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ON ORTHOGONALLY DECOMPOSABLE
ORDERED BANACH SPACES

SADAYUKI YAMAMURO

In a Banach la t t ice or the hermitian part of a C*-algebra,

every element a admits a decomposition a = a+ - a_ such that

a+ > 0 , N(a) = ||a+|| and N(-a) = ||a_|| , where N is the

canonical half-norm of the positive cones. In general ordered

Banach spaces, this property is related to the order structure

of the duality map and the metric projectability of the positive

cones, and i t turns out to be equivalent to an "orthogonal"

decomposability.

Throughout this note, we shall denote by B a real Banach space

ordered by a closed and proper cone B . Then the dual B* is ordered by

the dual cone S* = {/ € B* : (f, x) > 0 for a l l x 6 B+] .

The canonical half-norm N on B , introduced by [2] , and in a more

general form by [5] , is defined by

N(a) = inf{||a+:e|| : x € 5 } .

Then i t is easy to see that a € B if and only if N(-a) = 0 .

Furthermore, N is continuous, N(a+b) < N(a) + N(b) , tf(Xa) = XN(a) for

X > 0 , and N(a) + N(-a) = 0 implies a = 0 . I t has been proved in [72]

that / € B* is positive, that i s , / € B* , if and only if

f(a) 2 ||/||tf(a) for a l l a € B .
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When B is a Banach l a t t i ce or the hermitian part of a C*-algebra,
every element a (. B determines a pair (a , a ) , the positive and
negative parts of a , such that a = a+ - a . In these two cases we have
N(a) = ||a+|| and N(-a) = ||a_|| .

Generally, an ordered Banach space B is said to be N-deoomposabZe
i f every element a of B i s expressed as a = b - a such that b € B ,
a € S+ , ff(a) = ||2>|| and iV(-a) = ||e|| . When the pair (b, a) satisfies
only N(a) = \\b\\ , then B is called N -decomposable. These two notions
have been considered in [ I I ] and [13].

When B is a Hilbert space, B is uniquely ^-decomposable if and
only i f the positive cone B i s self-dual and, in this case, the
^-decomposition a = b - a is , in fact, an orthogonal decomposition, that
i s , (£>, a) = 0 . The aim of this note is to consider this phenomenon in
general ordered Banach spaces.

We shall s ta r t with a study on those properties which correspond to
the self-duality of the positive cone in Hilbert spaces. Naturally, these
properties are expressed in terms of the duality map F of B . The basic
r6le is played here by another map H , which is defined by the canonical
half-norm. A relation between F and H is

ff(a) = F(J>) n 5* n (b-a)°

i f b > a and N(a) = ||£|| , where

(b-a)° = {/ € B* : ftb-a) = 0} .

(See (l.T).J The condition which appears in this statment, that for every

a € B there exists b € B such that b > a and N(a) = \\b\\ , turns out

to be equivalent to the condition that every element of B can be

metrically projected to B . This pro.iectability leads us to a notion of

orthogonality in B , and it will tie shown that B is ^-decomposable if

and only if it is orthogonally decomposable in this sense. It then becomes

possible to give a simple criterion for the "self-duality" of B (see

(3.6)).

1. The duality map

Let F be the duality map of J . By definition
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F(a) = { f I B * : ( / , a ) = | | a | | 2 , \\f\\ = | | a | | }

for every a. € B . I t has the following properties:

(Fl) F(a) is a nonempty, closed and convex subset of B* ;

(F2) F(-a) = -F{a) ;

(F3) FC\a) = XF(a) for A 2: 0 ;

(Fk) for a bounded subset A of B , F(J4) i s a bounded

subset of B* ;

(F5) F i s monotnoe, ( / - £ , a-fc) > 0 when / € F(a) and

(F6) F is demi continuous: if a -»• a in S and

/ € ̂ (a ) , there exists f € F(a) such that

/n(x) -»• /(x) for all a; € S ;

p
(F7) F is the subdifferential of the function y(x) = |H| /2 ,

that is, F(a) = 3y(a) for all a € S ;

(F8) if B* is strictly convex, F is single-valued and

strictly monotone: (F(a)-F(b), a-b] - 0 implies

F(a) = F(b) ;

(F9) for every a € 5 and b (. B , there exist a* € .F(a) and

8

a* € F(a) such that

{a*, b) = sup{(/, b) : f € F(a)} = ||a||T+(a, 6)

and

{a* b) = inf{(/, b) : f € F(a)} = ||a||x (a, &) ,

where

T (a, fc) = inf t ^ d l
t>0

and

T (a , b) = sup
t<0

https://doi.org/10.1017/S0004972700002082 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700002082


360 Sadayuki Yamamuro

For the proofs of these properties see, for instance [S], p. 119 and

[9].

For the canonical half-norm N of the positive cone B , we set

H{a) = {/ 6 B* : ( / , a) = N(af and ||/|| = N(a)} .

