Hostname: page-component-7dd5485656-zlgnt Total loading time: 0 Render date: 2025-10-24T13:53:12.684Z Has data issue: false hasContentIssue false

Effectiveness of an oil-based Beauveria bassiana formulation for controlling the neotropical brown stink bug, Euschistus heros (Heteroptera: Pentatomidae) on soybean crops

Published online by Cambridge University Press:  14 October 2025

Daian Guilherme Pinto de Oliveira*
Affiliation:
Biology Department, Federal University of Technology/UTFPR, Santa Helena, PR, Brazil
Samuel Roggia
Affiliation:
Embrapa Soybean: Embrapa Soja, Londrina, PR, Brazil
Vanessa Nicolau Ribeiro
Affiliation:
Agricultural Biotechnology Laboratory, Western Parana State University, Cascavel, PR, Brazil
Alene Alder-Rangel
Affiliation:
Alder’s English Services, São José dos Campos, São Paulo, Brazil
Drauzio Eduardo Naretto Rangel
Affiliation:
Inbioter - Institute of Biotechnology Rangel, Itatiba, São Paulo, Brazil
Luis Francisco Angeli Alves
Affiliation:
Agricultural Biotechnology Laboratory, Western Parana State University, Cascavel, PR, Brazil
*
Corresponding author: Daian Guilherme Pinto de Oliveira; Email: daianguilherme@yahoo.com.br

Abstract

The fungus Beauveria bassiana (Unioeste 76) was tested against the soybean pest Euschistus heros in laboratory, greenhouse, and field. In the laboratory, insects were sprayed with pure conidia (TC) suspended in distilled water or in an oil dispersion formulation (OD; vegetable oil) at a concentration of 109 conidia/mL. The UV-B radiation and heat tolerance of the conidia were also assessed. After 12 days, the mortality rates in the laboratory were 70% for the TC treatment and 80% for the OD treatment. In the greenhouse pre-infestation bioassay, which used soybean plants in cages, the fungal treatments resulted in 52% and 47% mortality for the TC and OD formulations, respectively. In the post-infestation bioassay, both fungal treatments caused 83% mortality. In the field trial conducted on soybean plots (14 × 18 m), the treatments included: (i) biological: OD (109 conidia/mL); (ii) chemical insecticide; (iii) biological + chemical, all applied at 150 L/ha. Insect numbers were evaluated using beating-sheet sampling. In the final population sample, the biological treatment showed a population density similar to the chemical treatment (0.94 and 0.83 insects/m, respectively), both below the economic threshold. Conidia tolerance to UV-B radiation was similar across both treatments, but conidia in oil were less tolerant to heat. These results suggest that strategically combining both approaches (B. bassiana with chemical insecticides), with careful consideration of application intervals, could provide a sustainable and effective method for managing natural populations of E. heros.

