Skip to main content Accessibility help
×
Hostname: page-component-6bb9c88b65-lm65w Total loading time: 0.006 Render date: 2025-07-25T17:29:09.668Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  05 July 2025

Todd Ditmire
Affiliation:
University of Texas, Austin
Get access

Information

Type
Chapter
Information
Strong Field Physics
Ultra-Intense Light Interaction with Matter
, pp. 803 - 846
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Primary Sources

Borovsky, A. V., Galkin, A. L., Shiryaev, O. B. and Auguste, T. (2003), Laser Physics at Relativistic Intensities (Berlin: Springer).CrossRefGoogle Scholar
Boyd, R. W. (1992), Nonlinear Optics (Boston: Academic Press).Google Scholar
Eliezer, S. (2002), The Interaction of High-Power Lasers with Plasmas (Bristol: Institute of Physics Publishing).CrossRefGoogle Scholar
Faisal, F. H. M. (1987), Theory of Multiphoton Processes (New York: Plenum Press).CrossRefGoogle Scholar
Fedorov, M. V. (1997), Atomic and Free Electrons in a Strong Light Field (Singapore: World Scientific).Google Scholar
Gibbon, P. (2005), Short Pulse Laser Interactions with Matter: An Introduction (London: Imperial College Press).CrossRefGoogle Scholar
Ginzburg, V. L. (1960), Propagation of Electromagnetic Waves in Plasma, Trans. , Royer and Roger, Inc. (New York: Gordon and Breach).Google Scholar
Joachain, C. J., Kylstra, N. J. and Potvliege, R. M. (2012), Atoms in Intense Laser Fields (Cambridge: Cambridge University Press).Google Scholar
Kruer, W. L. (2003), The Physics of Laser Plasma Interactions (Boulder, CO: Westview Press).Google Scholar
Larsen, J. (2017), Foundations of High-Energy-Density Physics (Cambridge: Cambridge University Press).CrossRefGoogle Scholar
Lin, C. D., Le, A.-T., Jin, C. and Wei, H. (2018), Attosecond and Strong-Field Physics: Principles and Applications (Cambridge: Cambridge University Press).CrossRefGoogle Scholar
Liu, C. S., Tripathi, V. K. and Eliasson, B. (2019), High-Power Laser–Plasma Interaction (Cambridge: Cambridge University Press).Google Scholar
Liu, J. (2014), Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields: Semiclassical Modeling (Heidelberg: Springer).CrossRefGoogle Scholar
Macchi, A. (2013), A Superintense Laser–Plasma Interaction Theory Primer (Dordrecht: Springer).CrossRefGoogle Scholar
Mulser, P. and Bauer, D. (2010), High Power Laser–Matter Interaction (Berlin: Springer).CrossRefGoogle Scholar
Reintjes, J. F. (1984), Nonlinear Optical Parametric Processes in Liquids and Gases (Orlando, FL: Academic Press).Google Scholar
Wegener, M. (2005), Extreme Nonlinear Optics: An Introduction (Berlin: Springer).Google Scholar

Secondary Sources

Atzeni, S. and Meyer-ter-Vehn, J. (2004), The Physics of Inertial Fusion (Oxford: Oxford University Press).CrossRefGoogle Scholar
Born, M. and Wolf, E. (1980), Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th Edition (Oxford: Pergamon Press).Google Scholar
Boyd, T. J. M. and Sanderson, J. J. (2003), The Physics of Plasmas (Cambridge: Cambridge University Press).CrossRefGoogle Scholar
Drake, R. P. (2006), High-Energy-Density Physics: Fundamentals, Inertial Fusion, and Experimental Astrophysics (Heidelberg: Springer).CrossRefGoogle Scholar
Goldstein, H. (1980), Classical Mechanics (Reading: Addison-Wesley).Google Scholar
Jackson, J. D. (1975), Classical Electrodynamics (New York: John Wiley & Sons).Google Scholar
Koechner, W. (2006), Solid-State Laser Engineering (New York: Springer).Google Scholar
Landau, L. D. and Lifshitz, E. M. (1984), Electrodynamics of Continuous Media, Trans. Sykes, J. B., Bell, J. S. and Kearsley, M. J. (Oxford: Pergamon Press).Google Scholar
Landau, L. D. and Lifshitz, E. M. (1991), Quantum Mechanics: Non-Relativistic Theory, 3rd Edition (London: Butterworth and Heinemann).Google Scholar
Landau, L. D. and Lifshitz, E. M. (1994), The Classical Theory of Fields, Vol. 2. (New York: Pergamon Press).Google Scholar
Milonni, P. W. and Eberly, J. H. (2010), Laser Physics (Hoboken, NJ: John Wiley and Sons).CrossRefGoogle Scholar
Miyamoto, K. (1989), Plasma Physics for Nuclear Fusion (Cambridge: The MIT Press).Google Scholar
Nicholson, D. R. (1983), Introduction to Plasma Theory (New York: John Wiley and Sons).Google Scholar
Piel, A. (2010), Plasma Physics: An Introduction to Laboratory, Space, and Fusion Plasmas (Heidelberg: Springer).CrossRefGoogle Scholar
Schiff, L. I. (1968), Quantum Mechanics (New York: McGraw Hill).Google Scholar
Siegman, A. E. (1986), Lasers (Melville, NY: University Science Books).Google Scholar
Stafe, M., Marcu, A. and Puscas, N. N. (2014), Pulsed Laser Ablation of Solids: Basics, Theory and Applications, (Heidelberg: Springer).CrossRefGoogle Scholar
Zel’dovich, Y. B. and Raizer, Y. P. (2002), Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Hayes, W. D. and Probstein, R. F., eds. (Mineola, NY: Dover Publications).Google Scholar
Zwillinger, D. (1992), Handbook of Integration (Boston, MA: Jones and Bartlett Publishers).CrossRefGoogle Scholar
Abu-Shawareb, H. et al. (NIF Team), (2022), “Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment,” Physical Review Letters 129, 075001.CrossRefGoogle Scholar
Agostini, P., Fabre, F., Mainfray, G., Petite, G. and Rahman, N. K. (1979), “Free-Free Transitions Following 6-Photon Ionization of Xenon Atoms,” Physical Review Letters 42, 1127.CrossRefGoogle Scholar
Augst, S., Meyerhofer, D. D., Strickland, D. and Chin, S. L. (1991), “Laser Ionization of Noble-Gases by Coulomb-Barrier Suppression,” Journal of the Optical Society of America B-Optical Physics 8, 858.CrossRefGoogle Scholar
Braun, A., Korn, G., Liu, X., Du, D., Squier, J. and Mourou, G. (1995), “Self-Channeling of High-Peak-Power Femtosecond Laser-Pulses in Air,” Optics Letters 20, 73.CrossRefGoogle ScholarPubMed
Brown, L. S. and Kibble, T. W. B. (1964), “Interaction of Intense Laser Beams with Electrons,” Physical Review A-General Physics 133, A705.CrossRefGoogle Scholar
Burnett, N. H. and Corkum, P. B. (1989), “Cold-Plasma Production for Recombination Extreme-Ultraviolet Lasers by Optical-Field-Induced Ionization,” Journal of the Optical Society of America B-Optical Physics 6, 1195.CrossRefGoogle Scholar
Chang, Z. H., Rundquist, A., Wang, H. W., Murnane, M. M. and Kapteyn, H. C. (1997), “Generation of Coherent Soft X Rays at 2.7 nm Using High Harmonics,” Physical Review Letters 79, 2967.CrossRefGoogle Scholar
Chelkowski, S. and Bandrauk, A. D. (1995), “Two-Step Coulomb Explosions of Diatoms in Intense Laser Fields,” Journal of Physics B-Atomic Molecular and Optical Physics 28, L723.CrossRefGoogle Scholar
Corkum, P. B. (1993), “Plasma Perspective on Strong-Field Multiphoton Ionization,” Physical Review Letters 71, 1994.CrossRefGoogle ScholarPubMed
Cowan, T. E., Perry, M. D., Key, M. H., Ditmire, T., Hatchett, S. P., Henry, E. A., Moody, J. D., Moran, M. J., Pennington, D. M., Phillips, T. W., Sangster, T. C., Sefcik, J. A., Singh, M. S., Snavely, R. A., Stoyer, M. A., Wilks, S. C., Young, P. E., Takahashi, Y., Dong, B., Fountain, W., Parnell, T., Johnson, J., Hunt, A. W. and Kuhl, T. (1999), “High Energy Electrons, Nuclear Phenomena and Heating in Petawatt Laser-Solid Experiments,” Laser and Particle Beams 17, 773.CrossRefGoogle Scholar
Cowan, T. E., Hunt, A. W., Phillips, T. W., Wilks, S. C., Perry, M. D., Brown, C., Fountain, W., Hatchett, S., Johnson, J., Key, M. H., Parnell, T., Pennington, D. M., Snavely, R. A. and Takahashi, Y. (2000), “Photonuclear Fission from High Energy Electrons from Ultraintense Laser–Solid Interactions,” Physical Review Letters 84, 903.CrossRefGoogle ScholarPubMed
Demaria, A. J., Stetser, D. A. and Heynau, H. (1966), “Self Mode-Locking of Lasers with Saturable Absorbers - (Regenerative Pulse Oscillator Bleachable Dyes E),” Applied Physics Letters 8, 174.CrossRefGoogle Scholar
Ditmire, T., Donnelly, T., Falcone, R. W. and Perry, M. D. (1995), “Strong X-Ray-Emission from High-Temperature Plasmas Produced by Intense Irradiation of Clusters,” Physical Review Letters 75, 3122.CrossRefGoogle ScholarPubMed
Ditmire, T., Zweiback, J., Yanovsky, V. P., Cowan, T. E., Hays, G. and Wharton, K. B. (1999), “Nuclear Fusion from Explosions of Femtosecond Laser-Heated Deuterium Clusters,” Nature 398, 489.CrossRefGoogle Scholar
Fabre, F., Petite, G., Agostini, P. and Clement, M. (1982), “Multi-Photon Above-Threshold Ionization of Xenon at 0.53 and 1.06-Mu-M,” Journal of Physics B-Atomic Molecular and Optical Physics 15, 1353.CrossRefGoogle Scholar
Fittinghoff, D. N., Bolton, P. R., Chang, B. and Kulander, K. C. (1992), “Observation of Nonsequential Double Ionization of Helium with Optical Tunneling,” Physical Review Letters 69, 2642.CrossRefGoogle ScholarPubMed
Franken, P. A., Hill, A. E., Peters, C. W. and Weinreich, G. (1961), “Generation of Optical Harmonics,” Physical Review Letters 7, 118.CrossRefGoogle Scholar
Gallagher, T. F. (1992), “Rydberg Atoms in Strong Microwave Fields,” in Atoms in Intense Laser Fields, Gavrila, M., ed. (Boston: Academic Press), p. 67.Google Scholar
Goeppert-Mayer, M. (1931), “Über Elementarakte mit zwei Quantensprüngen,” Annals of Physics 9, 273.CrossRefGoogle Scholar
Gonsalves, A. J., Nakamura, K., Daniels, J., Benedetti, C., Pieronek, C., de Raadt, T. C. H., Steinke, S., Bin, J. H., Bulanov, S. S., van Tilborg, J., Geddes, C. G. R., Schroeder, C. B., Toth, Cs, Esarey, E., Swanson, K., Fan-Chiang, L., Bagdasarov, G., Bobrova, N., Gasilov, V., Korn, G., Sasorov, P. and Leemans, W. P. (2019), “Petawatt Laser Guiding and Electron Beam Acceleration to 8 GeV in a Laser-Heated Capillary Discharge Waveguide,” Physical Review Letters 122, 084801.CrossRefGoogle Scholar
Hentschel, M., Kienberger, R., Spielmann, C., Reider, G. A., Milosevic, N., Brabec, T., Corkum, P., Heinzmann, U., Drescher, M. and Krausz, F. (2001), “Attosecond Metrology,” Nature 414, 509.CrossRefGoogle ScholarPubMed
Keldysh, L. V. (1965), “Ionization in Field of a Strong Electromagnetic Wave,” Soviet Physics JETP-USSR 20, 1307.Google Scholar
Kmetec, J. D., Gordon, C. L., Macklin, J. J., Lemoff, B. E., Brown, G. S. and Harris, S. E. (1992), “Mev X-Ray Generation with a Femtosecond Laser,” Physical Review Letters 68, 1527.CrossRefGoogle ScholarPubMed
Krausz, F. and Corkum, P. (2002), “Research Supports Observation of Attosecond Pulses,” Laser Focus World 38, 7.Google Scholar
Kulander, K. C., Schafer, K. J. and Krause, J. L. (1993), in Super-Intense Laser Atom Physics, NATO ASI Ser., Piraux, B., and Rzazewski, K., eds. (New York: Plenum Press).Google Scholar
L’Huillier, A., Lompre, L. A., Mainfray, G. and Manus, C. (1982), “Multiply Charged Ions Formed by Multi-Photon Absorption Processes in the Continuum,” Physical Review Letters 48, 1814.CrossRefGoogle Scholar
L’Huillier, A. and Balcou, P. (1993), “High-Order Harmonic-Generation in Rare-Gases with a 1-Ps 1053-Nm Laser,” Physical Review Letters 70, 774.CrossRefGoogle ScholarPubMed
McClung, F. J. and Hellwarth, R. W. (1962), “Giant Optical Pulsations from Ruby,” Journal of Applied Physics 33, 828.CrossRefGoogle Scholar
McPherson, A., Gibson, G., Jara, H., Johann, U., Luk, T. S., McIntyre, I. A., Boyer, K. and Rhodes, C. K. (1987), “Studies of Multiphoton Production of Vacuum Ultraviolet-Radiation in the Rare-Gases,” Journal of the Optical Society of America B-Optical Physics 4, 595.CrossRefGoogle Scholar
McPherson, A., Luk, T. S., Thompson, B. D., Boyer, K., and Rhodes, C. K. (1993), “Multiphoton-Induced X-Ray-Emission and Amplification from Clusters,” Applied Physics B-Photophysics and Laser Chemistry 57, 337.CrossRefGoogle Scholar
Maine, P., Strickland, D., Bado, P., Pessot, M., and Mourou, G. (1987), “Towards the Development of Petawatt Power Pulses,” Revue De Physique Appliquee 22, 1657.CrossRefGoogle Scholar
Perelomov, A. M., Popov, V. S. and Terentev, M. V. (1966), “Ionization of Atoms in an Alternating Electric Field,” Soviet Physics JETP-USSR 23, 924.Google Scholar
Perry, M. D., Pennington, D., Stuart, B. C., Tietbohl, G., Britten, J. A., Brown, C., Herman, S., Golick, B., Kartz, M., Miller, J., Powell, H. T., Vergino, M. and Yanovsky, V. (1999), “Petawatt Laser Pulses,” Optics Letters 24, 160.CrossRefGoogle ScholarPubMed
Posthumus, J. H., Frasinski, L. J., Giles, A. J. and Codling, K. (1995), “Dissociative Ionization of Molecules in Intense Laser Fields: A Method of Predicting Ion Kinetic Energies and Appearance Intensities,” Journal of Physics B-Atomic Molecular and Optical Physics 28, L349.CrossRefGoogle Scholar
Reiss, H. R. (1980), “Effect of an Intense Electromagnetic-Field on a Weakly Bound System,” Physical Review A 22, 1786.CrossRefGoogle Scholar
Roth, M., Jung, D., Falk, K., Guler, N., Deppert, O., Devlin, M., Favalli, A., Fernandez, J., Gautier, D., Geissel, M., Haight, R., Hamilton, C. E., Hegelich, B. M., Johnson, R. P., Merrill, F., Schaumann, G., Schoenberg, K., Schollmeier, M., Shimada, T., Taddeucci, T., Tybo, J. L., Wagner, F., Wender, S. A., Wilde, C. H. and Wurden, G. A. (2001), “Fast Ignition by Intense Laser-Accelerated Proton Beams,” Physical Review Letters 86, 436.CrossRefGoogle ScholarPubMed
