To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The risk factors of environmental contamination by SARS-CoV-2 are largely unknown. We analyzed 1,320 environmental samples obtained from COVID-19 patients over 1 year. The risk factors for contamination of COVID-19 patients’ surrounding environment were higher viral load in the respiratory tract and shorter duration from symptom onset to sample collection.
Describe a severe acute respiratory coronavirus virus 2 (SARS-CoV-2) hospital outbreak and the role of serial testing of patients and healthcare personnel (HCP) in interrupting SARS-CoV-2 transmission.
Design:
Outbreak investigation.
Setting:
Medical floor of a tertiary-care center in Minnesota.
Methods:
Serial testing for SARS-CoV-2 and whole-genome sequencing (WGS) of positive specimens from HCP and patients were used. An outbreak-associated case was defined as a positive SARS-CoV-2 molecular test in an HCP who worked on the floor prior to testing positive or in a patient who was hospitalized on the medical floor bewteen October 27 and December 1, 2020. WGS was used to determine potential routes of transmission.
Results:
The outbreak was detected after a patient hospitalized for 12 days tested positive for SARS-CoV-2. Serial testing of patients and HCP was conducted in response. Overall, 247 HCP and 41 patients participated in serial SARS-CoV-2 testing; 52 HCP (21%) and 19 hospitalized patients (46%) tested positive. One additional HCP tested positive outside serial testing. The WGS of specimens from 27 (51%) HCP and 15 (79%) patients identified 3 distinct transmission clusters. WGS and epidemiologic evidence suggested intrafacility transmission. The proportions of asymptomatic and presymptomatic patients who tested positive (63%) and HCP who worked during their infectious period (75%) highlight the need for serial testing of asymptomatic patients and HCP during outbreaks.
Conclusions:
Coupled with preventive measures such as personal protective equipment use and physical distancing, serial testing of HCP and patients could help detect and prevent transmission within healthcare facilities during outbreaks and when nosocomial transmission is suspected.
In a bid to end the ongoing coronavirus disease 2019 pandemic, many countries, including the UK, have rolled out mass immunisation programmes. While considered generally safe and effective, vaccines against coronavirus disease 2019 have been reported to be associated with rare and potentially adverse reactions and side effects.
Case report
This paper reports an unusual case of a patient who developed a unilateral vocal fold paralysis shortly after receiving the first dose of the Oxford-AstraZeneca ChAdOx1 nCov-19 vaccine.
Conclusion
To our knowledge, this is the first reported case of vocal fold paralysis following administration of the Oxford-AstraZeneca vaccine. The authors support the position that currently approved coronavirus disease 2019 vaccines remain safe and effective; however, further surveillance and vigilance using real-world data are highly encouraged.
Nonspecific respiratory symptoms overlap with coronavirus disease 2019 (COVID-19). Prompt diagnosis of COVID-19 in hospital employees is crucial to prevent nosocomial transmission. Rapid molecular SARS-CoV-2 testing was performed for 115 symptomatic employees. The case positivity rate was 2.6%. Employees with negative tests returned to work after 80 (±28) minutes.
COVID-19 has markedly impacted the provision of neurodevelopmental care. In response, the Cardiac Neurodevelopmental Outcome Collaborative established a Task Force to assess the telehealth practices of cardiac neurodevelopmental programmes during COVID-19, including adaptation of services, test protocols and interventions, and perceived obstacles, disparities, successes, and training needs.
Study Design:
A 47-item online survey was sent to 42 Cardiac Neurodevelopmental Outcome Collaborative member sites across North America within a 3-week timeframe (22 July to 11 August 2020) to collect cross-sectional data on practices.
Results:
Of the 30 participating sites (71.4% response rate), all were providing at least some clinical services at the time of the survey and 24 sites (80%) reported using telehealth. All but one of these sites were offering new telehealth services in response to COVID-19, with the most striking change being the capacity to offer new intervention services for children and their caregivers. Only a third of sites were able to carry out standardised, performance-based, neurodevelopmental testing with children and adolescents using telehealth, and none had completed comparable testing with infants and toddlers. Barriers associated with language, child ability, and access to technology were identified as contributing to disparities in telehealth access.