Information

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abbate, S, Rivas, F, Ribeiro, A, Bentancur, O, Castiglioni, E and Altier, N (2024) Side effects of soybean insecticides on beneficial microorganisms. International Journal of Pest Management 71(1), 114121. doi:10.1080/09670874.2024.2438308.CrossRefGoogle Scholar
Acheampong, MA, Hill, MP, Moore, SD and Coombes, CA (2020) UV sensitivity of Beauveria bassiana and Metarhizium anisopliae isolates under investigation as potential biological control agents in South African citrus orchards. Fungal Biol 124, 304310. doi:10.1016/j.funbio.2019.08.009.CrossRefGoogle ScholarPubMed
Agrofit, Sistemas de agrotóxicos fitossanitários. (2025) Brasília: MAPA. Disponível em: https://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons (accessed 6 January 2025).Google Scholar
Alves, RT, Bateman, RP, Prior, C and Leather, SR (1998a) Effects of simulated solar radiation on conidial germination of Metarhizium anisopliae in different formulations. Crop Protection 17, 675679. doi:10.1016/S0261-2194(98)00074-X.CrossRefGoogle Scholar
Alves, SB, Almeida, JEM, Moino, JRA and Alves, LFA (1998b) Técnicas de laboratório, cap. In Alves, SB (ed.), Controle Microbiano de Insetos. Piracicaba: FEALQ, 2 ed, Vol. 20, 637712.Google Scholar
Bateman, RP, Carey, M, Moore, D and Prior, C (1993) The enhanced infectivity of Metarhizium flavoviride in oil formulations to desert locusts at low humidities. Annals of Applied Biology 122, 145152. doi:10.1111/j.1744-7348.1993.tb04022.x.CrossRefGoogle Scholar
Bayram, A, Salerno, G, Onofri, A and Conti, E (2010) Lethal and sublethal effects of preimaginal treatments with two pyrethroids on the life history of the egg parasitoid Telenomus busseolae. Biocontrol 55, 697710. doi:10.1007/s10526-010-9288-8.CrossRefGoogle Scholar
Brazil (2007) Ministry of Agriculture, Livestock and Supply. Normative Instruction No. 11. Establishes the Technical Regulation for Soybeans, defining its official classification standard, with requirements for identity and intrinsic and extrinsic quality, sampling, and labeling or marking. Official Gazette of the Union, Brasília, DF, May 16 .Google Scholar
Bueno, AF, Ceolin Bortolotto, O, Pomari-Fernandes, A and França-Neto, JB (2015) Assessment of a more conservative stink bug economic threshold for managing stink bugs in Brazilian soybean production. Crop Protection 71, 132137. doi:10.1016/j.cropro.2015.02.012.CrossRefGoogle Scholar
Bueno, AF, Paula-Moraes, SV, Gazzoni, DL and Pomari, AF (2013) Economic thresholds in soybean-integrated pest management: old concepts, current adoption, and adequacy. Neotropical Entomology 42, 439447. doi:10.1007/s13744-013-0167-8CrossRefGoogle ScholarPubMed
Chen, X, Huang, C, He, L, Zhang, S and Li, Z (2015) Molecular tracing of white muscardine in the silkworm, Bombyx mori (Linn.) II. Silkworm white muscardine is not caused by artificial release or natural epizootic of Beauveria bassiana in China. Journal of Invertebrate Pathology 125, 1622. doi:10.1016/j.jip.2014.12.005.CrossRefGoogle ScholarPubMed
Dalla Nora, D, Piovesan, BC, Bellé, C, Stacke, RS, Balardin, RR, Guedes, JVC, Michaud, JP and Jacques, RJS (2021) Isolation and evaluation of entomopathogenic fungi against the neotropical brown stink bug Euschistus heros (F.) (Hemiptera: Pentatomidae) under laboratory conditions. Biocontrol Science and Technology 31, 2234. doi:10.1080/09583157.2020.1826904.CrossRefGoogle Scholar