Schmidt, M., Normand, D., and Cornaggia, C. (1994), “Laser-Induced Trapping of Chlorine Molecules with Picosecond and Femtosecond Pulses,” Physical Review A 50, 5037.CrossRefGoogle Scholar
Shank, C. V. and Ippen, E. P. (1974), “Subpicosecond Kilowatt Pulses from a Mode-Locked CW Dye Laser,” Applied Physics Letters 24, 373.CrossRefGoogle Scholar
Snavely, R. A., Key, M. H., Hatchett, S. P., Cowan, T. E., Roth, M., Phillips, T. W., Stoyer, M. A., Henry, E. A., Sangster, T. C., Singh, M. S., Wilks, S. C., MacKinnon, A., Offenberger, A., Pennington, D. M., Yasuike, K., Langdon, A. B., Lasinski, B. F., Johnson, J., Perry, M. D. and Campbell, E. M. (2000), “Intense High-Energy Proton Beams from Petawatt-Laser Irradiation of Solids,” Physical Review Letters 85, 2945.CrossRefGoogle ScholarPubMed
Strickland, D. and Mourou, G. (1985), “Compression of Amplified Chirped Optical Pulses,” Optics Communications 55, 447.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M. E., Kruer, W. L., Wilks, S. C., Woodworth, J., Campbell, E. M., Perry, M. D. and Mason, R. J. (1994), “Ignition and High-Gain with Ultrapowerful Lasers,” Physics of Plasmas 1, 1626.CrossRefGoogle Scholar
Tajima, T. and Dawson, J. M. (1979), “Laser Electron-Accelerator,” Physical Review Letters 43, 267.CrossRefGoogle Scholar
Talebpour, A., Chien, C. Y. and Chin, S. L. (1996), “The Effects of Dissociative Recombination in Multiphoton Ionization of O-2,” Journal of Physics B-Atomic Molecular and Optical Physics 29, L677.CrossRefGoogle Scholar
Walker, B., Sheehy, B., Dimauro, L. F., Agostini, P., Schafer, K. J. and Kulander, K. C. (1994), “Precision-Measurement of Strong-Field Double-Ionization of Helium,” Physical Review Letters 73, 1227.CrossRefGoogle ScholarPubMed
Abu-Shawareb, H. et al. (NIF Team), (2022), “Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment,” Physical Review Letters 129, 075001.CrossRefGoogle Scholar
Agostini, P., Fabre, F., Mainfray, G., Petite, G. and Rahman, N. K. (1979), “Free-Free Transitions Following 6-Photon Ionization of Xenon Atoms,” Physical Review Letters 42, 1127.CrossRefGoogle Scholar
Augst, S., Meyerhofer, D. D., Strickland, D. and Chin, S. L. (1991), “Laser Ionization of Noble-Gases by Coulomb-Barrier Suppression,” Journal of the Optical Society of America B-Optical Physics 8, 858.CrossRefGoogle Scholar
Braun, A., Korn, G., Liu, X., Du, D., Squier, J. and Mourou, G. (1995), “Self-Channeling of High-Peak-Power Femtosecond Laser-Pulses in Air,” Optics Letters 20, 73.CrossRefGoogle ScholarPubMed
Brown, L. S. and Kibble, T. W. B. (1964), “Interaction of Intense Laser Beams with Electrons,” Physical Review A-General Physics 133, A705.CrossRefGoogle Scholar
Burnett, N. H. and Corkum, P. B. (1989), “Cold-Plasma Production for Recombination Extreme-Ultraviolet Lasers by Optical-Field-Induced Ionization,” Journal of the Optical Society of America B-Optical Physics 6, 1195.CrossRefGoogle Scholar
Chang, Z. H., Rundquist, A., Wang, H. W., Murnane, M. M. and Kapteyn, H. C. (1997), “Generation of Coherent Soft X Rays at 2.7 nm Using High Harmonics,” Physical Review Letters 79, 2967.CrossRefGoogle Scholar
Chelkowski, S. and Bandrauk, A. D. (1995), “Two-Step Coulomb Explosions of Diatoms in Intense Laser Fields,” Journal of Physics B-Atomic Molecular and Optical Physics 28, L723.CrossRefGoogle Scholar
Corkum, P. B. (1993), “Plasma Perspective on Strong-Field Multiphoton Ionization,” Physical Review Letters 71, 1994.CrossRefGoogle ScholarPubMed
Cowan, T. E., Perry, M. D., Key, M. H., Ditmire, T., Hatchett, S. P., Henry, E. A., Moody, J. D., Moran, M. J., Pennington, D. M., Phillips, T. W., Sangster, T. C., Sefcik, J. A., Singh, M. S., Snavely, R. A., Stoyer, M. A., Wilks, S. C., Young, P. E., Takahashi, Y., Dong, B., Fountain, W., Parnell, T., Johnson, J., Hunt, A. W. and Kuhl, T. (1999), “High Energy Electrons, Nuclear Phenomena and Heating in Petawatt Laser-Solid Experiments,” Laser and Particle Beams 17, 773.CrossRefGoogle Scholar
Cowan, T. E., Hunt, A. W., Phillips, T. W., Wilks, S. C., Perry, M. D., Brown, C., Fountain, W., Hatchett, S., Johnson, J., Key, M. H., Parnell, T., Pennington, D. M., Snavely, R. A. and Takahashi, Y. (2000), “Photonuclear Fission from High Energy Electrons from Ultraintense Laser–Solid Interactions,” Physical Review Letters 84, 903.CrossRefGoogle ScholarPubMed
Demaria, A. J., Stetser, D. A. and Heynau, H. (1966), “Self Mode-Locking of Lasers with Saturable Absorbers - (Regenerative Pulse Oscillator Bleachable Dyes E),” Applied Physics Letters 8, 174.CrossRefGoogle Scholar
Ditmire, T., Donnelly, T., Falcone, R. W. and Perry, M. D. (1995), “Strong X-Ray-Emission from High-Temperature Plasmas Produced by Intense Irradiation of Clusters,” Physical Review Letters 75, 3122.CrossRefGoogle ScholarPubMed
Ditmire, T., Zweiback, J., Yanovsky, V. P., Cowan, T. E., Hays, G. and Wharton, K. B. (1999), “Nuclear Fusion from Explosions of Femtosecond Laser-Heated Deuterium Clusters,” Nature 398, 489.CrossRefGoogle Scholar
Fabre, F., Petite, G., Agostini, P. and Clement, M. (1982), “Multi-Photon Above-Threshold Ionization of Xenon at 0.53 and 1.06-Mu-M,” Journal of Physics B-Atomic Molecular and Optical Physics 15, 1353.CrossRefGoogle Scholar
Fittinghoff, D. N., Bolton, P. R., Chang, B. and Kulander, K. C. (1992), “Observation of Nonsequential Double Ionization of Helium with Optical Tunneling,” Physical Review Letters 69, 2642.CrossRefGoogle ScholarPubMed
Franken, P. A., Hill, A. E., Peters, C. W. and Weinreich, G. (1961), “Generation of Optical Harmonics,” Physical Review Letters 7, 118.CrossRefGoogle Scholar
Gallagher, T. F. (1992), “Rydberg Atoms in Strong Microwave Fields,” in Atoms in Intense Laser Fields, Gavrila, M., ed. (Boston: Academic Press), p. 67.Google Scholar
Goeppert-Mayer, M. (1931), “Über Elementarakte mit zwei Quantensprüngen,” Annals of Physics 9, 273.CrossRefGoogle Scholar
Gonsalves, A. J., Nakamura, K., Daniels, J., Benedetti, C., Pieronek, C., de Raadt, T. C. H., Steinke, S., Bin, J. H., Bulanov, S. S., van Tilborg, J., Geddes, C. G. R., Schroeder, C. B., Toth, Cs, Esarey, E., Swanson, K., Fan-Chiang, L., Bagdasarov, G., Bobrova, N., Gasilov, V., Korn, G., Sasorov, P. and Leemans, W. P. (2019), “Petawatt Laser Guiding and Electron Beam Acceleration to 8 GeV in a Laser-Heated Capillary Discharge Waveguide,” Physical Review Letters 122, 084801.CrossRefGoogle Scholar
Hentschel, M., Kienberger, R., Spielmann, C., Reider, G. A., Milosevic, N., Brabec, T., Corkum, P., Heinzmann, U., Drescher, M. and Krausz, F. (2001), “Attosecond Metrology,” Nature 414, 509.CrossRefGoogle ScholarPubMed
Keldysh, L. V. (1965), “Ionization in Field of a Strong Electromagnetic Wave,” Soviet Physics JETP-USSR 20, 1307.Google Scholar
Kmetec, J. D., Gordon, C. L., Macklin, J. J., Lemoff, B. E., Brown, G. S. and Harris, S. E. (1992), “Mev X-Ray Generation with a Femtosecond Laser,” Physical Review Letters 68, 1527.CrossRefGoogle ScholarPubMed
Krausz, F. and Corkum, P. (2002), “Research Supports Observation of Attosecond Pulses,” Laser Focus World 38, 7.Google Scholar
Kulander, K. C., Schafer, K. J. and Krause, J. L. (1993), in Super-Intense Laser Atom Physics, NATO ASI Ser., Piraux, B., and Rzazewski, K., eds. (New York: Plenum Press).Google Scholar
L’Huillier, A., Lompre, L. A., Mainfray, G. and Manus, C. (1982), “Multiply Charged Ions Formed by Multi-Photon Absorption Processes in the Continuum,” Physical Review Letters 48, 1814.CrossRefGoogle Scholar
L’Huillier, A. and Balcou, P. (1993), “High-Order Harmonic-Generation in Rare-Gases with a 1-Ps 1053-Nm Laser,” Physical Review Letters 70, 774.CrossRefGoogle ScholarPubMed
McClung, F. J. and Hellwarth, R. W. (1962), “Giant Optical Pulsations from Ruby,” Journal of Applied Physics 33, 828.CrossRefGoogle Scholar
McPherson, A., Gibson, G., Jara, H., Johann, U., Luk, T. S., McIntyre, I. A., Boyer, K. and Rhodes, C. K. (1987), “Studies of Multiphoton Production of Vacuum Ultraviolet-Radiation in the Rare-Gases,” Journal of the Optical Society of America B-Optical Physics 4, 595.CrossRefGoogle Scholar
McPherson, A., Luk, T. S., Thompson, B. D., Boyer, K., and Rhodes, C. K. (1993), “Multiphoton-Induced X-Ray-Emission and Amplification from Clusters,” Applied Physics B-Photophysics and Laser Chemistry 57, 337.CrossRefGoogle Scholar
Maine, P., Strickland, D., Bado, P., Pessot, M., and Mourou, G. (1987), “Towards the Development of Petawatt Power Pulses,” Revue De Physique Appliquee 22, 1657.CrossRefGoogle Scholar
Perelomov, A. M., Popov, V. S. and Terentev, M. V. (1966), “Ionization of Atoms in an Alternating Electric Field,” Soviet Physics JETP-USSR 23, 924.Google Scholar
Perry, M. D., Pennington, D., Stuart, B. C., Tietbohl, G., Britten, J. A., Brown, C., Herman, S., Golick, B., Kartz, M., Miller, J., Powell, H. T., Vergino, M. and Yanovsky, V. (1999), “Petawatt Laser Pulses,” Optics Letters 24, 160.CrossRefGoogle ScholarPubMed
Posthumus, J. H., Frasinski, L. J., Giles, A. J. and Codling, K. (1995), “Dissociative Ionization of Molecules in Intense Laser Fields: A Method of Predicting Ion Kinetic Energies and Appearance Intensities,” Journal of Physics B-Atomic Molecular and Optical Physics 28, L349.CrossRefGoogle Scholar
Reiss, H. R. (1980), “Effect of an Intense Electromagnetic-Field on a Weakly Bound System,” Physical Review A 22, 1786.CrossRefGoogle Scholar
Roth, M., Jung, D., Falk, K., Guler, N., Deppert, O., Devlin, M., Favalli, A., Fernandez, J., Gautier, D., Geissel, M., Haight, R., Hamilton, C. E., Hegelich, B. M., Johnson, R. P., Merrill, F., Schaumann, G., Schoenberg, K., Schollmeier, M., Shimada, T., Taddeucci, T., Tybo, J. L., Wagner, F., Wender, S. A., Wilde, C. H. and Wurden, G. A. (2001), “Fast Ignition by Intense Laser-Accelerated Proton Beams,” Physical Review Letters 86, 436.CrossRefGoogle ScholarPubMed
Schmidt, M., Normand, D., and Cornaggia, C. (1994), “Laser-Induced Trapping of Chlorine Molecules with Picosecond and Femtosecond Pulses,” Physical Review A 50, 5037.CrossRefGoogle Scholar
Shank, C. V. and Ippen, E. P. (1974), “Subpicosecond Kilowatt Pulses from a Mode-Locked CW Dye Laser,” Applied Physics Letters 24, 373.CrossRefGoogle Scholar
Snavely, R. A., Key, M. H., Hatchett, S. P., Cowan, T. E., Roth, M., Phillips, T. W., Stoyer, M. A., Henry, E. A., Sangster, T. C., Singh, M. S., Wilks, S. C., MacKinnon, A., Offenberger, A., Pennington, D. M., Yasuike, K., Langdon, A. B., Lasinski, B. F., Johnson, J., Perry, M. D. and Campbell, E. M. (2000), “Intense High-Energy Proton Beams from Petawatt-Laser Irradiation of Solids,” Physical Review Letters 85, 2945.CrossRefGoogle ScholarPubMed
Strickland, D. and Mourou, G. (1985), “Compression of Amplified Chirped Optical Pulses,” Optics Communications 55, 447.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M. E., Kruer, W. L., Wilks, S. C., Woodworth, J., Campbell, E. M., Perry, M. D. and Mason, R. J. (1994), “Ignition and High-Gain with Ultrapowerful Lasers,” Physics of Plasmas 1, 1626.CrossRefGoogle Scholar
Tajima, T. and Dawson, J. M. (1979), “Laser Electron-Accelerator,” Physical Review Letters 43, 267.CrossRefGoogle Scholar
Talebpour, A., Chien, C. Y. and Chin, S. L. (1996), “The Effects of Dissociative Recombination in Multiphoton Ionization of O-2,” Journal of Physics B-Atomic Molecular and Optical Physics 29, L677.CrossRefGoogle Scholar
Walker, B., Sheehy, B., Dimauro, L. F., Agostini, P., Schafer, K. J. and Kulander, K. C. (1994), “Precision-Measurement of Strong-Field Double-Ionization of Helium,” Physical Review Letters 73, 1227.CrossRefGoogle ScholarPubMed
Adachi, S., Ishii, N., Kanai, T., Kosuge, A., Itatani, J., Kobayashi, Y., Yoshitomi, D., Torizuka, K. and Watanabe, S. (2008), “5-Fs, Multi-mJ, CEP-Locked Parametric Chirped-Pulse Amplifier Pumped by a 450-Nm Source at 1 kHz,” Optics Express 16, 14341.CrossRefGoogle ScholarPubMed
Ahmad, I., Trushin, S. A., Major, Z., Wandt, C., Klingebiel, S., Wang, T. J., Pervak, V., Popp, A., Siebold, M., Krausz, F. and Karsch, S. (2009), “Frontend Light Source for Short-Pulse Pumped OPCPA System,” Applied Physics B-Lasers and Optics 97, 529.CrossRefGoogle Scholar
Aoyama, M., Yamakawa, K., Akahane, Y., Ma, J., Inoue, N., Ueda, H., and Kiriyama, H. (2003), “0.85-Pw, 33-Fs Ti : Sapphire Laser,” Optics Letters 28, 1594.CrossRefGoogle ScholarPubMed
Backus, S., Bartels, R., Thompson, S., Dollinger, R., Kapteyn, H. C., and Murnane, M. M. (2001), “High-Efficiency, Single-Stage 7-kHz High-Average-Power Ultrafast Laser System,” Optics Letters 26, 465.CrossRefGoogle ScholarPubMed
Backus, S., Durfee, C. G., Murnane, M. M., and Kapteyn, H. C., “High Power Ultrafast Lasers,” Review of Scientific Instruments 69, 1207 (1998).CrossRefGoogle Scholar
