Published online by Cambridge University Press: 27 October 2021
This chapter discusses acoustic wave propagation in combustor environments. As noted in Chapter 2, acoustic waves propagate energy and information through the medium without requiring bulk advection of the flow. For this reason, and as discussed further in this chapter, the details of the time-averaged flow have relatively minor influences on the acoustic wave field in low Mach number flows. In contrast, vortical disturbances, which propagate with the local flow field, are highly sensitive to the flow details. For these reasons, there is no analogue in the acoustic problem to the myriad different ways in which vorticity can organize and reorganize itself as in the hydrodynamic stability problem. Rather, in low Mach number flows the acoustic field is insensitive to these details and is largely controlled by the boundaries and sound speed field.
To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.