Devi, K, Joshi, N and Sangha, KS (2018) Oils as uv protectants of Beauveria bassiana conidia and bioefficacy against Lipaphis erysimi (Kalt). Indian Journal of Entomology 80, 761768.10.5958/0974-8172.2018.00189.XCrossRefGoogle Scholar
Dias, LP, Araújo, CAS, Pupin, B, Ferreira, PC, Braga, GUL and Rangel, DEN (2018) The Xenon Test Chamber Q-SUN® for testing realistic tolerances of fungi exposed to simulated full spectrum solar radiation. Fungal Biol 122, 592601. doi:10.1016/j.funbio.2018.01.003.CrossRefGoogle ScholarPubMed
Emaru, A, Nyaanga, JG and Mwanarusi, S (2024) Use of Entomopathogenic Fungi as Biopesticides to Manage Insect Pest: A Review. American Journal of Applied Sciences 21(1), 114. doi:10.3844/ajassp.2024.1.14.CrossRefGoogle Scholar
Faria, MR and Wraight, SP (2007) Mycoinsecticides and mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation types. Biological Control 43, 237256. doi:10.1016/j.biocontrol.2007.08.001.CrossRefGoogle Scholar
Fehr, WS and Caviness, CE (1977) Stages of soybean development. Ames: Yowa State University of Science and Technology, 11p. (Special Report, 80).Google Scholar
Fernandes, VS, Nascimento, YHS, Vanderleis, GQ, Silva, GA, Falcão, DF, Gomes, EJCM, Reis, GV and Leite, GC (2021) Controle de ninfas e adultos de Euschistus heros na cultura da Soja através de aplicações de moléculas de inseticidas isoladas e em misturas. Brazilian Journal of Development 7, 5452354541. doi:10.34117/bjdv7n6-040.CrossRefGoogle Scholar
Ferreira, DF (2014) Sisvar: A Guide for its Bootstrap procedures in multiple comparisons. Ciência E Agrotecnologia 38, 109112.10.1590/S1413-70542014000200001CrossRefGoogle Scholar
Garcia-Riaño, JL, Torres-Torres, LA, Santos-Díaz, AM and Grijalba-Bernal, EP (2022) In vitro compatibility with soybean agrochemicals and storage stability studies of the Beauveria bassiana biopesticide. Biocatalysis and Agricultural Biotechnology 39, 102275. doi:10.1016/j.bcab.2022.102275.CrossRefGoogle Scholar
Goulson, D and Kleijn, D (2013) REVIEW: An overview of the environmental risks posed by neonicotinoid insecticides. Journal of Applied Ecology 50, 977987. doi:10.1111/1365-2664.12111.CrossRefGoogle Scholar
Guerzoni, ME, Lanciotti, R and Cocconcelli, PS (2001) Alteration in cellular fatty acid composition as a response to salt, acid, oxidative and thermal stresses in Lactobacillus helveticus. Microbiology 147, 22552264.10.1099/00221287-147-8-2255CrossRefGoogle ScholarPubMed
Ibrahim, L, Butt, TM, Beckett, A and Clark, SJ (1999) The germination of oil-formulated conidia of the insect pathogen, Metarhizium anisopliae. Mycological Research 103, 901907. doi:10.1017/S0953756298007849.CrossRefGoogle Scholar
Inglis, GD, Goettel, MS and Johnson, DL (1995) Influence of ultraviolet-light protectants on persistence of the entomopathogenic fungus, Beauveria bassiana. Biological Control 5, 581590.10.1006/bcon.1995.1069CrossRefGoogle Scholar
Jaronski, ST (1997) New paradigms in formulating mycoinsecticides. In Goss, GR, Hopinkson, MJ and Collins, HM (eds.), Pesticide Formulations and Application Systems: 17th Volume. West Conshohocken, Pennsylvania, USA: ASTM International, 99112.10.1520/STP13836SCrossRefGoogle Scholar
Jaronski, ST (2010) Ecological factors in the inundative use of fungal entomopathogens. Biocontrol 55, 159185. doi:10.1007/s10526-009-9248-3.CrossRefGoogle Scholar
