No CrossRef data available.
Published online by Cambridge University Press: 17 April 2009
In a Banach lattice or the hermitian part of a C*-algebra, every element a admits a decomposition a = a+ − a− such that and N(−a) = ‖a−‖, where N is the canonical half-norm of the positive cones. In general ordered Banach spaces, this property is related to the order structure of the duality map and the metric projectability of the positive cones, and it turns out to be equivalent to an “orthogonal” decomposability.