Then i t has the following properties:

(Hi) H(a) is a nonempty, closed and convex subset of B* \

(H2) ff(a) = {0} if and only i f a S 0 ;

(H3) H(Xa) = M(a) for X > 0 ;

(Hit) H is bounded;

(H5) H is monotone;

(H6) H is demicontinuous;

(H7) H(a) = 3v(a) for v(x) = N(x)2/2 ;

(H8) if B* is s t r ic t ly convex, that i s , if the relation

\\f+g\\ = 11/11 + \\g\\ for some / , g € B* implies / = og-

for some a , then H is single-valued and strictly

monotone;

(H9) for every a € B and b € B , there exist a" € H(a) and
s

a* € H{a) such that
If

(a*, fc) = sup{(/, 6) : / € fl(a)} = ff(a)B+(a, 6)

and

(a*, fc) = inf{(/ , i ) : / € ff(a)} = «(a)6 (a, 6) ,

where

9 (a, fe) = inf t"X

and

9 (a , fe) = sup fc')
t<0

The property (H2) i s an immediate consequence of the equivalent of
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N(a) = 0 and a 5 0 . The other properties can be proved in the same

manner as in the case of the duality map.

The map H is used to study the order properties of the duality map

F . The following statement is fundamental.

(1.1). For each a € B 3 the following conditions are equivalent:

(1) F{a) n B* = H(a) ;

(2) F(a) n B* * 0 ;

' (3) lkz|| = N(a) .

Proof. (1) =» (2). This is obvious because H(a) i- 0 .

(2) - (3). For / € F(a) n B* ,

N l 2 = f(a) < \\f\\N(a) = \\a\Ma) .

Hence ||a|| = N(a) .

(3) °* ( l ) . This follows immediately from the definitions of F(a)

and H(a) .

The duality map F is said to be positive if F(a) n B* + 0 for

every a € B .

(1.2). The following conditions are equivalent:

(1) F is positive;

(2) F(a) n B* = H(a) for every a € B+ ;

(3) the norm of B is monotone;

(U) the dual B* is N^-decomposable;

(5) for a € B+ and f € F(a) , there exists g € F(a) n B*

such that g > f .

Proof. The equivalence of ( l ) , (2) and (3) i s an immediate

consequence of (1 .1) and the fac t t h a t t h e norm i s monotone i f and only i f

||a|| = N(a) for every a € B . The equivalence of (3) and (h) has been

proved i n [ H ] , Theorem 3 . 8 . We s h a l l prove t h a t (k) impl ies ( 5 ) . Let

a 6 B+ and / € F(a) . By (k) t h e r e e x i s t g, h € B* such t h a t

/ = g - h- and N(f) = \\g\\ . Then, s ince ||^|| < | | / | | ,
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0 < Ha) = g(a) - f{a) = y|||a|| - ||a||2

£ II/IIIHI - Hall2 = 0 .

Hence g(a) = f{a) = l|a||2 and \\g\\ = \\a\\ . Thus g € F{a) n B* . I t i s

obvious t h a t (5) implies ( l ) .

The dual i ty map F i s said to be inversely positive i f

F(a) n B* f 0 implies a € B . Again, the following statement follows

immediately from ( l . l ) .

(1.3). The following conditions are equivalent;

(1) F is inversely positive;

(2) if N(a) = \\a\\ , then a 6 B+ .

EXAMPLE 1. Suppose that B is a Hilbert space H with the

positive cone H . Then the duality map is positive if and only if

H+ c H* , where H* = {a € H : (a, x) > 0 for every x € H+} , and the

duality map is inversely positive if and only if H 3 H* . When

H+ = H* , the positive cone has been called self-dual (see, for instance,

[4] , p. 10U). The positive cone of the Banach lat t ice L (ft) on a measure

space ft , with the usual order, is obviously self-dual. In the Sobolev

space ffT(ft) , where ft is a bounded domain with smooth boundary, equipped

with the inner product

(a, b) = f a'(t)b'(t)dt ,
J Q

the cone K = la € H (ft) : a(t) > 0 almost everywhere!- is closed and

proper, and /Oft) is a vector la t t ice . In this case F = -A in the

distributional sense and the cone K is not self-dual. However,

p(ft) = \a € ffp(ft) : a ' ( i ) > 0 almost everywhereV is a self-dual cone.

Let H be the linear space of all n-square hermitian matrices equipped

with the inner product {a, b) = trace of ba . Then

[H ) + = {a € H : a is positive semi-definite} is a self-dual cone (see

[J ] , P- TO). This is also true for general operator algebras with traces.
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For more general cases, see [4].

Following this example, we shall call the positive cone B of an

ordered Banach space B self-dual if the duality map is positive and

inversely positive. Then the following statement is obvious.

(1.4). The following conditions are equivalent:

(1) B is self-dual;

(2) N(a) = \\a\\ if and only if a € B+ .

EXAMPLE 2. The norm of B is said to be of type (fit, p) ,

1 5 p < °° , i f

||a||P = N(a)P + N{-a)P i f p is f inite

and

jkz|| = max(ff(a), N(-a)) i f p = » .