Jia, H, Camara, I, Zhang, Z, Gao, Y, Yang, X, Sangbaramou, R, Zhen, CA, Shi, W and Tan, S (2023) Effect of ultraviolet radiation on Beauveria bassiana virulence and development of protective formulations. Archives of Microbiology 205, 112. doi:10.1007/s00203-023-03457-4.CrossRefGoogle ScholarPubMed
Kaiser, D, Bacher, S, Mène-Saffrané, L and Grabenweger, G (2019) Efficiency of natural substances to protect Beauveria bassiana conidia from UV radiation. Pest Management Science 75, 556563. doi:10.1002/ps.5209.CrossRefGoogle ScholarPubMed
Koppel, AL, Herbert, DA, Kuhar, TP, Malone, S and Arrington, M (2011) Efficacy of selected insecticides against eggs of Euschistus servus and Acrosternum hilare (Hemiptera: Pentatomidae) and the egg parasitoid Telenomus podisi (Hymenoptera: Scelionidae). Journal of Economic Entomology 104, 137142. doi:10.1603/ec10222.CrossRefGoogle ScholarPubMed
Lacey, LA, Grzywacz, D, Shapiro-Ilan, DI, Frutos, R, Brownbridge, M and Goettel, MS (2015) Insect pathogens as biological control agents: Back to the future. Journal of Invertebrate Pathology 132, 141. doi:10.1016/j.jip.2015.07.009.CrossRefGoogle ScholarPubMed
Latifian, M, Nehadian, ES and Ghazavi, M (2017) The Epizootic models of Beauveria bassiana in Sawtoothed Grain Beetle, Oryzaephilus surinamensis Populations Feeding on Date fruits. Biological Control of Pest and Plant Diseases 6(2), 207220. doi:10.22059/jbioc.2017.228861.188.Google Scholar
Leemon, DM and Jonsson, NN (2008) Laboratory studies on Australian isolates of Metarhizium anisopliae as a biopesticide for the cattle tick Boophilus microplus. Journal of Invertebrate Pathology 97(1), 4049. doi:10.1016/j.jip.2007.07.006.CrossRefGoogle ScholarPubMed
Leite, LG, Batista-Filho, A, Almeida, JEM and Alves, SB (2003) Produção de Fungos Entomopatogênicos. Ribeirão Preto: AS Pinto.Google Scholar
Li, ZZ, Alves, SB, Roberts, DW, Fan, MZ, Delalibera, I, Tang, J, Lopes, RB, Faria, M and Rangel, DEN (2010) Biological control of insects in Brazil and China: History, current programs and reasons for their successes using entomopathogenic fungi. Biocontrol Science and Technology 20, 117136. doi:10.1080/09583150903431665.CrossRefGoogle Scholar
Licona-Juárez, KC, Andrade, EP, Medina, HR, Oliveira, JNS, Sosa-Gómez, DR and Rangel, DEN (2023) Tolerance to UV-B radiation of the entomopathogenic fungus Metarhizium rileyi. Fungal Biology 127, 12501258. doi:10.1016/j.funbio.2023.04.004.CrossRefGoogle ScholarPubMed
Lopes, RB, Laumann, RA, Blassioli-Moraes, MC, Borges, M and Faria, M (2015) The fungistatic and fungicidal effects of volatiles from metathoracic glands of soybean-attacking stink bugs (Heteroptera: Pentatomidae) on the entomopathogen Beauveria bassiana. Journal of Invertebrate Pathology 132, 7785. doi:10.1016/j.jip.2015.08.011.CrossRefGoogle ScholarPubMed
Lopes, RB, Sosa-Gómez, DR, Oliveira, CM, Sanches, MM, de Souza, DA, Benito, NP, Schmidt, FGV and Faria, M (2020) Efficacy of an oil-based formulation combining Metarhizium rileyi and nucleopolyhedroviruses against lepidopteran pests of soybean. Journal of Applied Entomology 144, 678689. doi:10.1111/jen.12787.CrossRefGoogle Scholar
Lord JC (2005) From Metchnikoff to Monsanto and beyond: The path of microbial control. Journal of Invertebrate Pathology 89, 1929. doi: 10.1016/j.jip.2005.04.006.CrossRefGoogle Scholar
