. Ann. 384(2022), 285308.Google Scholar
Li, Q.-R., Sheng, W. M., and Wang, X.-J., Flow by Gauss curvature to the Aleksandrov and dual Minkowski problems . J. Eur. Math. Soc. 22(2020), 893923.Google Scholar
Li, Q.-R., Sheng, W. M., Ye, D. P., and Yi, C. H., A flow approach to the Musielak-Orlicz-gauss image problem . Adv. Math. 403(2022), 108379, 40 pp.Google Scholar
Li, Y. R. and Wang, X. L., The evolution of gradient flow minimizing the anisoperimetric ratio of convex plane curves . J. Differ. Equ. 375(2023), 348373.Google Scholar
Lin, Y.-C. and Tsai, D.-H., Evolving a convex closed curve to another one via a length-preserving linear flow . J. Differ. Equ. 247(2009), 26202636.Google Scholar
Liu, L., Yang, Y. L., and Zhang, Y. L., Preserving Minkowski length from one convex curve to another . Math. Res. Lett. 31(2024), 18271836.Google Scholar
Lutwak, E., The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem . J. Differ. Geom. 38(1993), 131150.Google Scholar
Ma, L., Zeng, C. N., and Wang, Y. L., The log-Minkowski inequality of curvature entropy . Proc. Am. Math. Soc. 151(2023), 35873600.Google Scholar
Mei, X. Q., Wang, G. F., and Weng, L. J., A constrained mean curvature flow and Alexandrov-Fenchel inequalities . Int. Math. Res. Not. 2024(2024), 152174.Google Scholar
Milman, E., Centro-affine differential geometry and the log-Minkowski problem . J. Eur. Math. Soc. 27(2025), 709772.Google Scholar
Pan, S. L. and Yang, Y. L., An anisotropic area-preserving flow for convex plane curves . J. Differ. Equ. 266(2019), 37643786.Google Scholar
Pan, S. L., Yang, Y. L., and Zhu, X. F., The relative positive center set and its geometric applications . Front. Math. 19(2024), 295319.Google Scholar
Putterman, E., , Equivalence of the local and global versions of the ${L}^p$ -Brunn-Minkowski inequality . J. Funct. Anal. 280(2021), 108956.Google Scholar
Qiang, T., Weng, L. J., and Xia, C., A locally constrained mean curvature type flow with free boundary in a hyperbolic ball . Proc. Am. Math. Soc. 151(2023), 26412653.Google Scholar
Saroglou, C., Remarks on the conjectured log-Brunn-Minkowski inequality . Geom. Dedicata 177(2015), 353365.Google Scholar
Scheuer, J. and Xia, C., Locally constrained inverse curvature flows . Trans. Am. Math. Soc. 372(2019), 67716803.Google Scholar
Stancu, A., The discrete planar ${L}_0$ -Minkowski problem . Adv. Math. 167(2002), 160174.Google Scholar
Stancu, A., Prescribing centro-affine curvature from one convex body to another . Int. Math. Res. Not. 2022(2022), 10161044.Google Scholar
Stancu, A. and Vikram, S., A flow approach to the fractional Minkowski problem . Geom. Dedicata 191(2017), 137151.Google Scholar
Tao, J. Y., Xiong, G., and Xiong, J. W., The logarithmic Minkowski inequality for cylinders . Proc. Am. Math. Soc. 151(2023), 21432154.Google Scholar
Tso, K. S., Deforming a hypersurface by its Gauss-Kronecker curvature . Commun. Pure Appl. Math. 38(1985), 867882.Google Scholar
Villani, C., Topics in optimal transportation, Graduate Studies in Mathematics, 58, American Mathematical Society, Providence, RI, 2003.Google Scholar
Wang, X. L., The evolution of area-preserving and length-preserving inverse curvature flows for immersed locally convex closed plane curves . J. Funct. Anal. 284(2023), 109744.Google Scholar
Xi, D. M. and Leng, G. S., Dar’s conjecture and the log-Brunn-Minkowski inequality . J. Differ. Geom. 103(2016), 145189.Google Scholar
Xia, C., Inverse anisotropic mean curvature flow and a Minkowski type inequality . Adv. Math. 315(2017), 102129.Google Scholar
Xia, C., Inverse anisotropic curvature flow from convex hypersurfaces . J. Geom. Anal. 27(2017), 21312154.Google Scholar
Yang, J., Ye, D. P., and Zhu, B. C., On the ${L}_p$ Brunn-Minkowski theory and the ${L}_p$ Minkowski problem for $C$ -coconvex sets . Int. Math. Res. Not. 2023(2023), 62526290.Google Scholar
Yang, Y. L., Nonsymmetric extension of the Green-Osher inequality . Geom. Dedicata 203(2019), 155161.Google Scholar
Yang, Y. L., Jiang, N., and Zhang, D. Y., Notes on the log-Brunn-Minkowski inequality . Acta Math. Sci., Ser. B 43(2023), 23332346.Google Scholar
Yang, Y. L., Liu, L. N., and Fang, J. B., A flow approach to the planar ${L}_p$ Minkowski problem . Math. Nachr. 296(2023), 31173127.Google Scholar
Yang, Y. L. and Zhang, D. Y., The log-Brunn-Minkowski inequality in ${R}^3$ . Proc. Am. Math. Soc. 147(2019), 44654475.Google Scholar