Bahk, S. W., Rousseau, P., Planchon, T. A., Chvykov, V., Kalintchenko, G., Maksimchuk, A., Mourou, G. A. and Yanovsky, V. (2004), “Generation and Characterization of the Highest Laser Intensities (),” Optics Letters 29, 2837.Google Scholar
Banks, P. S., Perry, M. D., Yanovsky, V., Fochs, S. N., Stuart, B. C. and Zweiback, J. (2000), “Novel All-Reflective Stretcher for Chirped-Pulse Amplification of Ultrashort Pulses,” IEEE Journal of Quantum Electronics 36, 268.CrossRefGoogle Scholar
Barty, C. P. J., Gordon, C. L. and Lemoff, B. E. (1994), “Multiterawatt 30-Fs Ti-Sapphire Laser System,” Optics Letters 19, 1442.CrossRefGoogle ScholarPubMed
Barty, C. P. J., Guo, T., LeBlanc, C., Raksi, F., RosePetruck, C., Squier, J., Wilson, K. R., Yakovlev, V. V. and Yamakawa, K. (1996), “Generation of 18-Fs, Multiterawatt Pulses by Regenerative Pulse Shaping and Chirped-Pulse Amplification,” Optics Letters 21, 668.CrossRefGoogle ScholarPubMed
Bonlie, J. D., Patterson, F., Price, D., White, B. and Springer, P. (2000), “Production of from a Large-Aperture Ti: Sapphire Laser System,” Applied Physics B-Lasers and Optics 70, S155.CrossRefGoogle Scholar
Brabec, T., Spielmann, C., Curley, P. F. and Krausz, F. (1992), “Kerr Lens Mode-Locking,” Optics Letters 17, 1292.CrossRefGoogle ScholarPubMed
Caird, J. A., Ramponi, A. J. and Staver, P. R. (1991), “Quantum Efficiency and Excited-State Relaxation Dynamics in Neodymium-Doped Phosphate Laser Glasses,” Journal of the Optical Society of America B-Optical Physics 8, 1391.CrossRefGoogle Scholar
Cerullo, G. and De Silvestri, S. (2003), “Ultrafast Optical Parametric Amplifiers,” Review of Scientific Instruments 74, 1.CrossRefGoogle Scholar
Chambaret, J. P., LeBlanc, C., Cheriaux, G., Curley, P., Darpentigny, G., Rousseau, P., Hamoniaux, G., Antonetti, A. and Salin, F. (1996), “Generation of 25-TW, 32-fs Pulses at 10 Hz,” Optics Letters 21, 1921.CrossRefGoogle ScholarPubMed
Chanteloup, J. C., Druon, F., Nantel, M., Maksimchuk, A. and Mourou, G. (1998), “Single-Shot Wave-Front Measurements of High-Intensity Ultrashort Laser Pulses with a Three-Wave Interferometer,” Optics Letters 23, 621.CrossRefGoogle ScholarPubMed
Cheriaux, G., Rousseau, P., Salin, F., Chambaret, J. P., Walker, B., and Dimauro, L. F. (1996), “Aberration-Free Stretcher Design for Ultrashort-Pulse Amplification,” Optics Letters 21, 414.CrossRefGoogle ScholarPubMed
Corkum, P. B. (1985), “Amplification of Picosecond 10- Pulses in Multiatmosphere -Lasers,” IEEE Journal of Quantum Electronics 21, 216.CrossRefGoogle Scholar
Cundiff, S. T. and Ye, J. (2005), “Phase Stabilization of Mode-Locked Lasers,” Journal of Modern Optics 52, 201.CrossRefGoogle Scholar
Cundiff, S. T., Krausz, F. and Fuji, T. (2008), “Carrier-Envelope Phase of Ultrashort Pulses,” in Strong Field Laser Physics, Brabec, T., ed. (New York: Springer), p. 61.CrossRefGoogle Scholar
Danson, C. N., Brummitt, P. A., Clarke, R. J., Collier, J. L., Fell, B., Frackiewicz, A., Hancock, S., Hawkes, S., Hernandez-Gomez, C., Holligan, P., Hutchinson, M. H. R., Kidd, A., Lester, W. J., Musgrave, I. O., Neely, D., Neville, D. R., Norreys, P. A., Pepler, D. A., Reason, C. J., Shaikh, W., Winstone, T. B., Wyatt, R. W. W. and Wyborn, B. E. (2004), “Vulcan Petawatt: An Ultra-High-Intensity Interaction Facility,” Nuclear Fusion 44, S239.CrossRefGoogle Scholar
Ditmire, T. and Perry, M. D. (1993), “Terawatt Cr- Laser System,” Optics Letters 18, 426.Google Scholar
Divall, E. J., Edwards, C. B., Hirst, G. J., Hooker, C. J., Kidd, A. K., Lister, J. M. D., Mathumo, R., Ross, I. N., Shaw, M. J., Toner, W. T., Visser, A. P. and Wyborn, B. E. (1996), “Titania: A Ultraviolet Laser,” Journal of Modern Optics 43, 1025.Google Scholar
Dubietis, A., Jonusauskas, G. and Piskarskas, A. (1992), “Powerful Femtosecond Pulse Generation by Chirped and Stretched Pulse Parametric Amplification in BBO Crystal,” Optics Communications 88, 437.CrossRefGoogle Scholar
Eimerl, D., Davis, L., Velsko, S., Graham, E. K. and Zalkin, A. (1987), “Optical, Mechanical, and Thermal-Properties of Barium Borate,” Journal of Applied Physics 62, 1968.CrossRefGoogle Scholar
Ell, R., Morgner, U., Kartner, F. X., Fujimoto, J. G., Ippen, E. P., Scheuer, V., Angelow, G., Tschudi, T., Lederer, M. J., Boiko, A. and Luther-Davies, B. (2001), “Generation of 5-Fs Pulses and Octave-Spanning Spectra Directly from a Ti:Sapphire Laser,” Optics Letters 26, 373.CrossRefGoogle ScholarPubMed
Fernmann, M. E. and Hartl, I. (2009), “Ultrafast Fiber Laser Technology,” IEEE Journal of Selected Topics in Quantum Electronics 15, 191.CrossRefGoogle Scholar
Fernmann, M. E. and Hartl, I. (2013), “Ultrafast Fibre Lasers,” Nature Photonics 7, 868.CrossRefGoogle Scholar
Fittinghoff, D. N., Walker, B. C., Squier, J. A., Toth, C. S., Rose-Petruck, C. and Barty, C. P. J. (1998), “Dispersion Considerations in Ultrafast CPA Systems,” IEEE Journal of Selected Topics in Quantum Electronics 4, 430.CrossRefGoogle Scholar
Frantz, L. M. and Nodvik, J. S. (1963), “Theory of Pulse Propagation in a Laser Amplifier,” Journal of Applied Physics 34, 2346.CrossRefGoogle Scholar
Fu, Q., Seier, F., Gayen, S. K. and Alfano, R. R. (1997), “High-Average-Power Kilohertz-Repetition-Rate Sub-100-Fs Ti:Sapphire Amplifier System,” Optics Letters 22, 712.CrossRefGoogle ScholarPubMed
Gaul, E. W., Martinez, M., Blakeney, J., Jochmann, A., Ringuette, M., Hammond, D., Borger, T., Escamilla, R., Douglas, S., Henderson, W., Dyer, G., Erlandson, A., Cross, R., Caird, J., Ebbers, C. and Ditmire, T. (2010), “Demonstration of a 1.1 Petawatt Laser Based on a Hybrid Optical Parametric Chirped Pulse Amplification/Mixed Nd:Glass Amplifier,” Applied Optics 49, 1676.CrossRefGoogle ScholarPubMed
Haberberger, D., Tochitsky, S. and Joshi, C. (2010), “Fifteen Terawatt Picosecond Laser System,” Optics Express 18, 17865.CrossRefGoogle ScholarPubMed
Hardy, J. W. (1978), “Active Optics: A New Technology for the Control of Light,” Proceedings of IEEE 66, 651.CrossRefGoogle Scholar
Hariharan, A., Fermann, M. E., Stock, M. L., Harter, D. J. and Squier, J. (1996), “Alexandrite-Pumped Alexandrite Regenerative Amplifier for Femtosecond Pulse Amplification,” Optics Letters 21, 128.CrossRefGoogle ScholarPubMed
Hunt, J. T., Glaze, J. A., Simmons, W. W. and Renard, P. A. (1978), “Suppression of Self-Focusing through Low-Pass Spatial-Filtering and Relay Imaging,” Applied Optics 17, 2053.CrossRefGoogle ScholarPubMed
Jain, S. C., Rampal, V. V. and Joshi, U. C. (1992), “Mode-Locked Lasers,” Optical Engineering 31, 1287.CrossRefGoogle Scholar
Jones, D. J., Diddams, S. A., Ranka, J. K., Stentz, A., Windeler, R. S., Hall, J. L. and Cundiff, S. T. (2000), “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288, 635.CrossRefGoogle ScholarPubMed
Jullien, A., Durfee, C. G., Trisorio, A., Canova, L., Rousseau, J. P., Mercier, B., Antonucci, L., Cheriaux, G., Albert, O. and Lopez-Martens, R. (2009), “Nonlinear Spectral Cleaning of Few-Cycle Pulses via Cross-Polarized Wave (XPW) Generation,” Applied Physics B-Lasers and Optics 96, 293.CrossRefGoogle Scholar
Jung, I. D., Kartner, F. X., Matuschek, N., Sutter, D. H., Morier Genoud, F., Zhang, G., Keller, U., Scheuer, V., Tilsch, M. and Tschudi, T. (1997), “Self-Starting 6.5-fs Pulses from a Ti:Sapphire Laser,” Optics Letters 22, 1009.CrossRefGoogle ScholarPubMed
Kane, S. and Squier, J. (1997), “Fourth-Order-Dispersion Limitations of Aberration-Free Chirped-Pulse Amplification Systems,” Journal of the Optical Society of America B-Optical Physics 14, 1237.CrossRefGoogle Scholar
Keller, U., Weingarten, K. J., Kartner, F. X., Kopf, D., Braun, B., Jung, I. D., Fluck, R., Honninger, C., Matuschek, N. and der Au, J. A. (1996), “Semiconductor Saturable Absorber Mirrors (Sesam’s) for Femtosecond to Nanosecond Pulse Generation in Solid-State Lasers,” IEEE Journal of Selected Topics in Quantum Electronics 2, 435.CrossRefGoogle Scholar
Keppler, S., Bodefeld, R., Hornung, M., Savert, A., Hein, J. and Kaluza, M. C. (2011), “Prepulse Suppression in a Multi-10-TW Diode-Pumped Yb:Glass Laser,” Applied Physics B-Lasers and Optics 104, 11.CrossRefGoogle Scholar
Klingebiel, S., Wandt, C., Skrobol, C., Ahmad, I., Trushin, S. A., Major, Z., Krausz, F. and Karsch, S. (2011), “High Energy Picosecond Yb:Yag Cpa System at 10 Hz Repetition Rate for Pumping Optical Parametric Amplifiers,” Optics Express 19, 5357.CrossRefGoogle Scholar
Kmetec, J. D., Macklin, J. J. and Young, J. F. (1991), “0.5-TW, 125-Fs Ti-Sapphire Laser,” Optics Letters 16, 1001.CrossRefGoogle ScholarPubMed
Leblanc, C., Grillon, G., Chambaret, J. P., Migus, A. and Antonetti, A. (1993), “Compact and Efficient Multipass Ti-Sapphire System for Femtosecond Chirped-Pulse Amplification at the Terawatt Level,” Optics Letters 18, 140.CrossRefGoogle Scholar
Lemoff, B. E. and Barty, C. P. J. (1993), “Quintic-Phase-Limited, Spatially Uniform Expansion and Recompression of Ultrashort Optical Pulses,” Optics Letters 18, 1651.CrossRefGoogle ScholarPubMed
Limpert, J., Hadrich, S., Rothhardt, J., Krebs, M., Eidam, T., Schreiber, T. and Tunnermann, A. (2011), “Ultrafast Fiber Lasers for Strong-Field Physics Experiments,” Laser & Photonics Reviews 5, 634.CrossRefGoogle Scholar
Lureau, F., Chalus, O., Matras, G., Laux, S., Radier, C., Casagrande, O., Derycke, C., Ricaud, S., Rey, G., Morbieu, T., Pellegrine, A., Boudjemaa, L., Simon-Boisson, C., Baleanu, A., Banici, R., Gradinariu, A., Caldararu, C., Ghenuche, P., Naziru, A., Caldaruru, C., Ghenuche, P., Naziru, A., Kolliopoulos, S., Neagu, L., De Boisdeffre, B., Ursescu, D. and Dancus, I. (2020), in Solid State Lasers XXIX: Technology and Devices, Proceedings of the SPIE Vol. 11259, 112591J.Google Scholar
Maine, P., Strickland, D., Bado, P., Pessot, M. and Mourou, G. (1988), “Generation of Ultrahigh Peak Power Pulses by Chirped Pulse Amplification,” IEEE Journal of Quantum Electronics 24, 398.CrossRefGoogle Scholar
Martinez, O. E. (1987), “3000 Times Grating Compressor with Positive Group-Velocity Dispersion: Application to Fiber Compensation in 1.3-1.6 Mu-M Region,” IEEE Journal of Quantum Electronics 23, 59.CrossRefGoogle Scholar
Moulton, P. F. (1986), “Spectroscopic and Laser Characteristics of Ti-,” Journal of the Optical Society of America B-Optical Physics 3, 125.CrossRefGoogle Scholar
Murray, J. E. and Lowdermilk, W. H. (1980), “Nd - YAG Regenerative Amplifier,” Journal of Applied Physics 51, 3548.CrossRefGoogle Scholar
Nees, J., Biswal, S., Druon, F., Faure, J., Nantel, M., Mourou, G. A., Nishimura, A., Takuma, H., Itatani, J., Chanteloup, J. C. and Honninger, C. (1998), “Ensuring Compactness, Reliability, and Scalability for the Next Generation of High-Field Lasers,” IEEE Journal of Selected Topics on Quantum Electronics 4, 376.CrossRefGoogle Scholar
Noom, D. W. E., Witte, S., Morgenweg, J., Altmann, R. K. and Eikema, K. S. E. (2013), “High-Energy, High-Repetition-Rate Picosecond Pulses from a Quasi-CW Diode-Pumped Nd:Yag System,” Optics Letters 38, 3021.CrossRefGoogle ScholarPubMed
Norris, T. B. (1992), “Femtosecond Pulse Amplification at 250 kHz with a Ti-Sapphire Regenerative Amplifier and Application to Continuum Generation,” Optics Letters 17, 1009.CrossRefGoogle ScholarPubMed
Ortac, B., Limpert, J. and Tunnermann, A. (2007), “High-Energy Femtosecond Yb-Doped Fiber Laser Operating in the Anomalous Dispersion Regime,” Optics Letters 32, 2149.CrossRefGoogle ScholarPubMed
Payne, S. A., Smith, L. K., Beach, R. J., Chai, B. H. T., Tassano, J. H., Deloach, L. D., Kway, W. L., Solarz, R. W. and Krupke, W. F. (1994), “Properties of Crystals for Laser Operation,” Applied Optics 33, 5526.CrossRefGoogle ScholarPubMed
Perry, M. D., Boyd, R. D., Britten, J. A., Decker, D., Shore, B. W., Shannon, C. and Shults, E. (1995), “High-Efficiency Multilayer Dielectric Diffraction Gratings,” Optics Letters 20, 940.CrossRefGoogle ScholarPubMed
Perry, M. D., Landen, O. L., Weston, J. and Ettlebrick, R. (1989), “Design and Performance of a High-Power, Synchronized Nd-YAG Dye Laser System,” Optics Letters 14, 42.CrossRefGoogle ScholarPubMed
Perry, M. D., Ditmire, T. and Stuart, B. C. (1994), “Self-Phase Modulation in Chirped Pulse Amplification,” Optics Letters 19, 2149.CrossRefGoogle ScholarPubMed
Perry, M. D., Pennington, D., Stuart, B. C., Tietbohl, G., Britten, J. A., Brown, C., Herman, S., Golick, B., Kartz, M., Miller, J., Powell, H. T., Vergino, M. and Yanovsky, V. (1999), “Petawatt Laser Pulses,” Optics Letters 24, 160.CrossRefGoogle ScholarPubMed
Pessot, M., Squier, J., Bado, P., Mourou, G. and Harter, D. J. (1989), “Chirped Pulse Amplification of 300-Fs Pulses in an Alexandrite Regenerative Amplifier,” IEEE Journal of Quantum Electronics 25, 61.CrossRefGoogle Scholar
Pittman, M., Ferre, S., Rousseau, J. P., Notebaert, L., Chambaret, J. P. and Cheriaux, G. (2002), “Design and Characterization of a Near-Diffraction-Limited Femtosecond 100-TW 10-Hz High-Intensity Laser System,” Applied Physics B-Lasers and Optics 74, 529.CrossRefGoogle Scholar