(See [73], §6.) I t is obvious that , i f the norm is of type (N, p) for

finite p , the positive cone is self-dual. When p = °° , the duality map

is positive but not inversely positive. When B is the hermitian part of

a C*-algebra with the usual order, i t then follows that B is not self-

dual but the dual cone B* is self-dual.

EXAMPLE 3. Let B be the Banach space (^[0, l ] equipped with the

norm ||a|| = sup ja ( t ) | + sup | a ' (£ ) | . Define the positive cone by
0<t<l ' 0<£sl

B+~ {a i (^[0, 1] : a{t) > 0 for a l l t] .

Then N(a) = sup a At) . and N(a) = \\a\\ i f and only if a is a
0<t<l

positive number. Thus the duality map is neither positive nor inversely

positive.

As we have shown in (1.2) . the posltivity of F has a simple

characterization that the norm is monotone. However, a simple

characterization of the inverse positivity of F has to wait until we have

the notion of orthogonally decomposable spaces (see (3-5)). The following

two statements are concerned with this problem in general cases.

(1.5). Suppose that B is reflexive and strictly convex. Then the

following conditions are equivalent:
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(1) P is inversely positive;

(2) the dual norm is monotone.

Proof, ( l ) => (2). Let / € B* and F* be the duality map of S* .

Suppose that E, € F*(f) . Since B is reflexive, E, = a for some

a 6 B , where (<2, g) = (g, a) for a l l g € B* . Then / € F(a) and, by

( l ) , a € B+ . Furthermore,
+

ll/ll2 = IHI2 = (/, a) £*(./) IWI •

Hence ||/| | = N(f) . Therefore the dual norm is monotone.

(2) =» (1). Suppose that f € F(a) n B< . Then, by (2), i t follows

from (1.2) that there exists £ € F*{f) n S** . However, since B is

reflexive and s t r i c t ly convex, F* is single-valued. Hence, since

a € F*(/) , we have ? = S. and this implies a € 5+ .

Therefore, when B is reflexive and s t r ic t ly convex, the positive

cone S+ is self-dual i f and only i f the norms of B and B* are

monotone.

When B is a Banach l a t t i c e , ||a|| = N(a) is equivalent to

IKJI = IK 1̂ 1)11 • Therefore, in this case, F is inversely positive if and

only i f \\a \\ = | | ( | a | ) | | implies a = \a\ . Generally, the norm of an

ordered Banach space B is said to be strictly monotone i f ||a|| < ||i>||

when 0 £ a S b and a ? b .

(1.6). Suppose that the norm of B* is smooth. Then, if the norm of

B is monotone, it is strictly monotone.

Proof. Suppose that 0 5 a S b and ||a|| = ||£>|| . Since the norm is

monotone, F is positive by (1.2). Hence there exist / € F{a) n B* and

g € F(b) n B* . Then {g, b) = \\bf and

||a||2 = ( / , a) S (f, b) S H/ll||ft|| = ||fo||2 .

Therefore ( / , a) = ( / , b) = {g, b) . On the other hand, since F* is

single-valued, we have F*{f) = 9. and F*(g) = £ • Therefore

[P*(g), f) = ll/ll2 and ||F*(g)|| = ll/ll , and hence, F*(g) = F*[f) . Thus

we have a = b .

I t follows from (l .6) that the positive cone of a Banach la t t ice with
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smooth dual is self-dual.

The following relation between F and H is fundamental in the

subsequent arguments.

(1.7). If b 2: a and N(a) = \\b\\ , then

H(a) = F{b) n B* n (b-a)° ,

where (b-a)° = {/ € B* : (f, b-a) = 0} .

Proof. When / € H(a) , we have f € B* and

IN 2 = N(af = ( / , a) < ( / , b) 2 \\f\\\\b\\ = S{a)\\b\\ = ||&||2 .

Hence / € F(b) and ( / , b-a) = 0 . Therefore H{a) is contained in the

right-hand side. The other inclusion is obvious.

There are cases when F{b) in (1.7) is automatically contained in

B* . When B is ^-decomposable, every element a is expressed as

a = a -a , where a+ € B , N{a) = \\a \\ and N[-a) = \\a || . Therefore

a s a t i s f i e s the conditions placed on b in (1 .7) -

(1.8). Suppose that B is N-decomposable and the dual positive cone

B* is self-dual. Then, for every a € B , we have F(a ) c B* and,

therefore, H{a) = F(a+) n (a )° .

Proof. Let / € F(a ) . Since 5* i s also N-decomposable by [73] ,

Theorem 5-2, we can take an iV-decomposition f - f ~ f of f • Then

0 < (/_, a+) = ( /+ , a+) - ( / , a+) = (f+, a+) - \\a+f

= WfJtiaJ - l|a+||2 = N(f)\\a+\\ - \\a+f

2 \\f\\\\aj - \\a+f = 0 ,

because ||/| | = ||a+|| . Hence we have N(f) = \\f\\ . Since the dual cone is

self-dual, we have / € B* .

