Hostname: page-component-7dd5485656-kp629 Total loading time: 0 Render date: 2025-10-23T02:34:15.936Z Has data issue: false hasContentIssue false

Egg abandonment leads to biased estimates of hatching failure in birds

Published online by Cambridge University Press:  16 October 2025

Jamie Edward Thompson*
Affiliation:
School of Biosciences, The University of Sheffield , Alfred Denny Building, Sheffield S10 1LQ, UK
Nicola Hemmings
Affiliation:
School of Biosciences, The University of Sheffield , Alfred Denny Building, Sheffield S10 1LQ, UK
*
Corresponding author: Jamie Edward Thompson; Email: jamie.thompson@sheffield.ac.uk

Summary

Hatching failure represents a significant and growing barrier to reproductive success in threatened birds, but its causes are often hard to identify. Egg abandonment by parents is a commonly observed phenomenon – often believed to be driven by disturbance, partial predation, and/or extreme environmental events – and is assumed to result in the mortality of viable eggs in the clutch. However, in practice it is often unclear whether abandonment is the cause of egg failure, or conversely, if parents abandon their eggs after detecting they are inviable. From a conservation management perspective, approaches to mitigating hatching failure would differ substantially depending on which of these scenarios is true. Here we draw evidence from both a systematic literature search and empirical data from a wild population of threatened birds to show that studies rarely have sufficiently clear definitions or timeframes for determining whether abandonment occurred, or sufficient monitoring effort to distinguish between parental abandonment as the cause or consequence of embryo mortality. By combining evidence from nest records and unhatched egg examinations, we show that parental abandonment rates are likely to be over-estimated, while other drivers of reproductive failure may be underestimated. We provide recommendations for improving the accuracy of egg fate records, which we hope will improve the accuracy of hatching failure data and enhance the specificity of related conservation interventions.

Information

Type
Review Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of BirdLife International