Planchon, T. A., Rousseau, J. P., Burgy, F., Cheriaux, G. and Chambaret, J. P. (2005), “Adaptive Wavefront Correction on a 100-TW/10-Hz Chirped Pulse Amplification Laser and Effect of Residual Wavefront on Beam Propagation,” Optics Communications 252, 222.CrossRefGoogle Scholar
Ple, F., Pittman, M., Jamelot, G. and Chambaret, J. P. (2007), “Design and Demonstration of a High-Energy Booster Amplifier for a High-Repetition Rate Petawatt Class Laser System,” Optics Letters 32, 238.CrossRefGoogle ScholarPubMed
Powell, H. T., Erlandson, A. C., Jancaitis, K. S. and Murray, J. E. (1990), “Flashlamp Pumping of Nd-Glass Disk Amplifiers,” in High-Power Solid State Lasers and Applications, SPIE Proceedings Vol. 1277.CrossRefGoogle Scholar
Qiao, J., Kalb, A., Nguyen, T., Bunkenburg, J., Canning, D. and Kelly, J. H. (2008), “Demonstration of Large-Aperture Tiled-Grating Compressors for High-Energy, Petawatt-Class, Chirped-Pulse Amplification Systems,” Optics Letters 33, 1684.CrossRefGoogle ScholarPubMed
Ricci, A., Jullien, A., Rousseau, J. P., Liu, Y., Houard, A., Ramirez, P., Papadopoulos, D., Pellegrina, A., Georges, P., Druon, F., Forget, N. and Lopez-Martens, R. (2013), “Energy-Scalable Temporal Cleaning Device for Femtosecond Laser Pulses Based on Cross-Polarized Wave Generation,” Review of Scientific Instruments 84, 043106.CrossRefGoogle ScholarPubMed
Rimmer, M. P. and Wyant, J. C. (1975) “Evaluation of Large Aberrations Using a Lateral-Shear Interferometer Having Variable Shear,” Applied Optics 14, 142.CrossRefGoogle ScholarPubMed
Ross, I. N., Collier, J. L., Matousek, P., Danson, C. N., Neely, D., Allot, R. M., Pepler, D. A., Hernandez-Gomez, C. and Osvay, K. (2000), “Generation of Terawatt Pulses by Use of Optical Parametric Chirped Pulse Amplification,” Applied Optics 39, 2422.CrossRefGoogle ScholarPubMed
Ross, I. N., Damerell, A. R., Divall, E. J., Evans, J., Hirst, G. J., Hooker, C. J., Houliston, J. R., Key, M. H., Lister, J. M. D., Osvay, K. and Shaw, M. J. (1994), “A 1 TW KrF Laser Using Chirped Pulse Amplification,” Optics Communications 109, 288.CrossRefGoogle Scholar
Ross, I. N., Matousek, P., Towrie, M., Langley, A. J. and Collier, J. L. (1997a), “The Prospects for Ultrashort Pulse Duration and Ultrahigh Intensity Using Optical Parametric Chirped Pulse Amplifiers,” Optics Communications 144, 125.CrossRefGoogle Scholar
Ross, I. N., Trentelman, M. and Danson, C. N. (1997b), “Optimization of a Chirped-Pulse Amplification Nd:Glass Laser,” Applied Optics 36, 9348.CrossRefGoogle ScholarPubMed
Rouyer, C., Mazataud, E., Allais, I., Pierre, A., Seznec, S., Sauteret, C., Mourou, G. and Migus, A. (1993), “Generation of 50-TW Femtosecond Pulses in a Ti-Sapphire/Nd-Glass Chain,” Optics Letters 18, 214.CrossRefGoogle Scholar
Rudd, J. V., Korn, G., Kane, S., Squier, J., Mourou, G. and Bado, P. (1993), “Chirped-Pulse Amplification of 55-Fs Pulses at a 1-kHz Repetition Rate in a Ti- Regenerative Amplifier,” Optics Letters 18, 2044.CrossRefGoogle Scholar
Saraceno, C. J., Schriber, C., Mangold, M., Hoffmann, M., Heckl, O. H., Baer, C. R. E., Golling, M., Sudmeyer, T. and Keller, U. (2012), “Sesams for High-Power Oscillators: Design Guidelines and Damage Thresholds,” IEEE Journal of Selected Topics in Quantum Electronics 18, 29.CrossRefGoogle Scholar
Sasnett, M. W. (1989), “Propagation of Multimode Laser Beams – Factor,” in The Physics and Technology of Laser Resonators, ed. D. R. Hall, and Jackson, P. E. (Bristol: Adam Hilger), p. 132.Google Scholar
Schafer, F. P., Schmidt, W. and Volze, J. (1966), “Organic Dye Solution Laser,” Applied Physics Letters 9, 306.CrossRefGoogle Scholar
Schneider, W., Ryabov, A., Lombosi, C., Metzger, T., Major, Z., Fulop, J. A. and Baum, P. (2014), “800-Fs, 330- Pulses from a 100-W Regenerative Yb:Yag Thin-Disk Amplifier at 300 kHz and THz Generation In Linbo3,” Optics Letters 39, 6604.CrossRefGoogle Scholar
Shore, B. W., Perry, M. D., Britten, J. A., Boyd, R. D., Feit, M. D., Nguyen, H. T., Chow, R., Loomis, G. E. and Li, L. F. (1997), “Design of High-Efficiency Dielectric Reflection Gratings,” Journal of the Optical Society of America A-Optics Image Science and Vision 14, 1124.CrossRefGoogle Scholar
Spielmann, C., Curley, P. F., Brabec, T. and Krausz, F. (1994), “Ultrabroadband Femtosecond Lasers,” IEEE Journal of Quantum Electronics 30, 1100.CrossRefGoogle Scholar
Strickland, D. and Mourou, G. (1985), “Compression of Amplified Chirped Optical Pulses,” Optics Communications 55, 447.CrossRefGoogle Scholar
Sullivan, A., Bonlie, J., Price, D. F. and White, W. E. (1996), “1.1-J, 120-fs Laser System Based on Nd:Glass-Pumped Ti:Sapphire,” Optics Letters 21, 603.CrossRefGoogle ScholarPubMed
Tavella, F., Schmid, K., Ishii, N., Marcinkevicius, A., Veisz, L. and Krausz, F. (2005), “High-Dynamic Range Pulse-Contrast Measurements of a Broadband Optical Parametric Chirped-Pulse Amplifier,” Applied Physics B-Lasers and Optics 81, 753.CrossRefGoogle Scholar
Tiwari, G., Gaul, E., Martinez, M., Dyer, G., Gordon, J., Spinks, M., Toncian, T., Bowers, B., Jiao, X., Kupfer, R., Lisi, L., McCary, E., Roycroft, R., Yandow, A., Glenn, G. D., Donovan, M., Ditmire, T. and Hegelich, B. M. (2019), “Beam Distortion Effects upon Focusing an Ultrashort Petawatt Laser Pulse to Greater Than ,” Optics Letters 44, 2764.CrossRefGoogle Scholar
Tochitsky, S. Y., Pigeon, J. J., Haberberger, D. J., Gong, C. and Joshi, C. (2012), “Amplification of Multi-Gigawatt 3 Ps Pulses in an Atmospheric Laser Using AC Stark Effect,” Optics Express 20, 13762.CrossRefGoogle Scholar
Tournois, P. (1997), Optics Communications 140, 245.CrossRefGoogle Scholar
Treacy, E. B. (1969), “Optical Pulse Compression with Diffraction Gratings,” IEEE Journal of Quantum Electronics QE 5, 454.CrossRefGoogle Scholar
Wall, K. F. and Sanchez, A. (1990), “Titanium Sapphire Lasers,” The Lincoln Laboratory Journal 3, 447.Google Scholar
Walling, J. C., Jenssen, H. P., Morris, R. C., Odell, E. W. and Peterson, O. G. (1979), “Tunable-Laser Performance in -,” Optics Letters 4, 182.CrossRefGoogle Scholar
White, W. E., Hunter, J. R., Vanwoerkom, L., Ditmire, T. and Perry, M. D. (1992), “120-fs Terawatt Ti-/Cr- Laser System,” Optics Letters 17, 1067.CrossRefGoogle Scholar
Yamakawa, K. and Barty, C. P. J. (2000), “Ultrafast, Ultrahigh-Peak, and High-Average Power Ti : Sapphire Laser System and Its Applications,” IEEE Journal of Selected Topics in Quantum Electronics 6, 658.CrossRefGoogle Scholar
Yamanaka, C., Kato, Y., Izawa, Y., Yoshida, K., Yamanaka, T., Sasaki, T., Nakatsuka, M., Mochizuki, T., Kuroda, J. and Nakai, S. (1981), “Nd-Doped Phosphate-Glass Laser Systems for Laser-Fusion Research,” IEEE Journal of Quantum Electronics 17, 1639.CrossRefGoogle Scholar
Zhang, M., Kelleher, E. J. R., Popov, S. V. and Taylor, J. R. (2014), “Ultrafast Fibre Laser Sources: Examples of Recent Developments,” Optical Fiber Technology 20, 666.CrossRefGoogle Scholar
Zheng, J. and Zacharias, H. (2009), “Non-Collinear Optical Parametric Chirped-Pulse Amplifier for Few-Cycle Pulses,” Applied Physics B-Lasers and Optics 97, 765.CrossRefGoogle Scholar
Bardsley, J. N., Penetrante, B. M. and Mittleman, M. H. (1989), “Relativistic Dynamics of Electrons in Intense Laser Fields,” Physical Review A 40, 3823.CrossRefGoogle ScholarPubMed
Bituk, D. R. and Fedorov, M. V. (1999), “Relativistic Ponderomotive Forces,” Journal of Experimental and Theoretical Physics 89, 640.CrossRefGoogle Scholar
Brown, L. S. and Kibble, T. W. B. (1964), “Interaction of Intense Laser Beams with Electrons,” Physical Review A-General Physics 133, A705.CrossRefGoogle Scholar
Bucksbaum, P. H., Bashkansky, M. and McIlrath, T. J. (1987), “Scattering of Electrons by Intense Coherent Light,” Physical Review Letters 58, 349.CrossRefGoogle ScholarPubMed
Castillo-Herrera, C. I. and Johnston, T. W. (1993), “Incoherent Harmonic Emission from Strong Electromagnetic-Waves in Plasmas,” IEEE Transactions on Plasma Science 21, 125.CrossRefGoogle Scholar
Chen, S., Maksimchuk, A. and Umstadter, D. (1998), “Experimental Observation of Relativistic Nonlinear Thomson Scattering,” Nature 396, 653.CrossRefGoogle Scholar
Cicchitelli, L., Hora, H. and Postle, R. (1990), “Longitudinal-Field Components for Laser-Beams in Vacuum,” Physical Review A 41, 3727.CrossRefGoogle ScholarPubMed
Davis, L. W. (1979), “Theory of Electromagnetic Beams,” Physical Review A 19, 1177.CrossRefGoogle Scholar
Di Piazza, A. (2008), “Exact Solution of the Landau-Lifshitz Equation in a Plane Wave,” Letters on Mathematical Physics 83, 305.CrossRefGoogle Scholar
Eberly, J. H. and Sleeper, A. (1968), “Trajectory and Mass Shift of a Classical Electron in a Radiation Pulse,” Physical Review 176, 1570.CrossRefGoogle Scholar
Esarey, E., Ride, S. K. and Sprangle, P. (1993), “Nonlinear Thomson Scattering of Intense Laser-Pulses from Beams and Plasmas,” Physical Review E 48, 3003.CrossRefGoogle ScholarPubMed
Gunn, J. E. and Ostriker, J. P. (1971), “Motion and Radiation of Charged Particles in Strong Electromagnetic Waves: 1. Motion in Plane and Spherical Waves,” Astrophysical Journal, 165, 523.CrossRefGoogle Scholar
Hartemann, F. V. (1998), “High-Intensity Scattering Processes of Relativistic Electrons in Vacuum,” Physics of Plasmas 5, 2037.CrossRefGoogle Scholar
Hartemann, F. V., Fochs, S. N., Lesage, G. P., Luhmann, N. C., Woodworth, J. G., Perry, M. D., Chen, Y. J. and Kerman, A. K. (1995), “Nonlinear Ponderomotive Scattering of Relativistic Electrons by an Intense Laser Field at Focus,” Physical Review E 51, 4833.CrossRefGoogle Scholar
Holstein, B. R. (1999), “Strong Field Pair Production,” American Journal of Physics 67, 499.CrossRefGoogle Scholar
Kaplan, A. E. and Pokrovsky, A. L. (2005), “Fully Relativistic Theory of the Ponderomotive Force in an Ultraintense Standing Wave,” Physical Review Letters 95, 053601.CrossRefGoogle Scholar
Kaplan, A. E. and Pokrovsky, A. L. (2005), “Fully Relativistic Theory of the Ponderomotive Force in an Ultraintense Standing Wave,” Physical Review Letters 95, 053601.CrossRefGoogle Scholar
Kibble, T. (1966), “Mutual Refraction of Electrons and Photons,” Physical Review 150, 1060.CrossRefGoogle Scholar
Maltsev, A. and Ditmire, T. (2003), “Above Threshold Ionization in Tightly Focused, Strongly Relativistic Laser Fields,” Physical Review Letters 90, 053002.CrossRefGoogle ScholarPubMed
Melissinos, A. C. (2008), “Tests of QED with Intense Lasers,” in Strong Field Laser Physics, Brabec, T., ed. (New York: Springer), p. 497.CrossRefGoogle Scholar
Meyerhofer, D. D. (1997), “High-Intensity-Laser-Electron Scattering,” IEEE Journal of Quantum Electronics 33, 1935.CrossRefGoogle Scholar
Monot, P., Auguste, T., Lompre, L. A., Mainfray, G. and Manus, C. (1993), “Energy Measurements of Electrons Submitted to an Ultrastrong Laser Field,” Physical Review Letters 70, 1232.CrossRefGoogle Scholar
Quesnel, B. and Mora, P. (1998), “Theory and Simulation of the Interaction of Ultraintense Laser Pulses with Electrons in Vacuum,” Physical Review E 58, 3719.CrossRefGoogle Scholar
Sarachik, E. S. and Schappert, G. T. (1970), “Classical Theory of Scattering of Intense Laser Radiation by Free Electrons,” Physical Review D 1, 2738.CrossRefGoogle Scholar
Schmidt, G. and Wilcox, T. (1973), “Relativistic Particle Motion in Nonuniform Electromagnetic Waves,” Physical Review Letters 31, 1380.CrossRefGoogle Scholar
Schwinger, J. (1951), “On Gauge Invariance and Vacuum Polarization,” Physical Review 82, 664.CrossRefGoogle Scholar
Startsev, E. A. and McKinstrie, C. J. (1997), “Multiple Scale Derivation of the Relativistic Ponderomotive Force,” Physical Review E 55, 7527.CrossRefGoogle Scholar
Agostini, P. and DiMauro, L. F. (2008), “Atoms in High Intensity Mid-Infrared Pulses,” Contemporary Physics 49, 179.CrossRefGoogle Scholar
Agostini, P., Fabre, F., Mainfray, G., Petite, G. and Rahman, N. K. (1979), “Free-Free Transitions Following 6-Photon Ionization of Xenon Atoms,” Physical Review Letters 42, 1127.CrossRefGoogle Scholar
Ammosov, M. V., Delone, N. B. and Krainov, V. P. (1986), “Tunnel Ionization of Complex Atoms and Atomic Ions in a Varying Electromagnetic-Field,” Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki 91, 2008 [Soviet Physics – JETP 64, 1191 (1986)].Google Scholar
Augst, S., Meyerhofer, D. D., Strickland, D. and Chin, S. L. (1991), “Laser Ionization of Noble-Gases by Coulomb-Barrier Suppression,” Journal of the Optical Society of America B-Optical Physics 8, 858.CrossRefGoogle Scholar
Bauer, J. H. (2008), “Simple Proof of Gauge Invariance for the S-Matrix Element of Strong-Field Photoionization,” Physica Scripta 77, 015303.CrossRefGoogle Scholar
Bebb, H. B. and Gold, A. (1966), “Multiphoton Ionization of Hydrogen and Rare-Gas Atoms,” Physical Review 143, 1.CrossRefGoogle Scholar
Becker, A. and Faisal, F. H. M. (1999), “Interplay of Electron Correlation and Intense Field Dynamics in the Double Ionization of Helium,” Physical Review A 59, R1742.CrossRefGoogle Scholar