Luz, C and Batagin, I (2005) Potential of oil-based formulations of Beauveria bassiana to control Triatoma infestans. Mycopathologia 160, 5162.10.1007/s11046-005-0210-3CrossRefGoogle ScholarPubMed
Luz, C and Fargues, J (1997) Temperature and moisture requirements for conidial germination of an isolate of Beauveria bassiana, pathogenic to Rhodnius prolixus. Mycopathologia 138, 117125.10.1023/A:1006803812504CrossRefGoogle ScholarPubMed
Mascarin, GM and Jaronski, ST (2016) The production and uses of Beauveria bassiana as a microbial insecticide. World Journal of Microbiology & Biotechnology 32, 177. doi:10.1007/s11274-016-2131-3.CrossRefGoogle ScholarPubMed
McClatchie, GV, Moore, D, Bateman, RP and Prior, C (1994) Effects of temperature on the viability of the conidia of Metarhizium flavoviride in oil formulations. Mycological Research 98, 749756. doi:10.1016/S0953-7562(09)81049-6.Google Scholar
Moreira, RP, Palharini, RB, Massoli, GS, Diniz, LHM, Godoy, DN, Warpechowski, LF, Steinhaus, EA, Stürmer, GR and Bernardi, O (2024) Geographic and interspecific variation in susceptibility of Euschistus heros and Diceraeus furcatus (Hemiptera: Pentatomidae) to selected insecticides in southern Brazil. Crop Protection 179, 106625. doi:10.1016/j.cropro.2024.106625.CrossRefGoogle Scholar
Moscardi, F, Correa-Ferreira, BS, Diniz, MC and Bono, ILS (1988) In Incidência Estacional de Fungos Entomógenos Sobre Populações de Percevejos-pragas da Soja, Resultados de Pesquisa de Soja 1986-1987. Londrina, PR: EMBRAPA-Centro Nacional de Pesquisa de Soja, 90.Google Scholar
Oliveira, AS, Braga, GUL and Rangel, DEN (2018a) Metarhizium robertsii illuminated during mycelial growth produces conidia with increased germination speed and virulence. Fungal Biology 122, 555562. doi:10.1016/j.funbio.2017.12.009.CrossRefGoogle Scholar
Oliveira, AS and Rangel, DEN (2018) Transient anoxia during Metarhizium robertsii growth increases conidial virulence to Tenebrio molitor. Journal of Invertebrate Pathology 153, 130133. doi:10.1016/j.jip.2018.03.007.CrossRefGoogle ScholarPubMed
Oliveira, DGP, Dudczak, AC, Alves, LFA and Sosa-Gomez, DR (2016) Biological parameters of Euschistus heros (F.) (Heteroptera: Pentatomidae) and its susceptibility to entomopathogenic fungi when fed on different diets. Brazilian Archives of Biology and Technology 59, 112. doi:10.1590/1678-4324-2016150141.CrossRefGoogle Scholar
Oliveira, DGP, Lopes, RB, Rezende, JM and Delalibera, I (2018b) Increased tolerance of Beauveria bassiana and Metarhizium anisopliae conidia to high temperature provided by oil-based formulations. Journal of Invertebrate Pathology 151, 151157. doi:10.1016/j.jip.2017.11.012.CrossRefGoogle Scholar
Oliveira, DGP, Pauli, G, Mascarin, GM and Delalibera, I (2015) A protocol for determination of conidial viability of the fungal entomopathogens Beauveria bassiana and Metarhizium anisopliae from commercial products. Journal of Microbiological Methods 119, 4452. doi:10.1016/j.mimet.2015.09.021.CrossRefGoogle ScholarPubMed
Panizzi, AR, Lucini, T and Aldrich, JR (2022) Dynamics in pest status of phytophagous stink bugs in the Neotropics. Neotropical Entomology 51, 1831. doi:10.1007/s13744-021-00928-5.CrossRefGoogle ScholarPubMed
Portilla, M, Reddy, GVP and Tertuliano, M (2022) Effect of two strains of Beauveria bassiana on the fecundity of Nezara viridula L. (Heteroptera: Pentatomidae). Microbiology Research 13, 514522.10.3390/microbiolres13030035CrossRefGoogle Scholar