Conclusions:
Telehealth has enabled continuation of at least some cardiac neurodevelopmental services during COVID-19, despite the challenges experienced by providers, children, families, and health systems. The Cardiac Neurodevelopmental Outcome Collaborative provides a unique platform for sharing challenges and successes across sites, as we continue to shape an evidence-based, efficient, and consistent approach to the care of individuals with CHD.
In response to the 2014–2016 West Africa Ebola virus disease (EVD) epidemic, the Centers for Disease Control and Prevention (CDC) designated 56 US hospitals as Ebola treatment centers (ETCs) with high-level isolation capabilities. We sought to determine the ongoing sustainability of ETCs and to identify how ETC capabilities have affected hospital, local, and regional coronavirus disease 2019 (COVID-19) readiness and response.
Design:
An electronic survey included both qualitative and quantitative questions and was structured into 2 sections: operational sustainability and role in the COVID-19 response.
Setting and participants:
The survey was distributed to site representatives from the 56 originally designated ETCs, and 37 (66%) responded.
Methods:
Data were coded and analyzed using descriptive statistics.
Results:
Of the 37 responding ETCs, 33 (89%) reported that they were still operating, and 4 had decommissioned. ETCs that maintain high-level isolation capabilities incurred a mean of $234,367 in expenses per year. All but 1 ETC reported that existing capabilities (eg, trained staff, infrastructure) before COVID-19 positively affected their hospital, local, and regional COVID-19 readiness and response (eg, ETC trained staff, donated supplies, and shared developed protocols).
Conclusions:
Existing high-level isolation capabilities and expertise developed following the 2014–2016 EVD epidemic were leveraged by ETCs to assist hospital-wide readiness for COVID-19 and to support responses by other local and regional hospitals However, ETCs face continued challenges in sustaining those capabilities for high-consequence infectious diseases.
To investigate a cluster of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in employees working on 1 floor of a hospital administration building.
Methods:
Contact tracing was performed to identify potential exposures and all employees were tested for SARS-CoV-2. Whole-genome sequencing was performed to determine the relatedness of SARS-CoV-2 samples from infected personnel and from control cases in the healthcare system with coronavirus disease 2019 (COVID-19) during the same period. Carbon dioxide levels were measured during a workday to assess adequacy of ventilation; readings >800 parts per million (ppm) were considered an indication of suboptimal ventilation. To assess the potential for airborne transmission, DNA-barcoded aerosols were released, and real-time polymerase chain reaction was used to quantify particles recovered from air samples in multiple locations.
Results:
Between December 22, 2020, and January 8, 2021, 17 coworkers tested positive for SARS-CoV-2, including 13 symptomatic and 4 asymptomatic individuals. Of the 5 cluster SARS-CoV-2 samples sequenced, 3 were genetically related, but these employees denied higher-risk contacts with one another. None of the sequences from the cluster were genetically related to the 17 control sequences of SARS-CoV-2. Carbon dioxide levels increased during a workday but never exceeded 800 ppm. DNA-barcoded aerosol particles were dispersed from the sites of release to locations throughout the floor; 20% of air samples had >1 log10 particles.
Conclusions:
In a hospital administration building outbreak, sequencing of SARS-CoV-2 confirmed transmission among coworkers. Transmission occurred despite the absence of higher-risk exposures and in a setting with adequate ventilation based on monitoring of carbon dioxide levels.
In April 2020, Belgium experienced high numbers of fatal COVID-19 cases among nursing home (NH) residents. In response, a mass testing campaign was organised testing all NH residents and staff. We analysed the data of Flemish NHs to identify institutional factors associated with increased SARS-CoV-2 infection rates among NH residents. Cross-sectional study was conducted between 8 April and 15 May 2020. Data collected included demographics, group category (i.e. staff or resident), symptom status and test result. We retrieved additional data: number of beds and staff, type of beds (level of dependency of residents) and ownership (public, private for profit/non-profit institutions). Risk factor analysis was performed using negative binomial regression. In total, 695 NHs were included, 282 (41%) had at least one resident tested positive. Higher infection rate among residents was associated with a higher fraction of RVT beds, generally occupied by more dependent residents (incidence rate ratio (IRR) 1.97; 95% CI 1.00–3.86) and higher staff infection rate (IRR 1.89; 95% CI 1.68–2.12). No relationship was found between other investigated NH characteristics and infection rate among residents. Staff-resident interactions are key in SARS-CoV-2 transmission dynamics. Vaccination, regular staff testing, assessment of infection prevention and control strategies in all NHs are needed to face future SARS-CoV-2 epidemics in these settings.