Becker, A. and Faisal, F. H. M. (2005), “Intense-Field Many-Body S-Matrix Theory,” Journal of Physics B-Atomic Molecular and Optical Physics 38, R1.CrossRefGoogle Scholar
Becker, A., Plaja, L., Moreno, P., Nurhuda, M. and Faisal, F. H. M. (2001), “Total Ionization Rates and Ion Yields of Atoms at Nonperturbatve Laser Intensities,” Physical Review A 64, 023408.CrossRefGoogle Scholar
Becker, A., Dorner, R. and Moshammer, R. (2005), “Multiple Fragmentation of Atoms in Femtosecond Laser Pulses,” Journal of Physics B – Atomic Molecular and Optical Physics 38, S753.CrossRefGoogle Scholar
Becker, W. and Rottke, H. (2008), “Many-Electron Strong-Field Physics,” Contemporary Physics 49, 199.CrossRefGoogle Scholar
Becker, W., Lohr, A. and Kleber, M. (1994), “Effects of Rescattering on Above-Threshold Ionization,” Journal of Physics B – Atomic Molecular and Optical Physics 27, L325.CrossRefGoogle Scholar
Becker, W., Grasbon, F., Koplod, R., Milosevic, D. B., Paulus, G. G. and Walther, H. (2002), “Above-Threshold Ionization: From Classical Features to Quantum Effects,” in Progress in Optics Volume XLVIII (Amsterdam: Elsevier Science Publishers), p. 35.Google Scholar
Bisgaard, C. Z. and Madsen, L. B. (2004), “Tunneling Ionization of Atoms,” American Journal of Physics 72, 249.CrossRefGoogle Scholar
Brabec, T., Ivanov, M. Y. and Corkum, P. B. (1996), “Coulomb Focusing in Intense Field Atomic Processes,” Physical Review A 54, R2551.CrossRefGoogle ScholarPubMed
Brandi, H. S., Davidovich, L. and Zagury, N. (1981), “High-Intensity Approximations Applied to Multi-Photon Ionization,” Physical Review A 24, 2044.CrossRefGoogle Scholar
Burnett, K., Reed, V. C. and Knight, P. L. (1993), “Atoms in Ultra-Intense Laser Fields,” Journal of Physics B – Atomic Molecular and Optical Physics 26, 561.CrossRefGoogle Scholar
Burnett, N. H. and Corkum, P. B. (1989), “Cold-Plasma Production for Recombination Extreme-Ultraviolet Lasers by Optical-Field-Induced Ionization,” Journal of the Optical Society of America B – Optical Physics 6, 1195.CrossRefGoogle Scholar
Chang, B., Bolton, P. R. and Fittinghoff, D. N. (1993), “Closed-Form Solutions for the Production of Ions in the Collisionless Ionization of Gases by Intense Lasers,” Physical Review A 47, 4193.CrossRefGoogle ScholarPubMed
Chen, Z. J., Le, A. T., Morishita, T. and Lin, C. D. (2009), “Quantitative Rescattering Theory for Laser-Induced High-Energy Plateau Photoelectron Spectra,” Physical Review A 79, 033409.CrossRefGoogle Scholar
Chirila, C. C. and Potvliege, R. M. (2005), “Low-Order Above-Threshold Ionization in Intense Few-Cycle Laser Pulses,” Physical Review A 71, 021402.CrossRefGoogle Scholar
Colosimo, P., Doumy, G., Blaga, C. I., Wheeler, J., Hauri, C., Catoire, F., Tate, J., Chirla, R., March, A. M., Paulus, G. G., Muller, H. G., Agostini, P. and Dimauro, L. (2008), “Scaling Strong-Field Interactions Towards the Classical Limit,” Nature Physics 4, 386.CrossRefGoogle Scholar
Corkum, P. B., Burnett, N. H. and Brunel, F. (1989), “Above-Threshold Ionization in the Long-Wavelength Limit,” Physical Review Letters 62, 1259.CrossRefGoogle ScholarPubMed
Corkum, P. B., Burnett, N. H. and Brunel, F. (1992), “Multiphoton Ionization in Large Ponderomotive Potentials,” in Atoms in Intense Laser Fields, Gavrila, M., ed. (Boston: Academic Press), p. 109.Google Scholar
Dammasch, M., Dorr, M., Eichmann, U., Lenz, E. and Sandner, W. (2001), “Relativistic Laser-Field-Drift Suppression of Nonsequential Multiple Ionization,” Physical Review A 64, 061402.CrossRefGoogle Scholar
Dörner, R., Th. Weber, Weckenbrock, M., Staudte, A., Hattass, M. and Schmidt-Böcking, H. (2002), “Multiple Ionization in Strong Laser Fields,” in Progress in Optics Volume XLVIII (Amsterdam: Elsevier Science Publishers).Google Scholar
Eberly, J. H., Javanainen, J. and Rzazewski, K. (1991), “Above-Threshold Ionization,” Physics Reports – Review Section of Physics Letters 204, 331.Google Scholar
Faisal, F. H. M. (1973), “Collisions of Electrons with Laser Photons in a Background Potential,” Journal of Physics B 6, L312.CrossRefGoogle Scholar
Fittinghoff, D. N., Bolton, P. R., Chang, B. and Kulander, K. C. (1992), “Observation of Nonsequential Double Ionization of Helium with Optical Tunneling,” Physical Review Letters 69, 2642.CrossRefGoogle ScholarPubMed
Freeman, R. R. and Bucksbaum, P. H. (1991), “Investigations of Above-Threshold Ionization Using Subpicosecond Laser-Pulses,” Journal of Physics B – Atomic Molecular and Optical Physics 24, 325.CrossRefGoogle Scholar
Freeman, R. R., Bucksbaum, P. H., Cooke, W. E., Gibson, G., McIlrath, T. J. and Van Woerkom, L. D. (1992), “Photoionization with Ultrashort Laser Pulses,” in Atoms in Intense Laser Fields, Gavrila, M., ed. (Boston: Academic Press), p. 43.Google Scholar
Gavrila, M. (2002), “Atomic Stabilization in Superintense Laser Fields,” Journal of Physics B – Atomic Molecular and Optical Physics 35, R147.CrossRefGoogle Scholar
Grasbon, F., Paulus, G. G., Walther, H., Villoresi, P., Sansone, G., Stagira, S., Nisoli, M. and De Silvestri, S. (2003), “Above-Threshold Ionization at the Few-Cycle Limit,” Physical Review Letters 91, 173003.CrossRefGoogle ScholarPubMed
Henneberger, W. C. (1968), “Perturbation Method for Atoms in Intense Light Beams,” Physical Review Letters 21, 838.CrossRefGoogle Scholar
Hu, S. X. and Starace, A. F. (2002), “GeV Electrons from Ultraintense Laser Interaction with Highly Charged Ions,” Physical Review Letters 88, 245003.CrossRefGoogle ScholarPubMed
Karnakov, B. M., Mur, V. D., Popruzhenko, S. V. and Popov, V. S. (2009), “Strong Field Ionization by Ultrashort Laser Pulses: Application of the Keldysh Theory,” Physics Letters A 374, 386.CrossRefGoogle Scholar
Keitel, C. H. (1996), “Ultra-Energetic Electron Ejection in Relativistic Atom–Laser Field Interaction,” Journal of Physics B – Atomic Molecular and Optical Physics 29, L873.CrossRefGoogle Scholar
Keldysh, L. V. (1965), “Ionization in Field of a Strong Electromagnetic Wave,” Soviet Physics JETP-USSR 20, 1307.Google Scholar
Kling, M. F., Rauschenberger, J., Verhoef, A. J., Hasovic, E., Uphues, T., Milosevic, D. B., Muller, H. G. and Vrakking, M. J. J. (2008), “Imaging of Carrier-Envelope Phase Effects in Above-Threshold Ionization with Intense Few-Cycle Laser Fields,” New Journal of Physics 10, 025024.CrossRefGoogle Scholar
Krainov, V. P. (1997), “Ionization Rates and Energy and Angular Distributions at the Barrier-Suppression Ionization of Complex Atoms and Atomic Ions,” Journal of the Optical Society of America B-Optical Physics 14, 425.CrossRefGoogle Scholar
Lambropoulos, P. and Tang, X. (1992), “Resonances in Multiphoton Ionization,” in Atoms in Intense Laser Fields, Gavrila, M., ed. (Boston: Academic Press), p. 335.Google Scholar
L’Huillier, A., Lompre, L. A., Mainfray, G. and Manus, C. (1982), “Multiply Charged Ions Formed by Multi-Photon Absorption Processes in the Continuum,” Physical Review Letters 48, 1814.CrossRefGoogle Scholar
Liu, X. and Figueira de Morisson Faria, C. (2004), “Nonsequential Double Ionization with Few-Cycle Laser Pulses,” Physical Review Letters 92, 133006.CrossRefGoogle ScholarPubMed
Lotz, W. (1968), “Electron-Impact Ionization Cross-Sections and Ionization Rate Coefficients for Atoms and Ions from Hydrogen to Calcium,” Zeitschrift Fur Physik 216, 241.CrossRefGoogle Scholar
Mainfray, G. and Manus, C. (1991), “Multiphoton Ionization of Atoms,” Reports on Progress in Physics 54, 1333.CrossRefGoogle Scholar
Maltsev, A. and Ditmire, T. (2003), “Above Threshold Ionization in Tightly Focused, Strongly Relativistic Laser Fields,” Physical Review Letters 90, 053002.CrossRefGoogle ScholarPubMed
Maquet, A., Taïeb, R. and Véniard, V. (2008), “Relativistic Laser-Atom Physics,” in Strong Field Laser Physics, Brabec, T., ed. (New York: Springer), p. 477.CrossRefGoogle Scholar
Meyerhofer, D. D., Knauer, J. P., McNaught, S. J. and Moore, C. I. (1996), “Observation of Relativistic Mass Shift Effects During High-Intensity Laser Electron Interactions,” Journal of the Optical Society of America B – Optical Physics 13, 113.CrossRefGoogle Scholar
Milonni, P. W. and Sundaram, B. (1993), “Atoms in Strong Fields: Photoionization and Chaos,” in Progress in Optics Volume XXXI, Wolf, E., ed. (Amsterdam: Elsevier Science Publishers) p. 3.Google Scholar
Milosevic, N., Krainov, V. P. and Brabec, T. (2002a), “Relativistic Theory of Tunnel Ionization,” Journal of Physics B – Atomic Molecular and Optical Physics 35, 3515.CrossRefGoogle Scholar
Milosevic, N., Krainov, V. P. and Brabec, T. (2002b), “Semiclassical Dirac Theory of Tunnel Ionization,” Physical Review Letters 89, 193001.CrossRefGoogle ScholarPubMed
Milosevic, D. B., Paulus, G. G., Bauer, D. and Becker, W. (2006), “Above-Threshold Ionization by Few-Cycle Pulses,” Journal of Physics B – Atomic Molecular and Optical Physics 39, R203.CrossRefGoogle Scholar
Milosevic, D. B., Hasovic, E., Busuladzic, M., Gazibegovic-Busuladzic, A. and Becker, W. (2007), “Intensity-Dependent Enhancements in High-Order Above-Threshold Ionization,” Physical Review A 76, 053410.CrossRefGoogle Scholar
Milosevic, D. B., Becker, W., Okunishi, M., Prumper, G., Shimada, K. and Ueda, K. (2010), “Strong-Field Electron Spectra of Rare-Gas Atoms in the Rescattering Regime: Enhanced Spectral Regions and a Simulation of the Experiment,” Journal of Physics B – Atomic Molecular and Optical Physics 43, 015401.CrossRefGoogle Scholar
Moore, C. I., Knauer, J. P. and Meyerhofer, D. D. (1995), “Observation of the Transition from Thomson to Compton Scattering in Multiphoton Interactions with Low-Energy Electrons,” Physical Review Letters 74, 2439.CrossRefGoogle ScholarPubMed
Mostowski, J. and Eberly, J. H. (1991), “Approximate Atomic Ionization Rates in the Stabilization Regime of the Kramers–Henneberger Picture,” Journal of the Optical Society of America B – Optical Physics 8, 1212.CrossRefGoogle Scholar
Muller, H. G., Agostini, P. and Petite, G. (1992), “Multiphoton Ionization,” in Atoms in Intense Laser Fields, Gavrila, M., ed. (Boston: Academic Press), p. 1.Google Scholar
Paulus, G. G., Grasbon, F., Walther, H., Kopold, R. and Becker, W. (2001), “Channel-Closing-Induced Resonances in the Above-Threshold Ionization Plateau,” Physical Review A 64, 021401.CrossRefGoogle Scholar
Perelomov, A. M., Popov, V. S. and Terentev, M. V. (1966), “Ionization of Atoms in an Alternating Electric Field,” Soviet Physics JETP-USSR 23, 924.Google Scholar
Perry, M. D. and Landen, O. L. (1988), “Resonantly Enhanced Multiphoton Ionization of Krypton and Xenon with Intense Ultraviolet-Laser Radiation,” Physical Review A 38, 2815.CrossRefGoogle ScholarPubMed
Perry, M. D., Landen, O. L., Szoke, A. and Campbell, E. M. (1988a), “Multiphoton Ionization of the Noble-Gases by an Intense - Dye-Laser,” Physical Review A 37, 747.CrossRefGoogle Scholar
Perry, M. D., Szoke, A., Landen, O. L. and Campbell, E. M. (1988b), “Nonresonant Multiphoton Ionization of Noble-Gases: Theory and Experiment,” Physical Review Letters 60, 1270.CrossRefGoogle ScholarPubMed
Pont, M., Walet, N. R., Gavrila, M. and McCurdy, C. W. (1988), “Dichotomy of the Hydrogen-Atom in Superintense, High-Frequency Laser Fields,” Physical Review Letters 61, 939.CrossRefGoogle ScholarPubMed
Popov, V. S. (2004), “Tunnel and Multiphoton Ionization of Atoms and Ions in a Strong Laser Field (Keldysh Theory),” Physics-Uspekhi 47, 855.CrossRefGoogle Scholar
Popruzhenko, S. V. (2014), “Keldysh Theory of Strong Field Ionization: History, Applications, Difficulties and Perspectives,” Journal of Physics B – Atomic Molecular and Optical Physics 47, 204001.CrossRefGoogle Scholar
Popruzhenko, S. V., Mur, V. D., Popov, V. S. and Bauer, D. (2008), “Strong Field Ionization Rate for Arbitrary Laser Frequencies,” Physical Review Letters 101, 193003.CrossRefGoogle ScholarPubMed
Potvliege, R. M. and Shakeshaft, R. (1992), “Nonperturbative Treatment of Multiphoton Ionization within the Floquet Framework,” in Atoms in Intense Laser Fields, Gavrila, M., ed. (Boston: Academic Press), p. 373.Google Scholar
Potvliege, R. M. and Vucic, S. (2009), “Freeman Resonances in High-Order Above-Threshold Ionization,” Journal of Physics B – Atomic Molecular and Optical Physics 42, 055603.CrossRefGoogle Scholar
Prager, J. and Keitel, C. H. (2002), “Laser-Induced Nonsequential Double Ionization Approaching the Relativistic Regime,” Journal of Physics B – Atomic Molecular and Optical Physics 35, L167.CrossRefGoogle Scholar
Protopapas, M., Keitel, C. H. and Knight, P. L. (1997), “Atomic Physics with Super-High Intensity Lasers,” Reports on Progress in Physics 60, 389.CrossRefGoogle Scholar
Reiss, H. R. (1980), “Effect of an Intense Electromagnetic-Field on a Weakly Bound System,” Physical Review A 22, 1786.CrossRefGoogle Scholar
Salamin, Y. I., Hu, S. X., Hatsagortsyan, K. Z. and Keitel, C. H. (2006), “Relativistic High-Power Laser–Matter Interactions,” Physics Reports: Review Section of Physics Letters 427, 41.CrossRefGoogle Scholar