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

*

Both authors made equal contributions to the manuscript

References

Ackerman, J.T., Eadie, J.M., Loughman, D.L., Yarris, G.S. and McLandress, M.R. (2003). The influence of partial clutch depredation on duckling production. The Journal of Wildlife Management 67, 576587. https://doi.org/10.2307/3802715CrossRefGoogle Scholar
Ar, A., Ifergan, O., Feldman, A., Zelik, L. and Reizis, A. (2000). Does nitric oxide (NO) play a role in embryo-bird communication during incubation? Avian and Poultry Biology Reviews 11, 284.Google Scholar
Ar, A., Ifergan, O., Feldman, A., Zelik, L. and Reizis, A. (2004). Possible role of nitric oxide emission from bird embryos. Avian and Poultry Biology Reviews 15, 105106.10.3184/147020604783638218CrossRefGoogle Scholar
Ar, A. and Sidis, Y. (2002). Nest microclimate during incubation. In Deeming, D.C. (ed.), Avian Incubation: Behaviour, Environment, and Evolution. Oxford: Oxford University Press, pp. 143160.Google Scholar
Assersohn, K., Marshall, A.F., Morland, F., Brekke, P. and Hemmings, N. (2021). Why do eggs fail? Causes of hatching failure in threatened populations and consequences for conservation. Animal Conservation 24, 540551. https://doi.org/10.1111/acv.12674CrossRefGoogle Scholar
Avilova, K.V., Fedorenko, A.G. and Lebedeva, N.V. (2018). The mechanoreceptor organs of the Lamellirostral birds (Anseriformes, Aves). Biology Bulletin 45, 5160. https://doi.org/10.1134/s1062359017060036CrossRefGoogle Scholar
Balthazart, J. and Taziaux, M. (2009). The underestimated role of olfaction in avian reproduction? Behavioural Brain Research 200, 248259. https://doi.org/10.1016/j.bbr.2008.08.036CrossRefGoogle ScholarPubMed
Beissinger, S.R., Cook, M.I. and Arendt, W.J. (2005). The shelf life of bird eggs: testing egg viability using a tropical climate gradient. Ecology 86, 21642175. https://doi.org/10.1890/04-1624CrossRefGoogle Scholar
Berkhoudt, H. (1980). The morphology and distribution of cutaneous mechanoreceptors (Herbst and Grandry corpuscles) in bill and tongue of the mallard (Anas platyrhynchos L.). Netherlands Journal of Zoology 30, 134. https://doi.org/10.1163/002829680x00014CrossRefGoogle Scholar
BirdLife International (2017). Eurasian Curlew Numenius arquata. The IUCN Red List of Threatened Species 2017: e.T22693190A117917038. Available at https://www.birdlife.org.za/red-list/eurasian-curlew (accessed 21 February 2025).Google Scholar
Birkhead, T.R. (2012). Bird Sense: What It’s Like to Be a Bird. London: Bloomsbury Publishing.Google Scholar
Birkhead, T.R., Hall, J., Schut, E. and Hemmings, N. (2008). Unhatched eggs: methods for discriminating between infertility and early embryo mortality. Ibis 150, 508517. https://doi.org/10.1111/j.1474-919x.2008.00813.xCrossRefGoogle Scholar
Brekke, P., Bennett, P.M., Wang, J., Pettorelli, N. and Ewen, J.G. (2010). Sensitive males: inbreeding depression in an endangered bird. Proceedings of the Royal Society B: Biological Sciences 277, 36773684. https://doi.org/10.1098/rspb.2010.1144CrossRefGoogle Scholar
Briskie, J.V. and Mackintosh, M. (2004). Hatching failure increases with severity of population bottlenecks in birds. Proceedings of the National Academy of Sciences – PNAS 101, 558561. https://doi.org/10.1073/pnas.0305103101CrossRefGoogle ScholarPubMed
Briskie, J.V. and Sealy, S.G. (1988). Nest re-use and egg burial in the Least Flycatcher, Empidonax minimus. The Canadian Field-Naturalist 102, 729731.10.5962/p.356665CrossRefGoogle Scholar
Brown, D., Wilson, J., Douglas, D., Thompson, P., Foster, S., McCulloch, N. et al. (2015). The Eurasian Curlew - the most pressing bird conservation priority in the UK. British Birds 108, 660668.Google Scholar
Brua, R.B. (2002). Parent–embryo interactions. In Deeming, D.C. (ed.), Avian Incubation: Behaviour, Environment and Evolution. Oxford: Oxford University Press, pp. 8899.Google Scholar
Brua, R.B., Nuechterlein, G.L. and Buitron, D. (1996). Vocal response of Eared Grebe embryos to egg cooling and egg turning. The Auk 113, 525533. https://doi.org/10.2307/4088972CrossRefGoogle Scholar