Mycobacterium tuberculosis is the cause of tuberculosis (TB), a granulomatous illness that mostly affects the lungs. Pakistan is one of the eight nations that accounts for two-thirds of all new cases of developing TB. TB has long been an endemic disease in Pakistan. According to the World Health Organization (WHO) estimates, the nation has over 500 000 incident TB infections per year, with a rising number of drug-resistant cases. Recently, the coexistence of COVID-19 and TB in Pakistan has provided doctors with a problem. Fever or chills, cough, shortness of breath or difficulty breathing are all signs of COVID-19. After SARS-CoV-2 infection, cough might persist for weeks or months and it is frequently accompanied by persistent tiredness, cognitive impairment, dyspnoea or pain – a group of long-term consequences known as post-COVID syndrome or protracted COVID. Coughing with mucus or blood, and coughing that continues over 2 months are indications of TB. The same clinical presentation features make it difficult for healthcare personnel to effectively evaluate the illness and prevent the spread of these fatal diseases. Pakistan lacks the necessary healthcare resources to tackle two contagious diseases at the same time. To counteract the sudden increase in TB cases, appropriate management and effective policies must be implemented. Thus, in order to prevent the spread of these infectious diseases, it is critical to recognise and address the problems that the healthcare sector faces, as well as to create an atmosphere in which the healthcare sector can function at its full potential.
Although a growing number of healthcare facilities are implementing healthcare personnel (HCP) coronavirus disease 2019 (COVID-19) vaccination requirements, vaccine exemption request management as a part of such programs is not well described.
Design:
Cross-sectional survey.
Participants:
Infectious disease (ID) physician members of the Emerging Infections Network with infection prevention or hospital epidemiology responsibilities.
Methods:
Eligible persons were sent a web-based survey focused on hospital plans and practices around exemption allowances from HCP COVID-19 vaccine requirements.
Results:
Of the 695 ID physicians surveyed, 263 (38%) responded. Overall, 160 respondent institutions (92%) allowed medical exemptions, whereas 132 (76%) allowed religious exemptions. In contrast, only 14% (n = 24) allowed deeply held personal belief exemptions. The types of medical exemptions allowed varied considerably across facilities, with allergic reactions to the vaccine or its components accepted by 145 facilities (84%). For selected scenarios commonly used as the basis for religious and deeply held personal belief exemption requests, 144 institutions (83%) would not approve exemptions focused on concerns regarding right of consent or violations of freedom of personal choice, and 140 institutions (81%) would not approve exemptions focused on introducing foreign substances into one’s body or the sanctity of the body. Most respondents noted plans for additional infection prevention interventions for HCP who received an exemption for COVID-19 vaccination.
Conclusions:
Although many respondent institutions allowed exemptions from HCP COVID-19 vaccination requirements, the types of exemptions allowed and how the exemption programs were structured varied widely.
In-person religious service attendance has been linked to favorable health and well-being outcomes. However, little research has examined whether online religious participation improves these outcomes, especially when in-person attendance is suspended.
Methods
Using longitudinal data of 8951 UK adults, this study prospectively examined the association between frequency of online religious participation during the stringent lockdown in the UK (23 March –13 May 2020) and 21 indicators of psychological well-being, social well-being, pro-social/altruistic behaviors, psychological distress, and health behaviors. All analyses adjusted for baseline socio-demographic characteristics, pre-pandemic in-person religious service attendance, and prior values of the outcome variables whenever data were available. Bonferroni correction was used to correct for multiple testing.
Results
Individuals with online religious participation of ≥1/week (v. those with no participation at all) during the lockdown had a lower prevalence of thoughts of self-harm in week 20 (odds ratio 0.24; 95% CI 0.09–0.62). Online religious participation of <1/week (v. no participation) was associated with higher life satisfaction (standardized β = 0.25; 0.11–0.39) and happiness (standardized β = 0.25; 0.08–0.42). However, there was little evidence for the associations between online religious participation and all other outcomes (e.g. depressive symptoms and anxiety).