Sheehy, B., Lafon, R., Widmer, M., Walker, B., DiMauro, L. F., Agostini, P. A. and Kulander, K. C. (1998), “Single- and Multiple-Electron Dynamics in the Strong-Field Tunneling Limit,” Physical Review A 58, 3942.CrossRefGoogle Scholar
Usachenko, V. I., Pazdzersky, V. A. and McIver, J. K. (2004), “Reexamination of High-Energy Above-Threshold Ionization (ATI): An Alternative Strong-Field ATI Model,” Physical Review A 69, 013406.CrossRefGoogle Scholar
van der Hart, H. W. and Burnett, K. (2000), “Recollision Model for Double Ionization of Atoms in Strong Laser Fields,” Physical Review A 62, 013407.CrossRefGoogle Scholar
Walker, B., Sheehy, B., Dimauro, L. F., Agostini, P., Schafer, K. J. and Kulander, K. C. (1994), “Precision-Measurement of Strong-Field Double-Ionization of Helium,” Physical Review Letters 73, 1227.CrossRefGoogle ScholarPubMed
Walker, M. A., Hansch, P. and Van Woerkom, L. D. (1998), “Intensity-Resolved Multiphoton Ionization: Circumventing Spatial Averaging,” Physical Review A 57, R701.CrossRefGoogle Scholar
Wassaf, J., Veniard, V., Taieb, R. and Maquet, A. (2003), “Strong Field Atomic Ionization: Origin of High-Energy Structures in Photoelectron Spectra,” Physical Review Letters 90, 013003.CrossRefGoogle ScholarPubMed
Weber, T., Weckenbrock, M., Staudte, A., Spielberger, L., Jagutzki, O., Mergel, V., Afaneh, F., Urbasch, G., Vollmer, M., Giessen, H. and Dörner, R. (2000), “Recoil-Ion Momentum Distributions for Single and Double Ionization of Helium in Strong Laser Fields,” Physical Review Letters 84, 443.CrossRefGoogle ScholarPubMed
Yang, B. R., Schafer, K. J., Walker, B., Kulander, K. C., Agostini, P. and DiMauro, L. F. (1993), “Intensity-Dependent Scattering Rings in High-Order Above-Threshold Ionization,” Physical Review Letters 71, 3770.CrossRefGoogle ScholarPubMed
Yudin, G. L. and Ivanov, M. Y. (2001), “Physics of Correlated Double Ionization of Atoms in Intense Laser Fields: Quasistatic Tunneling Limit,” Physical Review A 63, 033404.CrossRefGoogle Scholar
Becker, A. and Faisal, F. H. M. (2005), “Intense-Field Many-Body S-Matrix Theory,” Journal of Physics B – Atomic Molecular and Optical Physics 38, R1.CrossRefGoogle Scholar
Bucksbaum, P. H., Zavriyev, A., Muller, H. G. and Schumacher, D. W. (1990), “Softening of the Molecular-Bond in Intense Laser Fields,” Physical Review Letters 64, 1883.CrossRefGoogle ScholarPubMed
Burke, P. G., Colgan, J., Glass, D. H. and Higgins, K. (2000), “R-Matrix-Floquet Theory of Molecular Multiphoton Processes,” Journal of Physics B – Atomic Molecular and Optical Physics 33, 143.CrossRefGoogle Scholar
Chelkowski, S. and Bandrauk, A. D. (1995), “Two-Step Coulomb Explosions of Diatoms in Intense Laser Fields,” Journal of Physics B – Atomic Molecular and Optical Physics 28, L723.CrossRefGoogle Scholar
Chu, S. I. and Telnov, D. A. (2004), “Beyond the Floquet Theorem: Generalized Floquet Formalisms and Quasienergy Methods for Atomic and Molecular Multiphoton Processes in Intense Laser Fields,” Physics Reports: Review Section of Physics Letters 390, 1.CrossRefGoogle Scholar
Codling, K. and Frasinski, L. J. (1993), “Dissociative Ionization of Small Molecules in Intense Laser Fields,” Journal of Physics B – Atomic Molecular and Optical Physics 26, 783.CrossRefGoogle Scholar
Colgan, J., Glass, D. H., Higgins, K. and Burke, P. G. (1998), “The Calculation of Molecular Multiphoton Processes Using the R-Matrix-Floquet Method,” Computer Physics Communications 114, 27.CrossRefGoogle Scholar
Constant, E., Stapelfeldt, H. and Corkum, P. B. (1996), “Observation of Enhanced Ionization of Molecular Ions in Intense Laser Fields,” Physical Review Letters 76, 4140.CrossRefGoogle ScholarPubMed
Corkum, P. B., Ivanov, M. Y. and Wright, J. S. (1997), “Subfemtosecond Processes in Strong Laser Fields,” Annual Review of Physical Chemistry 48, 387.CrossRefGoogle ScholarPubMed
Cornaggia, C. (2001), “Small Polyatomic Molecules in Intense Laser Fields,” in Molecules and Clusters in Intense Laser Fields, Posthumus, J. H., ed. (Cambridge: Cambridge University Press), p. 84.CrossRefGoogle Scholar
Cornaggia, C. (2010), “Enhancements of Rescattered Electron Yields in Above-Threshold Ionization of Molecules,” Physical Review A 82, 053410.CrossRefGoogle Scholar
Cornaggia, C., Lavancier, J., Normand, D., Morellec, J., Agostini, P., Chambaret, J. P. and Antonetti, A. (1991), “Multielectron Dissociative Ionization of Diatomic-Molecules in an Intense Femtosecond Laser Field,” Physical Review A 44, 4499.CrossRefGoogle Scholar
Cornaggia, C., Schmidt, M. and Normand, D. (1994), “Coulomb Explosion of in an Intense Femtosecond Laser Field,” Journal of Physics B – Atomic Molecular and Optical Physics 27, L123.CrossRefGoogle Scholar
DeWitt, M. J. and Levis, R. J. (1998), “Observing the Transition from a Multiphoton-Dominated to a Field-Mediated Ionization Process for Polyatomic Molecules in Intense Laser Fields,” Physical Review Letters 81, 5101.CrossRefGoogle Scholar
Dion, C. M., Ben Haj-Yedder, A., Cances, E., Le Bris, C., Keller, A. and Atabek, O. (2002), “Optimal Laser Control of Orientation: The Kicked Molecule,” Physical Review A 65, 063408.CrossRefGoogle Scholar
Friedrich, B. and Herschbach, D. (1995a), “Alignment and Trapping of Molecules in Intense Laser Fields,” Physical Review Letters 74, 4623.CrossRefGoogle ScholarPubMed
Friedrich, B. and Herschbach, D. (1995b), “Polarization of Molecules Induced by Intense Nonresonant Laser Fields,” Journal of Physical Chemistry 99, 15686.CrossRefGoogle Scholar
Gibson, G. N., Freeman, R. R. and McIlrath, T. J. (1991), “Dynamics of the High-Intensity Multiphoton Ionization of ,” Physical Review Letters 67, 1230.CrossRefGoogle ScholarPubMed
Gibson, G. N., Li, M., Guo, C. and Nibarger, J. P. (1998), “Direct Evidence of the Generality of Charge-Asymmetric Dissociation of Molecular Iodine Ionized by Strong Laser Fields,” Physical Review A 58, 4723.CrossRefGoogle Scholar
Giusti-Suzor, A., He, X., Atabek, O. and Mies, F. H. (1990), “Above-Threshold Dissociation of in Intense Laser Fields,” Physical Review Letters 64, 515.CrossRefGoogle ScholarPubMed
Grasbon, F., Paulus, G. G., Chin, S. L., Walther, H., Muth-Bohm, J., Becker, A. and Faisal, F. H. M. (2001), “Signatures of Symmetry-Induced Quantum-Interference Effects Observed in Above-Threshold-Ionization Spectra of Molecules,” Physical Review A 63, 041402.CrossRefGoogle Scholar
Guo, C., Li, M., Nibarger, J. P. and Gibson, G. N. (1998), “Single and Double Ionization of Diatomic Molecules in Strong Laser Fields,” Physical Review A 58, R4271.CrossRefGoogle Scholar
Hankin, S. M., Villeneuve, D. M., Corkum, P. B. and Rayner, D. M. (2000), “Nonlinear Ionization of Organic Molecules in High Intensity Laser Fields,” Physical Review Letters 84, 5082.CrossRefGoogle ScholarPubMed
Hankin, S. M., Villeneuve, D. M., Corkum, P. B. and Rayner, D. M. (2001), “Intense-Field Laser Ionization Rates in Atoms and Molecules,” Physical Review A 64, 013405.CrossRefGoogle Scholar
Harumiya, K., Kawata, I., Kono, H. and Fujimura, Y. (2000), “Exact Two-Electron Wave Packet Dynamics of in an Intense Laser Field: Formation of Localized Ionic States H+H,” Journal of Chemical Physics 113, 8953.CrossRefGoogle Scholar
Hetzheim, H., Faria, C. and Becker, W. (2007), “Interference Effects in Above-Threshold Ionization from Diatomic Molecules: Determining the Internuclear Separation,” Physical Review A 76, 023418.CrossRefGoogle Scholar
Jaron-Becker, A., Becker, A. and Faisal, F. H. M. (2004), “Ionization of , and Linear Carbon Clusters in a Strong Laser Pulse,” Physical Review A 69, 023410.CrossRefGoogle Scholar
Joachain, C. J., Dörr, M. and Kylstra, N. (2000), “High-Intensity Laser-Atom Physics,” in Advances in Atomic, Molecular and Optical Physics Vol 42, Bederson, B. and Walther, H. eds. (San Diego: Academic Press) p. 225.Google Scholar
Joachain, C. J. (2007), “R-Matrix-Floquet Theory of Multiphoton Processes: Concepts, Results and Perspectives,” Journal of Modern Optics 54, 1859.CrossRefGoogle Scholar
Jolicard, G. and Atabek, O. (1992), “Above-Threshold-Dissociation Dynamics of With Short Intense Laser-Pulses,” Physical Review A 46, 5845.CrossRefGoogle ScholarPubMed
Kjeldsen, T. K., Bisgaard, C. Z., Madsen, L. B. and Stapelfeldt, H. (2005), “Influence of Molecular Symmetry on Strong-Field Ionization: Studies on Ethylene, Benzene, Fluorobenzene and Chlorofluorobenzene,” Physical Review A 71, 013418.CrossRefGoogle Scholar
Kono, H., Sato, Y., Kanno, M., Nakai, K. and Kato, T. (2006), “Theoretical Investigations of the Electronic and Nuclear Dynamics of Molecules in Intense Laser Fields: Quantum Mechanical Wave Packet Approaches,” Bulletin of the Chemical Society of Japan 79, 196.CrossRefGoogle Scholar
Larsen, J. J. (2000), “ Laser Induced Alignment of Neutral Molecules,” PhD Thesis University of Aarhus.Google Scholar
Larsen, J. J., Sakai, H., Safvan, C. P., Wendt-Larsen, I. and Stapelfeldt, H. (1999), “Aligning Molecules with Intense Nonresonant Laser Fields,” Journal of Chemical Physics 111, 7774.CrossRefGoogle Scholar
Lebedev, V. S., Presnyakov, L. P. and Sobel’man, I. I. (2003), “Radiative Transitions in the Molecular Ion,” Physics-Uspekhi 46, 473.CrossRefGoogle Scholar
Levis, R. J. and DeWitt, M. J. (1999), “Photoexcitation, Ionization and Dissociation of Molecules Using Intense Near-Infrared Radiation of Femtosecond Duration,” Journal of Physical Chemistry A 103, 6493.CrossRefGoogle Scholar
Lezius, M., Blanchet, V., Ivanov, M. Y. and Stolow, A. (2002), “Polyatomic Molecules in Strong Laser Fields: Nonadiabatic Multielectron Dynamics,” Journal of Chemical Physics 117, 1575.CrossRefGoogle Scholar
Litvinyuk, I. V., Lee, K. F., Dooley, P. W., Rayner, D. M., Villeneuve, D. M. and Corkum, P. B. (2003), “Alignment-Dependent Strong Field Ionization of Molecules,” Physical Review Letters 90, 233003.CrossRefGoogle ScholarPubMed
Ludwig, J., Rottke, H. and Sandner, W. (1997), “Dissociation of and in an Intense Laser Field,” Physical Review A 56, 2168.CrossRefGoogle Scholar
Milosevic, D. B. (2006), “Strong-Field Approximation for Ionization of a Diatomic Molecule by a Strong Laser Field,” Physical Review A 74, 063404.CrossRefGoogle Scholar
Miret-Artes, S. and Atabek, O. (1994), “Isotope Effects and Bond Softening in Intense-Laser-Field Multiphoton Dissociation of ,” Physical Review A 49, 1502.CrossRefGoogle ScholarPubMed
Muth-Böhm, J., Becker, A. and Faisal, F. H. M. (2000), “Suppressed Molecular Ionization for a Class of Diatomics in Intense Femtosecond Laser Fields,” Physical Review Letters 85, 2280.CrossRefGoogle ScholarPubMed
Nibarger, J. P., Menon, S. V. and Gibson, G. N. (2001), “Comprehensive Analysis of Strong-Field Ionization and Dissociation of Diatomic Nitrogen,” Physical Review A 63, 053406.CrossRefGoogle Scholar
Niikura, H., Bhardwaj, V. R., Légaré, F. Litvinyuk, I. V., Dooley, P. W. Rayner, D. M., Ivanov, M. Y., Corkum, P. B. and Villeneuve, D. M. (2008), “Ionization of Small Molecules by Strong Laser Fields,” in Strong Field Laser Physics, Brabec, T., ed. (New York: Springer), p. 185.CrossRefGoogle Scholar
Ortigoso, J., Rodriguez, M., Gupta, M. and Friedrich, B. (1999), “Time Evolution of Pendular States Created by the Interaction of Molecular Polarizability with a Pulsed Nonresonant Laser Field,” Journal of Chemical Physics 110, 3870.CrossRefGoogle Scholar
Peng, L. Y., Dundas, D., McCann, J. F., Taylor, K. T. and Williams, I. D. (2003), “Dynamic Tunneling Ionization of in Intense Fields,” Journal of Physics B – Atomic Molecular and Optical Physics 36, L295.CrossRefGoogle Scholar
Plummer, M. and McCann, J. F. (1996), “Field-Ionization Rates of the Hydrogen Molecular Ion,” Journal of Physics B – Atomic Molecular and Optical Physics 29, 4625.CrossRefGoogle Scholar
Plummer, M., McCann, J. F. and Madsen, L. B. (1998), “The Calculation of Multiphoton Ionization Rates of the Hydrogen Molecular Ion,” Computer Physics Communications 114, 94.CrossRefGoogle Scholar
Posthumus, J. H. (2004), “The Dynamics of Small Molecules in Intense Laser Fields,” Reports on Progress in Physics 67, 623.CrossRefGoogle Scholar
Posthumus, J. H., Frasinski, L. J., Giles, A. J. and Codling, K. (1995), “Dissociative Ionization of Molecules in Intense Laser Fields: A Method of Predicting Ion Kinetic Energies and Appearance Intensities,” Journal of Physics B – Atomic Molecular and Optical Physics 28, L349.CrossRefGoogle Scholar
Posthumus, J. H., Giles, A. J., Thompson, M. R. and Codling, K. (1996), “Field-Ionization, Coulomb Explosion of Diatomic Molecules in Intense Laser Fields,” Journal of Physics B – Atomic Molecular and Optical Physics 29, 5811.CrossRefGoogle Scholar
Posthumus, J. H., Giles, A. J., Thompson, M., Shaikh, W., Langley, A. J., Frasinski, L. J. and Codling, K. (1996b), “The Dissociation Dynamics of Diatomic Molecules in Intense Laser Fields,” Journal of Physics B – Atomic Molecular and Optical Physics 29, L525.CrossRefGoogle Scholar