When B is the hermitian part of a C*-algebra, then, as was stated

in Example 2, B is ^-decomposable and B* is self-dual. Therefore the

assumptions in (1.9) are satisfied.

When an ordered Banach space B is ^-decomposable and a € B , then

a = a - 0 is the only ^-decomposition. Hence the following statement

follows immediately from (1.8). For the case of the hermitian part of a
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C*-algebra, see [3], Example 1.2.5.

(1.9). Suppose that B is N-decomposable and B* is self-dual.

Then F(a) c B* for every a € B .

2. Projections

For a € 5 , we set

ir(a) = {b € B+ : ||a-2>|| 5 \\a-x\\ for a l l x € S+} ,

which will be called the projection of a on the positive cone B+ .

I t is obvious that a € ir(a) if a € B+ , iT(Aa) = Air(a) for

A 5 0 , and Tr(Tr(a)) = Tr(a) for every a € B . Furthermore, i t is easy to
see that 0 € ir(a) whenever a £ 0 i f and only if the norm of B is
monotone.

( 2 . 1 ) . The following conditions are equivalent:

(1) b Z Tr(a) ;

(2) ||fc-a|| = N(-a) and b € B+ ;

(3) i E B + cm<2 ( / , fc) = 0 f o r some f € F(i>-a) n B* .

Proof . The e q u i v a l e n c e of ( l ) and (2) i s obvious from t h e d e f i n i t i o n s

o f IT and N . The f a c t t h a t (2) i m p l i e s (3) fol lows from ( 1 . 7 ) , which

i m p l i e s H(-a) = F(b-a) n B* n {b)° . To prove t h a t (3) i m p l i e s ( 2 ) , l e t

/ € F(b-a) n B* and ( / , b) = 0 . Then

\\b-af = (/, b-a) = (/, -a) < \\f\M-a) .

Thus ||&-a|| = N{-a) .

The set ir(a) may be empty. B is said to be projectable if n(a)

is not empty for every a t B .

(2.2) . The following conditions are equivalent:

(1) B is projectable;

(2) for every a € B there exists b € B SMCTZ that fc > a

(3) B - B+ is closed.

P r o o f , ( l ) =» ( 2 ) . F o r a € B , t a k e e € i r ( - a ) . T h e n , by ( 2 . 1 ) ,
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b = a. + c is the required element.

(2) =* (3). Let a € B(N) = ix € B : Nix) 5 1} . Then, by (2), there

exists b (. B such that b > a and b € B . Hence a € B - B+ .

However B(N) = B± - B+ . Hence B± - B+ is closed.

(3) "* (1). When N{-a) = 0 , then a € B+ and, hence, a €

When N(-a) t 0 , tf(-a)~1(-a) € S(il/) = 5̂ ^ - B+ ; that is,

-a = N{-a)b - N(-a)c for some i ( B and a € B+ .

Since W(-a) - #(-a)#(£>) we have l|fc|| = 1 . Then, since

N(-a)b = N(-a)c - a , we have N{-a) = \\N(-a)c-a\\ . T h e r e f o r e , by ( 2 . 1 ) ,

we have N(-a)o € ir(a) .

I t is obvious that B - B is closed i f B is weakly compact.

Hence the dual B* is always projectable.

The following statement, which is an immediate consequence of (2 .2) ,

shows that N -decomposable spaces are projectable. Therefore a l l Banach

la t t i ces and the hermitian parts of C*-algebras are projectable.

(2.3). The following conditions are equivalent:

(1) B is N -decomposable;

(2) for every a € B there exists b t B such that b 2 a

and b (. ii(a) .

There are spaces which are projectable but not N-decomposable. For

example, when the norm of B i s not monotone, the dual B* i s not i n -

decomposable although B* i s always projec table .

(2.4). If B is projectable and F is inversely positive, then B

is N -decomposed) le.

Proof. For a £ B , t a k e b € -n(a) . Then, s i n c e , by ( 2 . 1 ) ,

N{b-a) < \\b-a\\ = N{-a) < N(b-a) ,

we have Nib-a) = \\b-a\\ • Since F is inversely posi t ive, we then have

b > a • Hence i t follows from (2.3) that B is /^-decomposable.

I t is easy to see that IT is single-valued i f B is s t r i c t l y

convex. The following statement is an immediate consequence of (2 .3) .
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(2.5) . If B is N -decomposable and TT is single-valued, then the

N -decompositions are unique.

Suppose that B is a Hilbert space H considered in Example 2. Then

i t is projectable since the unit ball is weakly compact. Furthermore, IT

is single-valued because H is s t r ic t ly convex. Hence, by (2.1) (3), for

every a € H there exist b € H and e € H* such that a = b - c and

{b, c) = 0 . Therefore, if W+ c H+ , that i s , if the duality map is

inversely positive, a = b - c , b € H+ and c € H with (.b, c) = 0 .

This fact is generalized in the following form.

(2.6) . Suppose that B is projectable and F is inversely positive.

Then, for any a € B , there exist b € S+ , c i B+ and c* € F(c) n S*

such that a = b - c and {b, c*) = 0 .