Conclusions
There was evidence that online religious participation during the lockdown was associated with some subsequent health and well-being outcomes. Future studies should examine mechanisms underlying the inconsistent results for online v. in-person religious service attendance and also use data from non-pandemic situations.
Residents of long-term care facilities face significantly greater risk of contracting or dying from coronavirus disease 2019 (COVID-19). However, little is known about COVID-19 in assisted living communities (ALCs) and the potential determinants of its spread. We examined the association between COVID-19 cases in ALCs and the proportion of Medicare-Medicaid (dual) eligible minority residents, neighborhood area deprivation, and state COVID-19 policy stringency.
Methods:
We conducted longitudinal analyses employing data on confirmed COVID-19 cases in ALCs in 5 states. We sought to determine the weekly cumulative number of COVID-19 cases in ALCs. Covariates were ALC characteristics, area deprivation index, and state COVID-19 policy stringency. Multivariate 2-part models were used to determine the associations between independent variables and the likelihood of an outbreak and the overall count of cases.
Results:
In our study sample, 201 ALCs (7.04%) reported 1 or more COVID-19 cases as of August 17, 2020. A higher percentage of minority residents was associated with an increased likelihood of an ALC reporting at least 1 COVID-19 case (odds ratio [OR], 1.06; P = .032). Conditional on having at least 1 case, ALCs in states with stricter social distancing policies had lower case counts (incidence rate ratio [IRR], 0.98; P < .001). Greater neighborhood deprivation was associated with higher case count (IRR, 1.36; P = .049).
Conclusions:
ALCs with higher proportions of dual-eligible minority residents were more likely to have COVID-19 outbreaks within their communities. ALCs located in more socioeconomically deprived neighborhoods, and in states with less stringent state social distancing policies, tended to have more COVID-19 cases.
SARS-CoV-2 serological tests are used to assess the infection seroprevalence within a population. This study aims at assessing potential biases in estimating infection prevalence amongst healthcare workers (HCWs) when different diagnostic criteria are considered. A multi-site cross-sectional study was carried out in April–September 2020 amongst 1.367 Italian HCWs. SARS-CoV-2 prevalence was assessed using three diagnostic criteria: RT-PCR on nasopharyngeal swab, point-of-care fingerprick serological test (POCT) result and COVID-19 clinical pathognomonic presentation. A logistic regression model was used to estimate the probability of POCT-positive result in relation to the time since infection (RT-PCR positivity). Among 1.367 HCWs, 69.2% were working in COVID-19 units. Statistically significant differences in age, role and gender were observed between COVID-19/non-COVID-19 units. Prevalence of SARS-CoV-2 infection varied according to the criterion considered: 6.7% for POCT, 8.1% for RT-PCR, 10.0% for either POCT or RT-PCR, 9.6% for infection pathognomonic clinical presentation and 17.6% when at least one of the previous criteria was present. The probability of POCT-positive result decreased by 1.1% every 10 days from the infection. This study highlights potential biases in estimating SARS-CoV-2 point-prevalence data according to the criteria used. Although informative on infection susceptibility and herd immunity level, POCT serological tests are not the best predictors of previous COVID-19 infections for public health monitoring programmes.
Nosocomial transmission of COVID-19 among immunocompromised hosts can have a serious impact on COVID-19 severity, underlying disease progression and SARS-CoV-2 transmission to other patients and healthcare workers within hospitals. We experienced a nosocomial outbreak of COVID-19 in the setting of a daycare unit for paediatric and young adult cancer patients. Between 9 and 18 November 2020, 473 individuals (181 patients, 247 caregivers/siblings and 45 staff members) were exposed to the index case, who was a nursing staff. Among them, three patients and four caregivers were infected. Two 5-year-old cancer patients with COVID-19 were not severely ill, but a 25-year-old cancer patient showed prolonged shedding of SARS-CoV-2 RNA for at least 12 weeks, which probably infected his mother at home approximately 7–8 weeks after the initial diagnosis. Except for this case, no secondary transmission was observed from the confirmed cases in either the hospital or the community. To conclude, in the day care setting of immunocompromised children and young adults, the rate of in-hospital transmission of SARS-CoV-2 was 1.6% when applying the stringent policy of infection prevention and control, including universal mask application and rapid and extensive contact investigation. Severely immunocompromised children/young adults with COVID-19 would have to be carefully managed after the mandatory isolation period while keeping the possibility of prolonged shedding of live virus in mind.