Posthumus, J. H. and McCann, J. F. (2001), “Diatomic Molecules in Intense Laser Fields,” in Molecules and Clusters in Intense Laser Fields, Posthumus, J. H., ed. (Cambridge: Cambridge University Press), p. 27.CrossRefGoogle Scholar
Poulsen, M. D. (2005), “ Alignment of Molecules Induced by Long and Short Laser Pulses,” PhD Thesis, University of Aarhus, Denmark.Google Scholar
Sakai, H., Safvan, C. P., Larsen, J. J., Hilligsoe, K. M., Hald, K. and Stapelfeldt, H. (1999), “Controlling the Alignment of Neutral Molecules by a Strong Laser Field,” Journal of Chemical Physics 110, 10235.CrossRefGoogle Scholar
Schmidt, M., Dobosz, S., Meynadier, P., D’Oliveira, P., Normand, D., Charron, E. and Suzor-Weiner, A. (1999), “Fragment-Emission Patterns from the Coulomb Explosion of Diatomic Molecules in Intense Laser Fields,” Physical Review A 60, 4706.CrossRefGoogle Scholar
Schmidt, M., Normand, D. and Cornaggia, C. (1994), “Laser-Induced Trapping of Chlorine Molecules with Picosecond and Femtosecond Pulses,” Physical Review A 50, 5037.CrossRefGoogle Scholar
Seideman, T. (2001), “On the Dynamics of Rotationally Broad, Spatially Aligned Wave Packets,” Journal of Chemical Physics 115, 5965.CrossRefGoogle Scholar
Seideman, T. (2002), “Time-Resolved Photoelectron Angular Distributions: Concepts, Applications and Directions,” Annual Review of Physical Chemistry 53, 41.CrossRefGoogle ScholarPubMed
Seideman, T., Ivanov, M. Y. and Corkum, P. B. (1995), “Role of Electron Localization in Intense-Field Molecular Ionization,” Physical Review Letters 75, 2819.CrossRefGoogle ScholarPubMed
Sheehy, B. and DiMauro, L. F. (1996), “Atomic and Molecular Dynamics in Intense Optical Fields,” Annual Review of Physical Chemistry 47, 463.CrossRefGoogle Scholar
Shimizu, S., Kou, J., Kawato, S., Shimizu, K., Sakabe, S. and Nakashima, N. (2000), “Coulomb Explosion of Benzene Irradiated by an Intense Femtosecond Laser Pulse,” Chemical Physics Letters 317, 609.CrossRefGoogle Scholar
Stapelfeldt, H. and Seideman, T. (2003), “Colloquium: Aligning Molecules with Strong Laser Pulses,” Reviews of Modern Physics 75, 543.CrossRefGoogle Scholar
Talebpour, A., Chien, C. Y. and Chin, S. L. (1996), “The Effects of Dissociative Recombination in Multiphoton Ionization of ,” Journal of Physics B – Atomic Molecular and Optical Physics 29, L677.CrossRefGoogle Scholar
Tong, X. M., Zhao, Z. X. and Lin, C. D. (2002), “Theory of Molecular Tunneling Ionization,” Physical Review A 66, 033402.CrossRefGoogle Scholar
Urbain, X., Fabre, B., Staicu-Casagrande, E. M., de Ruette, N., Andrianarijaona, V. M., Jureta, J., Posthumus, J. H., Saenz, A., Baldit, E. and Cornaggia, C. (2004), “Intense-Laser-Field Ionization of Molecular Hydrogen in the Tunneling Regime and Its Effect on the Vibrational Excitation of ,” Physical Review Letters 92, 163004.CrossRefGoogle ScholarPubMed
Walsh, T. D. G., Ilkov, F. A. and Chin, S. L. (1997), “The Dynamical Behaviour of and in a Strong, Femtosecond, Titanium:Sapphire Laser Field,” Journal of Physics B – Atomic Molecular and Optical Physics 30, 2167.CrossRefGoogle Scholar
Wind, H. (1965), “Vibrational States of Hydrogen Molecular Ion,” Journal of Chemical Physics 43, 2956.CrossRefGoogle Scholar
Yang, B., Saeed, M., Dimauro, L. F., Zavriyev, A. and Bucksbaum, P. H. (1991), “High-Resolution Multiphoton Ionization and Dissociation of and Molecules in Intense Laser Fields,” Physical Review A 44, R1458.CrossRefGoogle ScholarPubMed
Yu, H. T., Zuo, T. and Bandrauk, A. D., (1998), “Intense Field Ionization of Molecules with Ultra-Short Laser Pulses: Enhanced Ionization and Barrier-Suppression Effects,” Journal of Physics B – Atomic Molecular and Optical Physics 31, 1533.CrossRefGoogle Scholar
Zavriyev, A., Bucksbaum, P. H., Muller, H. G. and Schumacher, D. W. (1990), “Ionization and Dissociation of in Intense Laser Fields at , 532 nm and 355-nm,” Physical Review A 42, 5500.CrossRefGoogle Scholar
Zhao, Z. X., Tong, X. M. and Lin, C. D. (2003), “Alignment-Dependent Ionization Probability of Molecules in a Double-Pulse Laser Field,” Physical Review A 67, 043404.CrossRefGoogle Scholar
Agostini, P. and DiMauro, L. F. (2004), “The Physics of Attosecond Light Pulses,” Reports on Progress in Physics 67, 813.CrossRefGoogle Scholar
Antoine, P., L’Huillier, A. and Lewenstein, M. (1996), “Attosecond Pulse Trains Using High-Order Harmonics,” Physical Review Letters 77, 1234.CrossRefGoogle ScholarPubMed
Balcou, P., Salieres, P., L’Huillier, A. and Lewenstein, M. (1997), “Generalized Phase-Matching Conditions for High Harmonics: The Role of Field-Gradient Forces,” Physical Review A 55, 3204.CrossRefGoogle Scholar
Bartels, R. A., Paul, A., Green, H., Kapteyn, H. C., Murnane, M. M., Backus, S., Christov, I. P., Liu, Y. W., Attwood, D. and Jacobsen, C. (2002), “Generation of Spatially Coherent Light at Extreme Ultraviolet Wavelengths,” Science 297, 376.CrossRefGoogle ScholarPubMed
Budil, K. S., Salieres, P., L’Huillier, A., Ditmire, T. and Perry, M. D. (1993), “Influence of Ellipticity on Harmonic-Generation,” Physical Review A 48, R3437.CrossRefGoogle ScholarPubMed
Chang, Z. H., Rundquist, A., Wang, H. W., Murnane, M. M. and Kapteyn, H. C. (1997), “Generation of Coherent Soft X Rays at 2.7 nm Using High Harmonics,” Physical Review Letters 79, 2967.CrossRefGoogle Scholar
Chini, M., Zhao, K. and Chang, Z. (2014), “The Generation, Characterization and Applications of Broadband Isolated Attosecond Pulses,” Nature Photonics 8, 178.CrossRefGoogle Scholar
Constant, E., Garzella, D., Breger, P., Mevel, E., Dorrer, C., Le Blanc, C., Salin, F. and Agostini, P. (1999), “Optimizing High Harmonic Generation in Absorbing Gases: Model and Experiment,” Physical Review Letters 82, 1668.CrossRefGoogle Scholar
Corkum, P. B. (1993), “Plasma Perspective on Strong-Field Multiphoton Ionization,” Physical Review Letters 71, 1994.CrossRefGoogle ScholarPubMed
Ditmire, T., Kulander, K., Crane, J. K., Nguyen, H. and Perry, M. D. (1996), “Calculation and Measurement of High-Order Harmonic Energy Yields in Helium,” Journal of the Optical Society of America B – Optical Physics 13, 406.CrossRefGoogle Scholar
Durfee, C. G., Rundquist, A. R., Backus, S., Herne, C., Murnane, M. M. and Kapteyn, H. C. (1999), “Phase Matching of High-Order Harmonics in Hollow Waveguides,” Physical Review Letters 83, 2187.CrossRefGoogle Scholar
Frumker, E., Kajumba, N., Bertrand, J. B., Worner, H. J., Hebeisen, C. T., Hockett, P., Spanner, M., Patchkovskii, S., Paulus, G. G., Villeneuve, D. M., Naumov, A. and Corkum, P. B. (2012), “Probing Polar Molecules with High Harmonic Spectroscopy,” Physical Review Letters 109, 233904.CrossRefGoogle ScholarPubMed
Gibson, E. A., Paul, A., Wagner, N., Tobey, R., Backus, S., Christov, I. P., Murnane, M. M. and Kapteyn, H. C. (2004), “High-Order Harmonic Generation up to 250 eV from Highly Ionized Argon,” Physical Review Letters 92, 033001.CrossRefGoogle ScholarPubMed
Gribakin, G. F. and Kuchiev, M. Y. (1997), “Multiphoton Detachment of Electrons from Negative Ions,” Physical Review A 55, 3760.CrossRefGoogle Scholar
Ivanov, M. Y., Brabec, T. and Burnett, N. (1996)., “Coulomb Corrections and Polarization Effects in High-Intensity High-Harmonic Emission,” Physical Review A 54, 742.CrossRefGoogle ScholarPubMed
Kato, K., Minemoto, S. and Sakai, H. (2011), “Suppression of High-Order-Harmonic Intensities Observed in Aligned Molecules with 1300-nm and 800-nm Pulses,” Physical Review A 84, 021403.CrossRefGoogle Scholar
Kotelnikov, I. A. and Milstein, A. I. (2018), “Electron Radiative Recombination with a Hydrogen-like Ion,” Physica Scripta 94, 05503.Google Scholar
Krausz, F. and Ivanov, M. (2009), “Attosecond Physics,” Reviews of Modern Physics 81, 163.CrossRefGoogle Scholar
Kulander, K. C., Schafer, K. J. and Krause, J. L. (1993), “Dynamics of Short-Pulse Excitation, Ionization and Harmonic Conversion,” in Super-Intense Laser-Atom Physics, Piraux, B., Lhuillier, A. and Rzazewski, K., eds., NATO ASI Series: Physics Vol. 316 (New York: Plenum Press), p. 95.CrossRefGoogle Scholar
Le, A. T., Della Picca, R., Fainstein, P. D., Telnov, D. A., Lein, M. and Lin, C. D. (2008), “Theory of High-Order Harmonic Generation from Molecules by Intense Laser Pulses,” Journal of Physics B – Atomic Molecular and Optical Physics 41, 081002.CrossRefGoogle Scholar
Lein, M., de Nalda, R., Heesel, E., Hay, N., Springate, E., Velotta, R., Castillejo, M., Knight, P. L. and Marangos, J. P. (2005), “Signatures of Molecular Structure in the Strong-Field Response of Aligned Molecules,” Journal of Modern Optics 52, 465.CrossRefGoogle Scholar
Lewenstein, M., Balcou, P., Ivanov, M. Y., L’Huillier, A. and Corkum, P. B. (1994), “Theory of High-Harmonic Generation by Low-Frequency Laser Fields,” Physical Review A 49, 2117.CrossRefGoogle ScholarPubMed
Lewenstein, M. and L’Huillier, A. (2008), “Principles of Single Atom Physics,” in Strong Field Laser Physics, Brabec, T., ed. (New York: Springer), p. 147.CrossRefGoogle Scholar
Lewenstein, M., Salieres, P. and L’Huillier, A. (1995), “Phase of the Atomic Polarization in High-Order Harmonic-Generation,” Physical Review A 52, 4747.CrossRefGoogle ScholarPubMed
L’Huillier, A. and Balcou, P. (1993), “High-Order Harmonic-Generation in Rare-Gases with a 1-ps 1053-nm Laser,” Physical Review Letters 70, 774.CrossRefGoogle ScholarPubMed
L’Huillier, A., Lompré, L-A, Mainfray, G. and Manus, C. (1992), “High-Order Harmonic Generation in Rare Gases,” in Atoms in Intense Laser Fields, Gavrila, M., ed. (Boston: Academic Press), p. 139.Google Scholar
Macklin, J. J., Kmetec, J. D. and Gordon, C. L. (1993), “High-Order Harmonic-Generation Using Intense Femtosecond Pulses,” Physical Review Letters 70, 766.CrossRefGoogle ScholarPubMed
Mairesse, Y., Levesque, J., Dudovich, N., Corkum, P. B. and Villeneuve, D. M. (2008), “High Harmonic Generation from Aligned Molecules: Amplitude and Polarization,” Journal of Modern Optics 55, 2591.CrossRefGoogle Scholar
McFarland, B. K., Farrell, J. P., Bucksbaum, P. H. and Guhr, M. (2008), “High Harmonic Generation from Multiple Orbitals in ,” Science 322, 1232.CrossRefGoogle ScholarPubMed
Paul, A., Gibson, E. A., Zhang, X. S., Lytle, A., Popmintchev, T., Zhou, X. B., Murnane, M. M., Christov, I. P. and Kapteyn, H. C. (2006), “Phase-Matching Techniques for Coherent Soft X-Ray Generation,” IEEE Journal of Quantum Electronics 42, 14.CrossRefGoogle Scholar
Reider, G. A. (2004), “XUV Attosecond Pulses: Generation and Measurement,” Journal of Physics D – Applied Physics 37, R37.CrossRefGoogle Scholar
Rundquist, A., Durfee, C. G., Chang, Z. H., Herne, C., Backus, S., Murnane, M. M. and Kapteyn, H. C. (1998), “Phase-Matched Generation of Coherent Soft X-rays,” Science 280, 1412.CrossRefGoogle ScholarPubMed
Salieres, P., L’Huillier, A. and Lewenstein, M. (1995), “Coherence Control of High-Order Harmonics,” Physical Review Letters 74, 3776.CrossRefGoogle ScholarPubMed
Scrinzi, A., Ivanov, M. Y., Kienberger, R. and Villeneuve, D. M. (2006), “Attosecond Physics,” Journal of Physics B – Atomic Molecular and Optical Physics 39, R1.Google Scholar
Scrinzi, A. and Muller, H.-G. (2008), “Attosecond Pulses: Generation, Detection and Applications,” in Strong Field Laser Physics, Brabec, T., ed. (New York: Springer), p. 281.CrossRefGoogle Scholar
Shan, B., Ghimire, S. and Chang, Z. (2005), “Generation of the Attosecond Extreme Ultraviolet Supercontinuum by a Polarization,” Journal of Modern Optics 52, 277.CrossRefGoogle Scholar
Varju, K., Mairesse, Y., Carre, B., Gaarde, M. B., Johnsson, P., Kazamias, S., Lopez-Martens, R., Mauritsson, J., Schafer, K. J., Balcou, P. H., L’Huillier, A. and Salieres, P. (2005), “Frequency Chirp of Harmonic and Attosecond Pulses,” Journal of Modern Optics 52, 379.CrossRefGoogle Scholar
Winterfeldt, C., Spielmann, C. and Gerber, G. (2008), “Colloquium: Optimal Control of High-Harmonic Generation,” Reviews of Modern Physics 80, 117.CrossRefGoogle Scholar
Bang, W., Barbui, M., Bonasera, A., Dyer, G., Quevedo, H. J., Hagel, K., Schmidt, K., Consoli, F., De Angelis, R., Andreoli, P., Gaul, E., Bernstein, A. C., Donovan, M., Barbarino, M., Kimura, S., Mazzocco, M., Sura, J., Natowitz, J. B. and Ditmire, T. (2013), “Temperature Measurements of Fusion Plasmas Produced by Petawatt-Laser-Irradiated - or - Clustering Gases,” Physical Review Letters 111, 055002.CrossRefGoogle ScholarPubMed
Bauer, D. and Macchi, A. (2003), “Dynamical Ionization Ignition of Clusters in Intense Short Laser Pulses,” Physical Review A 68, 033201.CrossRefGoogle Scholar
Bornath, T., Hilse, P. and Schlanges, M. (2007), “Ionization Dynamics in Nanometer-Sized Clusters Interacting with Intense Laser Fields,” Laser Physics 17, 591.CrossRefGoogle Scholar
Breizman, B. N. and Arefiev, A. V. (2003), “Electron Response in Laser-Irradiated Microclusters,” Plasma Physics Reports 29, 593.CrossRefGoogle Scholar
Breizman, B. N., Arefiev, A. V. and Fomyts’kyi, M. V. (2005), “Physics of Laser-Irradiated Microclusters,” Physics of Plasmas 12, 056706.CrossRefGoogle Scholar
