Published online by Cambridge University Press: 16 July 2025
ABSTRACT. This paper is an extended version of an expository talk given at the workshop “Topology of Stratified Spaces” at MSRI in September 2008. It gives an introduction and overview about recent developments on the interaction of the theories of characteristic classes and mixed Hodge theory for singular spaces in the complex algebraic context.
It uses M. Saito's deep theory of mixed Hodge modules as a black box, thinking about them as “constructible or perverse sheaves of Hodge structures”, having the same functorial calculus of Grothendieck functors. For the “constant Hodge sheaf”, one gets the “motivic characteristic classes” of Brasselet, Schürmann, and Yokura, whereas the classes of the “intersection homology Hodge sheaf” were studied by Cappell, Maxim, and Shaneson. The classes associated to “good” variation of mixed Hodge structures where studied in connection with understanding the monodromy action by these three authors together with Libgober, and also by the author.
To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.