Proof . For a € B , l e t b € -n(a) . Then, by ( 2 . 1 ) , b > 0 and

(b, c*) = 0 for some c* € F(c) n B* , where a = b - a . Since F is

inversely positive, a € B

We conclude this section with a simple remark which follows from (1.5)

and (2.3) .

(2.7). When B is a Hilbert space H , the following conditions are

equivalent:

(1) H is ^^-decomposable;

(2) F is inversely positive;

(3) ir(a) > a for every a € H .

3. Orthogonal decompositions

When B is iV-decomposable, every element a can be expressed as

a = b - c for some b, c € S+ such that N(a) = \\b\\ and N(-a) = \\c\\ .

These two positive elements b and C satisfy, therefore, the following

two equations:

N(b-c) = ||2>|| and N{c-b) = ||c|] .

Generally, two positive elements b and c will be called N-orthogonal if

they satisfy these two equalit ies.

Therefore a = b - c is an ^-decomposition if and only if b and c

are //-orthogonal. When B is the hermltian part of a C*-algebra and
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bo + cb = 0 , then b and c are ^-orthogonal because the equality

implies (b-c) = b and (c-b) = c . However, there are other N-

orthogonal elements which do not satisfy the equality as we shall see in

Example h. The case of Banach lattices is much simpler.

(3.1). When B is a Banach lattice and b A C = 0 ., then b and c

are N-orthogonal. The converse holds if the dual B* is smooth.

Proof. If b A c = 0 we have {b-c) = b and, therefore,

N(b-c) = \\b\\ . Similarly, N(c-b) = \\c\\ . Conversely, when b and a

are ^-orthogonal, since we always have 0 < (b-c) < i , i t follows from

||(2>-c) + || = IN and (1.6) that {b-c) + = b . Therefore b A a = 0 .

Two positive elements b and c are said to be F-orthogonal if

there exist b* € F(b) n B* and c* € F(c) n S* such that

(b*, a) = (b, c*) = 0 .

(3 .2 ) . For b £ B and c € B 3 the following conditions are

equivalent:

(1) b and c are F-orthogonal;

(2) b and c are N-orthogonal;

(3) b € u(b-c) and c € -n(a-b) .

Proof. The equivalence of (2) and (3) i s an immediate consequence of

(2 .1 ) .

( l ) => (2) . For the functional b* in the defini t ion of F-

orthogonali ty,

N(b-c) = sup{( / , b-c) : f > 0, Il/H < 1}

> H&lf1^*, 6-e) = ||fc || •

Hence we have N(b-c) = \\b\\ • Similarly, N(c-b) = ||e|| •

(3) => (l). This follows immediately from (2.1).

Two positive elements b and c will simply be called orthogonal if

they satisfy one of the three equivalent conditions in (3.2), and we shall

denote this fact by b \_ c • Since F(\a) = \F{a) for A > 0 , b \_ c

implies b j_ Xc for \ > 0 .

When 5 is a Hilbert space and the norm is monotone, b ]_ c is

equivalent to (fc» e) = 0 . When g is a Banach lattice with smooth dual,
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i t follows from (3.1) that b J_ a is equivalent to b A a = 0 . Therefore,

in these two cases, we have that b ]_ a and 0 < d 5 c imply b ]_ d •

However, this is not always true.

EXAMPLE 4. Let B = C[-l, l] be the Banach latt ice of continuous

functions on [-1, l ] with the polntwise order, and consider the function

a{t) = t . Then, in addition to the lat t ice decomposition a = a - a ,

there are infinitely many orthogonal decompositions in our sense. For

example, a = b - a is an orthogonal decomposition when b is the line

connecting the points ( -1 , 0) and ( l , l) , and a is the line

connecting ( -1 , l) and (1 ,0 ) . I t is clear that there exists d € B

such that d 5 a but b J_ d is not satisfied. Note also that

ir(a) = {x € C\-X, l ] : a+ 5 x < e} , where e(t) = t + 1 . The fact that

a is the smallest element of ir(a) is not accidental, as we shall see in

(3.5).

The following statement is a partial answer to this question.

(3.3). Suppose that the norm of B is monotone. If b ]_ c , then

b J_ d when there exists a > 0 such that ae > d > 0 and

N(us-b) = N(d-b) .

Proof. Since b J_ ae and the norm is monotone,

N(ae-b) = ||oe||-a ||d|| > N{d-b) .

Hence N(d-b) = \\d\\ . On the other hand, since

||b|| = N(b-aa) £ N(b-d) 5 ||2>|| ,

we have N(b-d) = ||£>|| . Therefore b \_ d .

An ordered Banach space B is called orthogonally decomposable i f

every element a is expressed as a = b - a such that b \_c . Then the

following statement is obvious.