Brulez, K., Pike, T.W. and Reynolds, S.J. (2015). Egg signaling: The use of visual, auditory, and chemical stimuli. In Deeming, D.C. and Reynolds, S.J. (eds), Nests, Eggs, and Incubation: New Ideas About Avian Reproduction. Oxford: Oxford University Press, pp. 127141.10.1093/acprof:oso/9780198718666.003.0011CrossRefGoogle Scholar
Campagna, S., Mardon, J., Celerier, A. and Bonadonna, F. (2012). Potential semiochemical molecules from birds: A practical and comprehensive compilation of the last 20 years studies. Chemical Senses 37, 325. https://doi.org/10.1093/chemse/bjr067CrossRefGoogle ScholarPubMed
Caro, S.P., Balthazart, J. and Bonadonna, F. (2015). The perfume of reproduction in birds: Chemosignaling in avian social life. Hormones and Behavior 68, 2542. https://doi.org/10.1016/j.yhbeh.2014.06.001CrossRefGoogle ScholarPubMed
Cooney, C.R., Sheard, C., Clark, A.D., Healy, S.D., Liker, A., Street, S.E. et al. (2020). Ecology and allometry predict the evolution of avian developmental durations. Nature Communications 11, 2383. https://doi.org/10.1038/s41467-020-16257-xCrossRefGoogle ScholarPubMed
Crick, H.Q.P., Dudley, C., Glue, D.E., Beaven, L.P. and Leech, D.I. (2003). The Nest Record Scheme Handbook. Thetford: British Trust for Ornithology.Google Scholar
De Jong, A., Bocher, P., Brown, D., Franks, S., Gerritsen, G., Meyer, N. et al. (2021). International guidelines for monitoring breeding populations and levels of reproduction in the Eurasian Curlew Numenius arquata. Report. Umeå: Sveriges Lantbruksuniversitet, Institutionen för Vilt, Fisk och Miljö.Google Scholar
De Oliveira, J.E., Uni, Z. and Ferket, P.R. (2008). Important metabolic pathways in poultry embryos prior to hatch. World’s Poultry Science Journal 64, 488499. https://doi.org/10.1017/S0043933908000160CrossRefGoogle Scholar
Deeming, D.C. and Ferguson, M.W.J. (1991). Egg Incubation: Its Effect on Embryonic Development in Birds and Reptiles. Cambridge: Cambridge University Press.10.1017/CBO9780511585739CrossRefGoogle Scholar
Du, W.G. and Shine, R. (2015). The behavioural and physiological strategies of bird and reptile embryos in response to unpredictable variation in nest temperature. Biological Reviews 90, 1930. https://doi.org/10.1111/brv.12089CrossRefGoogle Scholar
DuRant, S.E., Hopkins, W.A. and Hepp, G.R. (2011). Embryonic developmental patterns and energy expenditure are affected by incubation temperature in Wood Ducks (Aix sponsa). Physiological and Biochemical Zoology 84, 451457. https://doi.org/10.1086/661749CrossRefGoogle ScholarPubMed
Evans, R.M. (1988). Embryonic vocalizations as care soliciting signals, with particular reference to the American White Pelican. In Henri, O. (ed.), Acta XIX Congressus Internationalis Ornithologici: 19th [International Ornithological Congress: Proceedings]. Ottawa: University of Ottawa Press, pp. 14671475.Google Scholar
Evans, R.M. (1990). Effects of low incubation temperatures during the pipped egg stage on hatchability and hatching times in domestic chickens and ring-billed gulls. Canadian Journal of Zoology 68, 836840. https://doi.org/10.1139/z90-120CrossRefGoogle Scholar
Evans, R.M., Whitaker, A. and Wiebe, M.O. (1994). Development of vocal regulation of temperature by embryos in pipped eggs of Ring-billed Gulls. The Auk 111, 596604.Google Scholar
Evans, S.R. and Postma, E. (2025). Counting chicks before they hatch: extending the observed lifetime to better characterize evolutionary processes in the wild. Evolution 79, 155163. https://doi.org/10.1093/evolut/qpae171CrossRefGoogle ScholarPubMed
Ferreira, S.M., Hansen, K.M., Parrish, G.R., Pierce, R.J., Pulham, G.A. and Taylor, S. (2005). Conservation of the endangered New Zealand Fairy Tern. Biological Conservation 125, 345354.10.1016/j.biocon.2005.04.015CrossRefGoogle Scholar
Franks, S.E., Douglas, D.J.T., Gillings, S. and Pearce-Higgins, J.W. (2017). Environmental correlates of breeding abundance and population change of Eurasian Curlew Numenius arquata in Britain. Bird Study 64, 393409. https://doi.org/10.1080/00063657.2017.1359233CrossRefGoogle Scholar