Qayyum, MA, Bilal, H, Ullah, UN, Ali, H and Raza, H (2021) Factors Affecting the Epizootics of Entomopathogenic Fungi – A Review. Journal of Bioresource Management 8(4), 7885. doi:10.35691/jbm.1202.0204.CrossRefGoogle Scholar
Quaite, FE, Sutherland, BM and Sutherland, JC (1992a) Quantitation of pyrimidine dimers in DNA from UVB-irradiated alfafa (Medicago sativa L.) seedlings. App. Theoretical Electrophoresis 2, 171175.Google Scholar
Quaite, FE, Sutherland, BM and Sutherland, JC (1992b) Action spectrum for DNA damage in alfafa lowers predicted impact of ozone depletion. Nature 358, 576578.10.1038/358576a0CrossRefGoogle Scholar
Rangel, DEN, Acheampong, MA, Bignayan, HG, Golez, HG and Roberts, DW (2023) Conidial mass production of entomopathogenic fungi and tolerance of their mass-produced conidia to UV-B radiation and heat. Fungal Biology 127, 15241533. doi:10.1016/j.funbio.2023.07.001.CrossRefGoogle ScholarPubMed
Rangel, DEN, Braga, GUL, Fernandes, EKK, Keyser, CA, Hallsworth, JE and Roberts, DW (2015) Stress tolerance and virulence of insect-pathogenic fungi are determined by environmental conditions during conidial formation. Current Genetics 61, 383404. doi:10.1007/s00294-015-0477-y.CrossRefGoogle ScholarPubMed
Resquín-Romero, G, Cabral-Antúnez, C, Sarubbi-Orue, H, Garrido-Jurado, I, Valverde-García, P, Schade, M and Butt, TM (2020) Virulence of Metarhizium brunneum (Ascomycota: Hypocreales) Strains Against Stinkbugs Euschistus heros and Dichelops furcatus. Journal of Economic Entomology 113(5), 25402545. (Hemiptera: Pentatomidae). doi:10.1093/jee/toaa150.CrossRefGoogle ScholarPubMed
Roberts, DW and St. Leger, RJ (2004) Metarhizium spp., cosmopolitan insect-pathogenic fungi: Mycological aspects. Advances in Applied Microbiology 54, 170. doi:10.1016/S0065-2164(04)54001-7.CrossRefGoogle ScholarPubMed
Rossini, LACJ, Santos, AA and Picanço, MC (2021) Lethal and residual time of insecticides to nymphs and adults of the brown stink bug (Euschistus heros) (Fabricius, 1794) (Heteroptera: Pentatomidae). Research, Society and Development 10, 29810616364. doi:10.33448/rsd-v10i6.16364.CrossRefGoogle Scholar
Sain, SK, Monga, D, Kranthi, S, Hiremani, NS, Nagrale, DT, Kumar, R, Verma, SK and Prasad, YG (2022) Evaluation of the Bioefficacy and Insecticide Compatibility of Entomopathogens for Management of Whitefly (Hemiptera: Aleyrodidae) on Upland Cotton Under Laboratory and Polyhouse Conditions. Neotropical Entomology 51, 600612. doi:10.1007/s13744-022-00964-9.CrossRefGoogle ScholarPubMed
Saminathan, N, Subramanian, J, Sankaran Pagalahalli, S, Anand Theerthagiri, A and Mariappan, P (2025) Entomopathogenic fungi: Translating research into field applications for crop protection. Arthropod-Plant Interactions 19, 8. doi:10.1007/s11829-024-10110-4.CrossRefGoogle Scholar
Scopel, W, Salvadori, JR, Panizzi, AR and Pereira, PRVS (2016) Danos de Euschistus heros (F.) (Hemiptera: Pentatomidae) em soja infestada no estádio de grão cheio. Agropecuária Catarinense 29, 8184.10.52945/rac.v29i3.153CrossRefGoogle Scholar
Shapiro-Ilan, DI, Bruck, DJ and Lacey, L (2012) Principles of Epizootiology and Microbial Control. In Insect Pathology. 2nd. Vega, FE and Kaya, HK (eds.), London: Elsevier, 2972. doi:10.1016/B978-0-12-384984-7.00003-8.CrossRefGoogle Scholar