(3.4). The following conditions are equivalent:

(1) B is N-decomposable;

(2) B is orthogonally decomposable;

(3) a € iro(a) - 1In(~a) for every a £ B } where

TrQ(a) = {b e ir(a) : b > a and \\b\\ =
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Therefore a l l Banach lat t ices and a l l hermitian parts of C*-als;ebras

are orthogonally decomposable. Throughout the remainder of this paper, we

shall always assume that B is orthogonally decomposable. Hence, when we

set (a+) = ir (a) and (a ) = ^ (-a) , we have

a € (a+) - (a ) for every a € B .

The following statement can be proved easily. The set (a ) will

sometimes be denoted simply by a

(3.5). (1) b € (a+) if and only if b - a € (a_) .

(2) If a € S+ , then (a_) = {o} .

(3) (a+) = {a} for all a € B+ .

(U) f o r 2? € ( a + ) , ( i + ) = ( a + ) n { i { B : x > b} .

(5) 1 / fc 1 a , b e (fc-c)+ and a i (b-c)_ .

(6) If B is a Banach lattice and a = a -a is the lattice

decomposition, then a 5 b for all b 6 (a ) .

Since ||2>|| = iV(a) for every fc € (a ) , we can define the norm Ha ||

of the set (a ) by this common value; that i s , ||a || = N{a) . Then we

have a characterization of the self-duality of B when B is

orthogonally decomposable. Note that the norm of an orthogonally

decomposable space is monotone, and, hence, the duality map is always

positive.

(3.6). The following conditions are equivalent:

(1) B is self-dual;

(2) ||a|| = ||a+|| implies a € S+ ;

(3) if b ]_c and \\b\\ = ||fc-e|| , then c = 0 .

Proof. The equivalence of (l) and (2) follows from ||a [I = N(a) .

When we set a = b - a , conditions (2) and (3) are identical.

REMARK. The self-duality of B is determined by B and the norm

of B . To produce a self-dual cone from a positive cone which is not, one

usually retains the norm and reforms B , as in the case of operator

algebras. We note here that i t is always possible to make the original B

self-dual by changing the norm. More precisely, when B is orthogonally
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decomposable, there is an equivalent norm on B so that B+ is self-dual.

To prove th is , one only has to consider the norm || |Q|| | = (ff(a) +il?(-a) )

for an arbitrary finite p . Since the original norm is monotone, the two

norms are equivalent. The canonical half-norm of B measured by the new

norm coincides with the original N because of the orthogonal

decomposability. The self-duality of B is now obvious.

We now leave the self-duality and consider another problem. Suppose

that B is a Hilbert space H and let K = {x € H : x 5 a} . Then K
a a

is a convex closed subset of H and i t s indicator function

I (x) = 0 when x € K , = ¥*> otherwise,

is a proper lower-semicontinuous convex function. The subdifferential

dl (c) is of the following form:

3Jfl(e) = {x € H+ : x j_ a-o] .

2
I t is known [S] that, when H is the space L (fi) , lattice-ordered in the

usual manner, the resolvent of 81 is single-valued and

(i>) = a A b

for all X > 0 . A similar equality holds in LP(£2) , 1 < p < » , with

suitable modifications.

Eeturning to the case of general orthogonally decomposable spaces, we

set

a A b = a - {a-b)+ (= b - (b-a)+)

and

a v b = a + (a-h)_ (= b + (b-a)_) .

Then i t i s easy to see tha t

a + b ^ f l v o ^ d A o .

Now, for a € B , we define a r e l a t i on A c B x B by

A = {(c , x) : o 5 a, x > 0 and x J_ a-e} .
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(3 .7 ) . (l+A/1 ) (b) = a A b for every a, b € B and X > 0 .

Proof. By the def in i t ion ,

1 + MQ = {(e, b) : a 5 a, c 5 b, b-c \_ a-c} .

Hence, by (3.U),

(l+X4 )~1(2?) = {e : c < a, c < b, b-c ]_ a-c}

= {a : a-c € (a-b)+}

= a A b .

Thus the resolvent (l+X/1) is not single-valued in general. The

following statement can be proved easily.

(3.8). The following conditions are equivalent:

(1) [l+\A ) ~ is single-valued;

(2) IT. is single-valued;

(3) B is uniquely orthogonally decomposable.

We note that, when B is a Hilbert space, i t is uniquely orthogonally

decomposable if and only if S+ is self-dual.

In the sequel we shall assume that B is uniquely orthogonally

decomposable. Then, since

a A j - a A e = (a-c) - (a-b) ,

(l+XX) is a norm-contraction if and only if the single-valued map TT

is . When B is a Banach latt ice or a Hilbert space with self-dual

positive cone, IT i s , and hence IT i s , a norm-contraction.

In fact, in the lat ter case, we have

(Tr(a)-rr(i>), a-b) > 0 for all a. b € B .

However, in the general case, in order that TT_ be an tf-contraction, that

i s ,

N(-nQ(a)-nQ(b)) 5 N(a-b) for a l l a, b € B ,
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B must be a vector la t t ice as the following statement shows.

(3.9). The following conditions are equivalent:

(1) nn is an N-contraction;

(2) a s b implies IT (a) £ ^(k) >'

(3) B is a vector lattice with respect to the original order.