Grant, M.C., Orsman, C., Easton, J., Lodge, C., Smith, M., Thompson, G. et al. (1999). Breeding success and causes of breeding failure of Curlew Numenius arquata in Northern Ireland. Journal of Applied Ecology 36, 5974. https://doi.org/10.1046/j.1365-2664.1999.00379.xCrossRefGoogle Scholar
Grieves, L.A., Gilles, M., Cuthill, I.C., Székely, T., Macdougall-Shackleton, E.A. and Caspers, B.A. (2022). Olfactory camouflage and communication in birds. Biological Reviews 97, 11931209. https://doi.org/10.1111/brv.12837CrossRefGoogle ScholarPubMed
Guigueno, M.F. and Sealy, S.G. (2012). Nest sanitation in passerine birds: implications for egg rejection in hosts of brood parasites. Journal of Ornithology 153, 3552. https://doi.org/10.1007/s10336-011-0731-0CrossRefGoogle Scholar
Hall, M. (1987). External stimuli affecting incubation behavior and prolactin secretion in the duck (Anas platyrhynchos). Hormones and Behavior 21, 269287. https://doi.org/10.1016/0018-506X(87)90015-8CrossRefGoogle ScholarPubMed
Hamburger, V. and Hamilton, H.L. (1951). A series of normal stages in the development of the chick embryo. Journal of Morphology 88, 4992.10.1002/jmor.1050880104CrossRefGoogle ScholarPubMed
Hanssen, S.A., Erikstad, K.E., Sandvik, H., Tveraa, T. and Bustnes, J.O. (2023). Eyes on the future: buffering increased costs of incubation by abandoning offspring. Behavioral Ecology 34, 189196. https://doi.org/10.1093/beheco/arac116CrossRefGoogle Scholar
Hemmings, N. and Birkhead, T.R. (2016). Consistency of passerine embryo development and the use of embryonic staging in studies of hatching failure. Ibis 158, 4350. https://doi.org/10.1111/ibi.12336CrossRefGoogle Scholar
Heywood, J.J.N., Massimino, D., Balmer, D.E., Kelly, L., Noble, D.G., Pearce-Higgins, J.W. et al. (2023). The Breeding Bird Survey 2023. BTO Research Report 765. Thetford: British Trust for Ornithology.Google Scholar
Impekoven, M. (1976). Prenatal parent-young interactions in birds and their long term effects. Advances in the Study of Behavior 7, 201253.10.1016/S0065-3454(08)60168-0CrossRefGoogle Scholar
Jamieson, I.G. and Ryan, C.J. (2000). Increased egg infertility associated with translocating inbred takahe (Porphyrio hochstetteri) to island refuges in New Zealand. Biological Conservation. 94, 107114. https://doi.org/10.1016/S0006-3207(99)00158-5CrossRefGoogle Scholar
Jones, R.E. (1971). The incubation patch of birds. Biological Reviews 46, 315339. https://doi.org/10.1111/j.1469-185x.1971.tb01048.xCrossRefGoogle Scholar
Koenig, W.D. (1982). Ecological and social factors affecting hatchability of eggs. The Auk 99, 526536.Google Scholar
Lobato, E., Moreno, J., Merino, S., Sanz, J.J., Arriero, E., Morales, J. et al. (2006). Maternal clutch reduction in the Pied Flycatcher Ficedula hypoleuca: an undescribed clutch size adjustment mechanism. Journal of Avian Biology 37, 637641. https://doi.org/10.1111/j.2006.0908-8857.03776.xCrossRefGoogle Scholar
Mariette, M.M. (2024). Developmental programming by prenatal sounds: insights into possible mechanisms. Journal of Experimental Biology 227(Suppl_1), jeb246696. https://doi.org/10.1242/jeb.246696CrossRefGoogle ScholarPubMed
Mariette, M.M. and Buchanan, K.L. (2016). Prenatal acoustic communication programs offspring for high posthatching temperatures in a songbird. Science 353, 812814. https://doi.org/10.1126/science.aaf7049CrossRefGoogle Scholar
Mariette, M.M., Clayton, D.F. and Buchanan, K.L. (2021). Acoustic developmental programming: a mechanistic and evolutionary framework. Trends in Ecology & Evolution 36, 722736. https://doi.org/10.1016/j.tree.2021.04.007CrossRefGoogle ScholarPubMed
Mariette, M.M., Pessato, A., Buttemer, W.A., McKechnie, A.E., Udino, E., Collins, R.N. et al. (2018). Parent-embryo acoustic communication: a specialised heat vocalisation allowing embryonic eavesdropping. Scientific Reports 8, 17721. https://doi.org/10.1038/s41598-018-35853-yCrossRefGoogle ScholarPubMed