Sibaldelli, RNR, Gonçalvez, SL and Farias, JRB (2022) In Boletim Agrometeorológico da Embrapa Soja. Londrina, PR 2021: Documentos Embrapa, 30.Google Scholar
Silva, CC, Laumann, RA, Blassioli, MC, Pareja, M and Borges, M (2008) Euschistus heros mass rearing technique for the multiplication of Telenomus podisi. Pesquisa Agropecuária Brasileira 43, 575580.10.1590/S0100-204X2008000500004CrossRefGoogle Scholar
Silva, RA, Quintela, ED, Mascarin, GM, Pedrini, N, Liao, LM and Ferri, PH (2015) Unveiling chemical defense in the rice stalk stink bug against the entomopathogenic fungus Metarhizium anisopliae. Journal of Invertebrate Pathology 127, 93100. doi:10.1016/j.jip.2015.03.009.CrossRefGoogle ScholarPubMed
Silva-Santana, MF, Alves, LFA, Ferreira, TT and Bonini, AK (2022) Selection and characterisation of Beauveria bassiana fungus and their potential to control the brown stink bug. Biocontrol Science and Technology 32, 90102. doi:10.1080/09583157.2021.1970716.CrossRefGoogle Scholar
Soares, FD (2023) Manejo Biológico E Químico de Percevejo-marrom da Soja, Programa de Pós-graduação Em Agronomia. Rio Grande do Sul, Brasil: UFSM.Google Scholar
Somavilla, JC, Reis, AC, Gubiani, PDS, Godoy, DN, Stürmer, GR and Bernardi, O (2020) Susceptibility of Euschistus heros and Dichelops furcatus (Hemiptera: Pentatomidae) to Selected Insecticides in Brazil. Journal of Economic Entomology 113(2), 924931. doi:10.1093/jee/toz340.CrossRefGoogle ScholarPubMed
Sosa-Gómez, DR, Boucias, DG and Nation, JL (1997) Attachment of Metarhizium anisopliae to the southern green stink bug Nezara viridula cuticle and fungistatic effect of cuticular lipids and aldehydes. Journal of Invertebrate Pathology 69, 3139.10.1006/jipa.1996.4619CrossRefGoogle Scholar
Sosa-Gómez, DR and Moscardi, F (1998) Laboratory and field studies on the infection of stink bugs, Nezara viridula, Piezodorus guildinii, and Euschistus heros (Hemiptera: Pentatomidae) with Metarhizium anisopliae and Beauveria bassiana in Brazil. Journal of Invertebrate Pathology 71, 115120.10.1006/jipa.1997.4716CrossRefGoogle Scholar
Sousa, LMD, Quintela, ED, Boaventura, HA, Silva, JFAE, Tripode, BMD and Miranda, JE (2023) Seleção de fungos entomopatogênicos para controle de percevejos e bicudo-do-algodeiro. Pesquisa Agropecuária Tropical 53, e76316.10.1590/1983-40632023v5376316CrossRefGoogle Scholar
Souza, RKF, Azevedo, RFF, Lobo, AO and Rangel, DEN (2014) Conidial water affinity is an important characteristic for thermotolerance in entomopathogenic fungi. Biocontrol Science and Technology 24, 448461. doi:10.1080/09583157.2013.871223.CrossRefGoogle Scholar
Thungrabeab, M and Tongma, S (2007) Effect of entomopathogenic fungi, Beauveria bassiana (Balsam) and Metarhizium anisopliae (Metsch) on non-target insects. Current Applied Science and Technology 7, 812.Google Scholar
USDA – United States Department of Agriculture. World Agricultural Production. Circular series, mai. 2024. Avaliable in: https://apps.fas.usda.gov/psdonline/circulars/production.pdf. Acessed: 20 Mar. 2024.Google Scholar
Wraight, SP, Filotas, MJ and Sanderson, JP (2016) Comparative efficacy of emulsifiable-oil, wettable-powder, and unformulated-powder preparations of Beauveria bassiana against the melon aphid Aphis gossypii. Biocontrol Science and Technology 26(7), 894914. doi:10.1080/09583157.2016.1157851.CrossRefGoogle Scholar