Proof, (l) =» (2). This follows from the equivalence of N(-a) = 0

and a € B+ .

(2) =» (3). Suppose that a 5 b and b € B . Then

a = Tn(a) -
 7r

n(k) = & • Therefore a = sup{a, 0} . This shows that B

is a vector lattice.

(3) "* (1). When B is a vector lattice,

(a+-&+)+ = (a v 0-2>+) = (a-fe ) v (-& ) V 0

< (a-b) v 0 = (a-b) .

Therefore

< ||(a-fc) || = N{a-b) .

because the norm is monotone.

REMARK I . There is a notion of orthogonality in a general Banach

space B due to R.C. James. According to [6] , an element a of B is

said to be James-orthogonal to an element b if ||a|| < ||a+X£i|| for a l l

X € R . I t is easy to see that this is equivalent to (f,b)=O for some

/ € F(a) . Hence i t is clear that , i f a i B+ and b € B+ are orthogonal

in our sense, then a is James-orthogonal to b and b is James-

orthogonal to a • The converse holds i f the assumptions in (1.9) are

sat isf ied.

REMARK 2. There are several related topics which have not been

discussed in this note. These include the absolute monotonicity of the

norms, the absolute values of elements and the Robinson property in

orthogonally decomposable spaces. I t serves to clarify these properties if

we consider an example, which appeared in [7]. Let K be the two-

2
dimensional space R with the usual coordinatewise order and the norm
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if xy > 0 , = (x +y y otherwise

for a = (x, y) . Then the dual K* is FT with the same order and the

norm

||a|| = \x\ v \y\ if xy > 0 , = (x2+y2)^ otherwise.

I t is easy to see that K and K* are uniquely orthogonally decomposable,

both are of type {N, 2) and both have self-dual positive cones. However,

although the norm of K is absolutely monotone, the norm of K* is not.

Nevertheless, i t follows from [13], (7.2), that K and K* have the

Robinson property, that i s , for every positive continuous linear operator

A , we have \\A\\ = sup{||Aa|| : ||a|| < 1 and a € S+} . Therefore, these

spaces are examples of spaces with the Robinson property whose norms are

not Riesz norms (see [10]). As to the absolute values, we observe that

||a|| < \\a -ha || in K and lla|| > ||a +a II in K* for the unique orthogonal

decomposition a = a -a of an element a which is neither positive nor

negative.

4. Automorphisms

Throughout this section we shall always assume that B is an

orthogonally decomposable space. A linear operator S : B •* B is called a

transition map i f \\Sb\\ = ||£>|| for a l l b € B . An automorphism is a

bijective transition map S : B •* B which preserves the orthogonality,

that i s , a = b - a is an orthogonal d-composition if and only if

Sa - Sb - So is an orthogonal decomposition. I t is obvious that auto-

morphisms are continuous.

The iV-preserving linear operators have been considered in [14]. A

bijection S : B •* B is ff-preserving if N(Sa) = N{a) for every a € B .

(4.1). The following conditions are equivalent for a bijection

S : B •* B :

(1) 5 is an automorphism;

(2) S is N-preserving;

(3) S*H(Sa) = H(a) for every a € B .

Proof. (1) => (2). For a € B , let a = b - c be an orthogonal
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decomposition. Then, by the assumption, Sa = Sb - Sa is also an

orthogonal decomposition. Since S is a transition map and fa € S ,

N(Sa) = \\Sb\\ = \\b\\ = N(a) .

(2) =* (3 ) . Let f i H(Sa) . Then, since / € B* ,

(S*f, x) = ( / , 5x) < H/IM&c) = \\f\Wx)

for every x 6 B . Therefore

\\S*f\\ < l|/||

On the other hand,

(5*/ . a) = ( / , 5a) = N(Sa)2 = N(a)2 ,

and this also implies \\S*f\\ 2; N(a) . Thus ||5"f|| = N(a) . The positivity

of S , and of 5~ , follows immediately from (2). Hence S*f € H(a) ,

and we have proved that S*H(Sa) c H(a) . We obtain the inverse inclusion

by replacing S with S

(3) °* ( l )• At f i rs t we note that S is positive, because

H{Sa) = {0} (that i s , 5a 5 0 ) if a 5 0 . Now, for H S , let

f € ff(Sfc) . Then, since S*f € H(b) ,

||Z>||2 = tf(Z>)2 = (S*f, b) = ( / , Sb) = tf(SZ>)2 = l|5b||2 .

Therefore S is a transition map. Next, suppose b J_ a , and choose

£>* € #(a) and c* € #(-a) such that (i*, a) = (fa, c*) = 0 , where

a = b - o . Then b* = S"1/ and c* = S*g for some / € ff(Sa) and

^ € H(-Sa) . It then follows that

N{Saf = (f, 5a) = (5*/ , a) = (fa*, a) = (fa*, fa) = ||fa||2

= H5fa||2 ,

because 5 is a transition map. Similarly, N(-Sa) = ||5c|| . Hence

5fa J_ So . Considering 5 instead of 5 , we have that 5fa J_ So implies

b ]_c .