Marshall, A.F., Balloux, F., Hemmings, N. and Brekke, P. (2023). Systematic review of avian hatching failure and implications for conservation. Biological Reviews 98, 807832. https://doi.org/10.1111/brv.12931CrossRefGoogle ScholarPubMed
Massaro, M., Setiawan, A.N. and Davis, L.S. (2007). Effects of artificial eggs on prolactin secretion, steroid levels, brood patch development, incubation onset and clutch size in the yellow-eyed penguin (Megadyptes antipodes). General and Comparative Endocrinology 151, 220229. https://doi.org/10.1016/j.ygcen.2007.01.034CrossRefGoogle ScholarPubMed
Meijer, T. (1995). Importance of tactile and visual stimuli of eggs and nest for termination of egg laying of Red Junglefowl. The Auk 112, 483488. https://doi.org/10.2307/4088736CrossRefGoogle Scholar
Morland, F., Patel, S., Santure, A.W., Brekke, P. and Hemmings, N. (2024). Including the invisible fraction in whole population studies: A guide to the genetic sampling of unhatched bird eggs. Methods in Ecology and Evolution 15, 8090. https://doi.org/10.1111/2041-210x.14242CrossRefGoogle Scholar
Murray, J.R., Varian-Ramos, C.W., Welch, Z.S. and Saha, M.S. (2013). Embryological staging of the Zebra Finch, Taeniopygia guttata. Journal of Morphology 274, 10901110. https://doi.org/10.1002/jmor.20165CrossRefGoogle ScholarPubMed
Narushin, V.G., Romanov, M.N., Gressier, L., Jacob, E., Salamon, A., Klein, S. et al. (2024). Shell temperature: How shall we tell if a still gosling is under the eggshell? Theriogenology 226, 5767. https://doi.org/10.1016/j.theriogenology.2024.05.045CrossRefGoogle ScholarPubMed
Noguera, J.C. and Velando, A. (2019). Bird embryos perceive vibratory cues of predation risk from clutch mates. Nature Ecology & Evolution 3, 12251232. https://doi.org/10.1038/s41559-019-0929-8CrossRefGoogle ScholarPubMed
O’Connell, D.P., Power, A., Keogh, N.T., McGuirk, J., Macey, C. and Newton, S.F. (2015). Egg fostering by Little Terns Sternula albifrons in response to nest abandonment following depredation. Irish Birds 10, 159162.Google Scholar
O’Donoghue, B.G. (2019). Curlew Conservation Programme Annual Report 2018. Killarney: National Parks and Wildlife Service.Google Scholar
Oppenheim, R.W. (1972). Prehatching and hatching behaviour in birds: A comparative study of altricial and precocial species. Animal Behaviour 20, 644655. https://doi.org/10.1016/S0003-3472(72)80137-4CrossRefGoogle ScholarPubMed
Portman, A. (1961). Sensory organs: skin, taste and olfaction. In Marshall, A.J. (ed.), Biology and Comparative Physiology of Birds. New York: Academic Press, pp. 3748.10.1016/B978-1-4832-3143-3.50007-1CrossRefGoogle Scholar
Reed, W.L. and Clark, M.E. (2011). Beyond maternal effects in birds: Responses of the embryo to the environment. Integrative and Comparative Biology 51, 7380. https://doi.org/10.1093/icb/icr032CrossRefGoogle ScholarPubMed
Roodbergen, M., Van Der Werf, B. and Hötker, H. (2012). Revealing the contributions of reproduction and survival to the Europe-wide decline in meadow birds: review and meta-analysis. Journal of Ornithology 153, 5374. https://doi.org/10.1007/s10336-011-0733-yCrossRefGoogle Scholar
Ruiz-Raya, F. and Velando, A. (2024). Lasting benefits of embryonic eavesdropping on parent-parent communication. Science Advances 10. https://doi.org/10.1126/sciadv.adn8542CrossRefGoogle ScholarPubMed
Schacter, C.R., Fettig, B.L., Peterson, S.H., Hartman, C.A., Herzog, M.P., Casazza, M.L. et al. (2022). Dabbling duck eggs hatch after nest abandonment in the wild. Waterbirds 45, 91101. https://doi.org/10.1675/063.045.0111CrossRefGoogle Scholar
Sheldon, E.L., McCowan, L.S.C., McDiarmid, C.S. and Griffith, S.C. (2018). Measuring the embryonic heart rate of wild birds: An opportunity to take the pulse on early development. The Auk 135, 7182. https://doi.org/10.1642/auk-17-111.1CrossRefGoogle Scholar
Simmons, K.E.L. (1955). Studies on Great Crested Grebes. Avicultural Magazine 61.Google Scholar
Spottiswoode, C. and Møller, A.P. (2004). Genetic similarity and hatching success in birds. Proceedings of the Royal Society of London. Series B: Biological Sciences 271, 267272. https://doi.org/10.1098/rspb.2003.2605CrossRefGoogle ScholarPubMed