This study describes risk factors associated with mortality among COVID-19 cases reported in the WHO African region between 21 March and 31 October 2020. Average hazard ratios of death were calculated using weighted Cox regression as well as median time to death for key risk factors. We included 46 870 confirmed cases reported by eight Member States in the region. The overall incidence was 20.06 per 100 000, with a total of 803 deaths and a total observation time of 3 959 874 person-days. Male sex (aHR 1.54 (95% CI 1.31–1.81); P < 0.001), older age (aHR 1.08 (95% CI 1.07–1.08); P < 0.001), persons who lived in a capital city (aHR 1.42 (95% CI 1.22–1.65); P < 0.001) and those with one or more comorbidity (aHR 36.37 (95% CI 20.26–65.27); P < 0.001) had a higher hazard of death. Being a healthcare worker reduced the average hazard of death by 40% (aHR 0.59 (95% CI 0.37–0.93); P = 0.024). Time to death was significantly less for persons ≥60 years (P = 0.038) and persons residing in capital cities (P < 0.001). The African region has COVID-19-related mortality similar to that of other regions, and is likely underestimated. Similar risk factors contribute to COVID-19-associated mortality as identified in other regions.
Objective: To explore food consumption and subsequent behavioural changes amongst PASC suffers associated with alterations in taste and smell. Design: A qualitative study involving five focus groups. Setting: Birmingham and Leicester, England, United Kingdom. Participants: Forty-seven Post-Acute Sequelae of COVID-19 sufferers. Results: Shifts in taste and odour were very common with disgusting or unpleasant notes being perceived in many foods, including animal products rich in protein. Food consumption patterns varied affecting nutrition status, individuals weight, types of foods consumed, cooking habits, coping mechanisms, anxieties, family and social interactions. Individuals expressed the need to taste something or experience normal tastes and flavour. Low pH foods, highly processed foods which may contain large amounts of refined sugars as well as cold processed food were the preferred items for consumption. Conclusion: Olfactory dysfunction was related to the consumption of nutrients that require moderation and to the quality of life. Intervention at an early stage is necessary in order to help avoid such complications and thus, this work informs medical practitioners and health workers of the variety of food choices that are more acceptable for people suffering from altered tastes and odour perception.
To analyze the frequency and rates of community respiratory virus infections detected in patients at the National Institutes of Health Clinical Center (NIHCC) between January 2015 and March 2021, comparing the trends before and during the coronavirus disease 2019 (COVID-19) pandemic.
Methods:
We conducted a retrospective study comparing frequency and rates of community respiratory viruses detected in NIHCC patients between January 2015 and March 2021. Test results from nasopharyngeal swabs and washes, bronchoalveolar lavages, and bronchial washes were included in this study. Results from viral-challenge studies and repeated positives were excluded. A quantitative data analysis was completed using cross tabulations. Comparisons were performed using mixed models, applying the Dunnett correction for multiplicity.
Results:
Frequency of all respiratory pathogens declined from an annual range of 0.88%–1.97% between January 2015 and March 2020 to 0.29% between April 2020 and March 2021. Individual viral pathogens declined sharply in frequency during the same period, with no cases of influenza A/B orparainfluenza and 1 case of respiratory syncytial virus (RSV). Rhino/enterovirusdetection continued, but with a substantially lower frequency of 4.27% between April 2020 and March 2021, compared with an annual range of 8.65%–18.28% between January 2015 and March 2020.
Conclusions:
The decrease in viral respiratory infections detected in NIHCC patients during the pandemic was likely due to the layered COVID-19 prevention and mitigation measures implemented in the community and the hospital. Hospitals should consider continuing the use of nonpharmaceutical interventions in the future to prevent nosocomial transmission of respiratory viruses during times of high community viral load.