(4.2) . if S is an automorphism of B 3 then S* is an automorphism
of B* .

Proof. Obviously 5* is a bijectlon. Furthermore, since 5 is a

positive transition map, for every f € B* ,
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N(S*f) = sup{(S*/, x) : x e B+, \\x\\ 5 1}

= sup{( / , y) • y € B+, HJ/II < 1} = N(f) .

Hence 5* is an automorphism.

We now characterize automorphisms of some important class of

orthogonally decomposable spaces. As we have stated in the remark after

(3-9), the norm of an ordered Banach space B is said to have the Robinson

property if

||S|| = ||5||+ = sup{||5a|| : a € B+, \\a\\ £ l}

for every positive continuous linear operator S : B •+ B . It is known

that the norms of a l l Banach latt ices and the hermitian parts of C*-

algebras have the Robinson property.

(4.3). Suppose that the norm of B has the Robinson property and

S : B -*• B is a bisection. Then the following conditions are equivalent:

(1) S is an automorphism;

(2) S and S~ are positive and isometric, that is,

\\Sa\\ = ||a|| for every a € B ;

(3) S and S~ are positive and S*F(Sa) = F{a) for every

a € B .

Proof. Generally a bisect ion S of a Banach space 5 i s an isometry

i f and only i f S*F(Sa) = F(a) for a l l a € B . Hence (2) and (3) are

equivalent. We sha l l prove the equivalence of ( l ) and (2) .

(1) =» (2 ) . By ( l t .1) , ||S||+ = 1 . Hence i t follows from the Robinson

property tha t ||Sa|| £ ||a|| for every a € B . Similar ly , we have

HS^all < |ja|| , t ha t i s , ||a|| £ ||5a|| for every a € B . Therefore 5 i s

an isometry.

(2) =* ( l ) . I t follows from the assumption tha t the dual S* i s also

an isometry of B* . Therefore the condition tha t / € B* and \\f\\ < 1

i s equivalent so tha t S*f € B* and ||5*/ll - x • Hence, for every

a € B ,

N(Sa) = sup{(/, Sa) : / € B*. ||/| | < l}

= sup{(S*/, a) : S*f € B*. \\S*f\\ 5 1}

= N(a) .
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Therefore S is an automorphism.

Therefore, when B is a Banach lat t ice, 5 is an automorphism if and

only if i t is an isometric lattice-isomorphism. When B is the hermitian

part of a unital C*-algebra acting nondegenerately on a Hilbert space, i t

follows from [4], Theorem 3.2.3, that S is an automorphism such that

S(l) = 1 if and only if i t is the restriction on B of a Jordan auto-

morphism of the algebra. In general C*-algebras, a C -group of Jordan

automorphisms is in fact a group of ''-automorphisms. (See [4], Corollary

3.2.12.)

(4.4). Let, as before, B be an orthogonally decomposable space.

The following two conditions are equivalent:

(1) G is a generator of a C -group \S, : t i R} of

automorphisms;

(2) (a) G is densely defined,

(b) f?(l+ctG) = i?(l+3G) = B for some a > 0 and Q > 0 ,

(c) ( / , Ga) = 0 if a I D(G) and f € H{a) .

Proof. I t has been proved in [3] , Corollary 2.2.5, that , under the

assumption that the norms of B and B* are monotone, the following two

conditions are equivalent:

(BRl) G generates a positive Cn-semigroup \S. : t > Or

satisfying | |St | |+ 5 1 ;

(BR2) G is densely defined, tf-dissipative and R{lHxG) = B

for some a > 0 .

Since the norms of B and B* are monotone when B is orthogonally

decomposable, this theorem is applicable to our case. We recall that G

is iV-dissipative if and only i f {f, Ga) > 0 whenever a € D(G) and

f € H(a) . This is equivalent to that ff((l+aG)a) > N(a) for all

a € D{G) and a > 0 . (See [2] , Theorems 2.5 and 3.1, and [3] , Theorem

2.1.1.)

(l) => (2). Since each S. is a transition map, we have ||S,|| = 1 .

Therefore G generates a C.-semigroup \S. : t > 0} with ||SJL = 1 and

-G generates a C -s end group \S . : t =: 0} with \\S , \\ = 1 . Thus G
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and -G satisfy condition (BRl), and, hence, (BR2). This implies

condition (2) .

(2) ** ( l ) . I t follows from the assumption that G and -G sa t isfy

condition (BR2) and, hence, they generate C -semigroups \S.) and IT,}

satisfying ||5.|l 5 1 and ||2\|l < 1 . However, since 1. = S"1 , 5.

are bisections and

N{sta] = sup{(/, Sta) : / € B*, ||/|l < l}

for every a € B , because ||S*|| = | |5 . | | when B i s orthogonally

decomposable. Similar ly , we have N\S. a\ 5 iV(a) for every a € B . Thus
I v I

\S } are automorphisms by (U .1 ) .
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