Stanbury, A.J., Eaton, M.A., Aebischer, N.J., Balmer, D., Brown, A.F., Douse, A. et al. (2021). The status of our bird populations: the fifth Birds of Conservation Concern in the United Kingdom, Channel Islands and Isle of Man and second IUCN Red List assessment of extinction risk for Great Britain. British Birds 114, 747.Google Scholar
Titov, V.Y., Varigina, E.S. and Fisinin, V.I. (2007). Relation between nitrogen oxide metabolites in amniotic fluid and productive qualities of poultry. Russian Agricultural Sciences 33, 400401. https://doi.org/10.3103/s106836740706016xCrossRefGoogle Scholar
Tuculescu, R.A. and Griswold, J.G. (1983). Prehatching interactions in domestic chickens. Animal Behaviour 31, 110. https://doi.org/10.1016/S0003-3472(83)80168-7CrossRefGoogle Scholar
Valkama, J., Currie, D. and Korpimäki, E. (1999). Differences in the intensity of nest predation in the curlew Numenius arquata: A consequence of land use and predator densities? Écoscience 6, 497504. https://doi.org/10.1080/11956860.1999.11682552CrossRefGoogle Scholar
Vince, M.A. (1966). Potential stimulation produced by avian embryos. Animal Behaviour 14, 3440. https://doi.org/10.1016/S0003-3472(66)80007-6CrossRefGoogle ScholarPubMed
Vince, M.A. (1969). Embryonic communication, respiration and the synchronization of hatching. In Hinde, R.A. (ed.), Bird Vocalizations. Cambridge: Cambridge University Press, pp. 233260.Google Scholar
Vince, M.A. and Cheng, R. (1970). The retardation of hatching in Japanese quail. Animal Behaviour 18, 210214. https://doi.org/10.1016/S0003-3472(70)80030-6CrossRefGoogle Scholar
Vleck, C.M., Vleck, D. and Hoyt, D.F. (1980). Patterns of metabolism and growth in avian embryos. American Zoologist 20, 405416.10.1093/icb/20.2.405CrossRefGoogle Scholar
Webster, B., Hayes, W. and Pike, T.W. (2015). Avian egg odour encodes information on embryo sex, fertility and development. PLOS ONE 10, e0116345. https://doi.org/10.1371/journal.pone.0116345CrossRefGoogle ScholarPubMed
White, K.L., Eason, D.K., Jamieson, I.G. and Robertson, B.C. (2015). Evidence of inbreeding depression in the critically endangered parrot, the kakapo. Animal Conservation 18, 341347. https://doi.org/10.1111/acv.12177CrossRefGoogle Scholar
Winkelmann, R.K. and Myers, T.T. (1961). The histochemistry and morphology of the cutaneous sensory end-organs of the chicken. Journal of Comparative Neurology 117, 2735. https://doi.org/10.1002/cne.901170103CrossRefGoogle ScholarPubMed
Woolf, N.K., Bixby, J.L. and Capranica, R.R. (1976). Prenatal experience and avian development: Brief auditory stimulation accelerates the hatching of Japanese quail. Science 194, 959960. https://doi.org/10.1126/science.982054CrossRefGoogle ScholarPubMed
Wu, K.C., Streicher, J., Lee, M.L., Hall, B.K. and Müller, G.B. (2001). Role of motility in embryonic development I: Embryo movements and amnion contractions in the chick and the influence of illumination. Journal of Experimental Zoology 291, 186194. https://doi.org/10.1002/jez.1068CrossRefGoogle ScholarPubMed
Zielonka, N.B., Hawkes, R.W., Jones, H., Burnside, R.J. and Dolman, P.M. (2019). Placement, survival and predator identity of Eurasian Curlew Numenius arquata nests on lowland grass-heath. Bird Study 66, 471483. https://doi.org/10.1080/00063657.2020.1725421CrossRefGoogle Scholar
Ziolkowski, L.H., Gracheva, E.O. and Bagriantsev, S.N. (2022). Tactile sensation in birds: Physiological insights from avian mechanoreceptors. Current Opinion in Neurobiology 74, 102548. https://doi.org/10.1016/j.conb.2022.102548CrossRefGoogle ScholarPubMed
Zweers, G.A. (1973). Structure, movement, and myography of the feeding apparatus of the mallard (Anas platyrhynchos L.) a study in functional anatomy. Netherlands Journal of Zoology 24, 323467.10.1163/002829674X00192CrossRefGoogle Scholar
Supplementary material: File

Thompson and Hemmings supplementary material

Thompson and Hemmings supplementary material
Download Thompson and Hemmings supplementary material(File)
File 57.3 KB