Chen, L. M., Park, J. J., Hong, K. H., Choi, I. W., Kim, J. L., Zhang, J. and Nam, C. H. (2002), “Measurement of Energetic Electrons from Atomic Clusters Irradiated by Intense Femtosecond Laser Pulses,” Physics of Plasmas 9, 3595.CrossRefGoogle Scholar
Deiss, C., Rohringer, N., Burgdorfer, J., Lamour, E., Prigent, C., Rozet, J. P. and Vernhet, D. (2006), “Laser-Cluster Interaction: X-Ray Production by Short Laser Pulses,” Physical Review Letters 96, 013203.CrossRefGoogle ScholarPubMed
Ditmire, T. (1997), “Atomic Clusters in Ultrahigh Intensity Light Fields,” Contemporary Physics 38, 315.CrossRefGoogle Scholar
Ditmire, T. (1998), “Simulation of Exploding Clusters Ionized by High-Intensity Femtosecond Laser Pulses,” Physical Review A 57, R4094.CrossRefGoogle Scholar
Ditmire, T., Donnelly, T., Falcone, R. W. and Perry, M. D. (1995), “Strong X-Ray-Emission from High-Temperature Plasmas Produced by Intense Irradiation of Clusters,” Physical Review Letters 75, 3122.CrossRefGoogle ScholarPubMed
Ditmire, T., Donnelly, T., Rubenchik, A. M., Falcone, R. W. and Perry, M. D. (1996), “Interaction of Intense Laser Pulses with Atomic Clusters,” Physical Review A 53, 3379.CrossRefGoogle ScholarPubMed
Ditmire, T., Patel, P. K., Smith, R. A., Wark, J. S., Rose, S. J., Milathianaki, D., Marjoribanks, R. S. and Hutchinson, M. H. R. (1998a), “KeV X-Ray Spectroscopy of Plasmas Produced by the Intense Picosecond Irradiation of a Gas of Xenon Clusters,” Journal of Physics B – Atomic Molecular and Optical Physics 31, 2825.CrossRefGoogle Scholar
Ditmire, T., Smith, R. A., Tisch, J. W. G. and Hutchinson, M. H. R. (1997b), “High Intensity Laser Absorption by Gases of Atomic Clusters,” Physical Review Letters 78, 3121.CrossRefGoogle Scholar
Ditmire, T., Springate, E., Tisch, J. W. G., Shao, Y. L., Mason, M. B., Hay, N., Marangos, J. P. and Hutchinson, M. H. R. (1998b), “Explosion of Atomic Clusters Heated by High-Intensity Femtosecond Laser Pulses,” Physical Review A 57, 369.CrossRefGoogle Scholar
Ditmire, T., Tisch, J. W. G., Springate, E., Mason, M. B., Hay, N., Smith, R. A., Marangos, J. and Hutchinson, M. H. R. (1997c), “High-Energy Ions Produced in Explosions of Superheated Atomic Clusters,” Nature 386, 54.CrossRefGoogle Scholar
Ditmire, T., Zweiback, J., Yanovsky, V. P., Cowan, T. E., Hays, G. and Wharton, K. B. (1999), “Nuclear Fusion from Explosions of Femtosecond Laser-Heated Deuterium Clusters,” Nature 398, 489.CrossRefGoogle Scholar
Dorchies, F., Blasco, F., Caillaud, T., Stevefelt, J., Stenz, C., Boldarev, A. S. and Gasilov, V. A. (2003), “Spatial Distribution of Cluster Size and Density in Supersonic Jets as Targets for Intense Laser Pulses,” Physical Review A 68, 023201.CrossRefGoogle Scholar
Erk, B., Hoffmann, K., Kandadai, N., Helal, A., Keto, J. and Ditmire, T. (2011), “Observation of Shells in Coulomb Explosions of Rare-Gas Clusters,” Physical Review A 83, 043201.CrossRefGoogle Scholar
Fennel, T., Meiwes-Broer, K. H., Tiggesbaumker, J., Reinhard, P. G., Dinh, P. M. and Suraud, E. (2010), “Laser-Driven Nonlinear Cluster Dynamics,” Reviews of Modern Physics 82, 1793.CrossRefGoogle Scholar
Fennel, T., Ramunno, L. and Brabec, T. (2007), “Highly Charged Ions from Laser-Cluster Interactions: Local-Field-Enhanced Impact Ionization and Frustrated Electron-Ion Recombination,” Physical Review Letters 99, 233401.CrossRefGoogle ScholarPubMed
Fomichev, S. V., Popruzhenko, S. V., Zaretsky, D. F. and Becker, W. (2003a), “Laser-Induced Nonlinear Excitation of Collective Electron Motion in a Cluster,” Journal of Physics B – Atomic Molecular and Optical Physics 36, 3817.CrossRefGoogle Scholar
Fomichev, S. V., Popruzhenko, S. V., Zaretsky, D. F. and Becker, W. (2003b), “Nonlinear Excitation of the Mie Resonance in a Laser-Irradiated Cluster,” Optics Express 11, 2433.CrossRefGoogle Scholar
Fomyts’kyi, M. V., Breizman, B. N., Arefiev, A. V. and Chiu, C. (2004), “Harmonic Generation in Clusters,” Physics of Plasmas 11, 3349.CrossRefGoogle Scholar
Fukuda, Y., Yamakawa, K., Akahane, Y., Aoyama, M., Inoue, N., Ueda, H. and Kishimoto, Y. (2003), “Optimized Energetic Particle Emissions from Xe Clusters in Intense Laser Fields,” Physical Review A 67, 061201.CrossRefGoogle Scholar
Gets, A. V. and Krainov, V. P. (2006), “The Ionization Potentials of Atomic Ions in Laser-Irradiated Ar, Kr and Xe Clusters,” Journal of Physics B – Atomic Molecular and Optical Physics 39, 1787.CrossRefGoogle Scholar
Hagena, O. F. and Obert, W. (1972), “Cluster Formation in Expanding Supersonic Jets: Effect of Pressure, Temperature, Nozzle Size and Test Gas,” Journal of Chemical Physics 56, 1793.CrossRefGoogle Scholar
Hansen, S. B., Shlyaptseva, A. S., Faenov, A. Y., Skobelev, I. Y., Magunov, A., Pikuz, T. A., Blasco, F., Dorchies, F., Stenz, C., Salin, F., Auguste, T., Dobosz, S., Monot, P., D’Oliveira, P., Hulin, S., Safronova, U. I. and Fournier, K. B. (2002), “Hot-Electron Influence on L-Shell Spectra of Multicharged Kr Ions Generated in Clusters Irradiated by Femtosecond Laser Pulses,” Physical Review E 66, 046412.CrossRefGoogle ScholarPubMed
Haught, A. F. and Polk, D. H. (1970), “Formation and Heating of Laser Irradiated Solid Particle Plasmas,” Physics of Fluids 13, 2825.CrossRefGoogle Scholar
Hilse, P., Moll, M., Schlanges, M. and Bornath, T. (2009), “Laser-Cluster-Interaction in a Nanoplasma-Model with Inclusion of Lowered Ionization Energies,” Laser Physics 19, 428.CrossRefGoogle Scholar
Hohenberger, M., Symes, D. R., Madison, K. W., Sumeruk, A., Dyer, G., Edens, A., Grigsby, W., Hays, G., Teichmann, M. and Ditmire, T. (2005), “Dynamic Acceleration Effects in Explosions of Laser-Irradiated Heteronuclear Clusters,” Physical Review Letters 95, 195003.CrossRefGoogle ScholarPubMed
Holtsmark, J. (1919), “Uber die Verbreiterung von Spektrallinien,” Annalen der Physik 363, 577630.CrossRefGoogle Scholar
Islam, M. R., Saalmann, U. and Rost, J. M. (2006), “Kinetic Energy of Ions after Coulomb Explosion of Clusters Induced by an Intense Laser Pulse,” Physical Review A 73, 041201.CrossRefGoogle Scholar
Jungreuthmayer, C., Geissler, M., Zanghellini, J. and Brabec, T. (2004), “Microscopic Analysis of Large-Cluster Explosion in Intense Laser Fields,” Physical Review Letters 92, 133401.CrossRefGoogle ScholarPubMed
Junkel-Vives, G. C., Abdallah, J., Blasco, F., Stenz, C., Salin, F., Faenov, A. Y., Magunov, A. I., Pikuz, T. A. and Skobelev, I. Y. (2001), “Observation of H-Like Ions within Argon Clusters Irradiated by 35-Fs Laser via High-Resolution X-Ray Spectroscopy,” Physical Review A 64, 021201.CrossRefGoogle Scholar
Korneev, P. A., Popruzhenko, S. V., Zaretsky, D. F. and Becker, W. (2005), “Collisionless Heating of a Nanoplasma in Laser-Irradiated Clusters,” Laser Physics Letters 2, 452.CrossRefGoogle Scholar
Kostyukov, I. and Rax, J. M. (2003), “Collisional versus Collisionless Resonant and Autoresonant Heating in Laser-Cluster Interaction,” Physical Review E 67, 066405.CrossRefGoogle ScholarPubMed
Krainov, V. P. and Smirnov, M. B. (2001), “Heating of Deuterium Clusters by a Superatomic Ultra-Short Laser Pulse,” Journal of Experimental and Theoretical Physics 92, 626.CrossRefGoogle Scholar
Krainov, V. P. and Smirnov, M. B. (2002b), “Cluster Beams in the Super-Intense Femtosecond Laser Pulse,” Physics Reports: Review Section of Physics Letters 370, 237.CrossRefGoogle Scholar
Krishnamurthy, M., Jha, J., Mathur, D., Jungreuthmayer, C., Ramunno, L., Zanghellini, J. and Brabec, T. (2006), “Ion Charge State Distribution in the Laser-Induced Coulomb Explosion of Argon Clusters,” Journal of Physics B – Atomic Molecular and Optical Physics 39, 625.CrossRefGoogle Scholar
Kumarappan, V., Krishnamurthy, M. and Mathur, D. (2001), “Asymmetric High-Energy Ion Emission from Argon Clusters in Intense Laser Fields,” Physical Review Letters 87, 085005.CrossRefGoogle ScholarPubMed
Kumarappan, V., Krishnamurthy, M. and Mathur, D. (2002), “Two-Dimensional Effects in the Hydrodynamic Expansion of Xenon Clusters under Intense Laser Irradiation,” Physical Review A 66, 033203.CrossRefGoogle Scholar
Last, I. and Jortner, J. (2000), “Dynamics of the Coulomb Explosion of Large Clusters in a Strong Laser Field,” Physical Review A 62, 013201.CrossRefGoogle Scholar
Last, I. and Jortner, J. (2002), “Nuclear Fusion Driven by Coulomb Explosion of Methane Clusters,” Journal of Physical Chemistry A 106, 10877.CrossRefGoogle Scholar
Last, I. and Jortner, J. (2004), “Electron and Nuclear Dynamics of Molecular Clusters in Ultraintense Laser Fields. I. Extreme Multielectron Ionization,” Journal of Chemical Physics 120, 1336.Google Scholar
Last, I. and Jortner, J. (2004), “Electron and Nuclear Dynamics of Molecular Clusters in Ultraintense Laser Fields. II. Electron Dynamics and Outer Ionization of the Nanoplasma,” Journal of Chemical Physics 120, 1348.CrossRefGoogle ScholarPubMed
Lotz, W. (1968), “Electron-Impact Ionization Cross-Sections and Ionization Rate Coefficients for Atoms and Ions from Hydrogen to Calcium,” Zeitschrift für Physik 216, 241.CrossRefGoogle Scholar
Madison, K. W., Patel, P. K., Allen, M., Price, D. and Ditmire, T. (2003), “Investigation of Fusion Yield from Exploding Deuterium-Cluster Plasmas Produced by 100-TW Laser Pulses,” Journal of the Optical Society of America B – Optical Physics 20, 113.CrossRefGoogle Scholar
Madison, K. W., Patel, P. K., Allen, M., Price, D., Fitzpatrick, R. and Ditmire, T. (2004a), “Role of Laser-Pulse Duration in the Neutron Yield of Deuterium Cluster Targets,” Physical Review A 70, 053201.CrossRefGoogle Scholar
Madison, K. W., Patel, P. K., Price, D., Edens, A., Allen, M., Cowan, T. E., Zweiback, J. and Ditmire, T. (2004b), “Fusion Neutron and Ion Emission from Deuterium and Deuterated Methane Cluster Plasmas,” Physics of Plasmas 11, 270.CrossRefGoogle Scholar
Magunov, A. I., Pikuz, T. A., Skobelev, I. Y., Faenov, A. Y., Blasco, F., Dorchies, F., Caillaud, T., Bonte, C., Salin, F., Stenz, C., Loboda, P. A., Litvinenko, I. A., Popova, V. V., Baidin, G. V., Junkel-Vives, G. C. and Abdallah, J. (2001), “Influence of Ultrashort Laser Pulse Duration on the X-Ray Emission Spectrum of Plasma Produced in Cluster Target,” JETP Letters 74, 375.CrossRefGoogle Scholar
Megi, F., Belkacem, M., Bouchene, M. A., Suraud, E. and Zwicknagel, G. (2003), “On the Importance of Damping Phenomena in Clusters Irradiated by Intense Laser Fields,” Journal of Physics B – Atomic Molecular and Optical Physics 36, 273.CrossRefGoogle Scholar
Micheau, S., Jouin, H. and Pons, B. (2008), “Modified Nanoplasma Model for Laser-Cluster Interaction,” Physical Review A 77, 053201.CrossRefGoogle Scholar
Milchberg, H. M., McNaught, S. J. and Parra, E. (2001), “Plasma Hydrodynamics of the Intense Laser-Cluster Interaction,” Physical Review E 64, 056402.CrossRefGoogle ScholarPubMed
Mulser, P. and Kanapathipillai, M. (2005), “Collisionless Absorption in Clusters Out of Linear Resonance,” Physical Review A 71, 063201.CrossRefGoogle Scholar
Parks, P. B., Cowan, T. E., Stephens, R. B. and Campbell, E. M. (2001), “Model of Neutron-Production Rates from Femtosecond-Laser-Cluster Interactions,” Physical Review A 63, 063203.CrossRefGoogle Scholar
Parra, E., Alexeev, I., Fan, J., Kim, K. Y., McNaught, S. J. and Milchberg, H. M. (2000), “X-Ray and Extreme Ultraviolet Emission Induced by Variable Pulse-Width Irradiation of Ar and Kr Clusters and Droplets,” Physical Review E 62, R5931.CrossRefGoogle ScholarPubMed
Peano, F., Peinetti, F., Mulas, R., Coppa, G. and Silva, L. O. (2006), “Kinetics of the Collisionless Expansion of Spherical Nanoplasmas,” Physical Review Letters 96, 175002.CrossRefGoogle ScholarPubMed
Ramunno, L., Brabec, T. and Krainov, V. (2008), “Intense Laser Interactions with Noble Gas Clusters,” in Strong Field Laser Physics, Brabec, T., ed. (New York: Springer), p. 225.CrossRefGoogle Scholar
Rose-Petruck, C., Schafer, K. J., Wilson, K. R. and Barty, C. P. J. (1997), “Ultrafast Electron Dynamics and Inner-Shell Ionization in Laser Driven Clusters,” Physical Review A 55, 1182.CrossRefGoogle Scholar
Rusek, M., Lagadec, H. and Blenski, T. (2001), “Cluster Explosion in an Intense Laser Pulse: Thomas-Fermi Model,” Physical Review A 63, 013203.CrossRefGoogle Scholar
Saalmann, U. and Rost, J. M. (2003), “Ionization of Clusters in Intense Laser Pulses through Collective Electron Dynamics,” Physical Review Letters 91, 223401.CrossRefGoogle ScholarPubMed
Saalmann, U. and Rost, J. M. (2008), “Rescattering for Extended Atomic Systems,” Physical Review Letters 100, 133006.CrossRefGoogle ScholarPubMed
Saalmann, U., Siedschlag, C. and Rost, J. M. (2006), “Mechanisms of Cluster Ionization in Strong Laser Pulses,” Journal of Physics B – Atomic Molecular and Optical Physics 39, R39.CrossRefGoogle Scholar
Schmalz, R. F. (1985), “New Self-Similar Solutions for the Unsteady One-Dimensional Expansion of a Gas into a Vacuum,” Physics of Fluids 28, 2923.CrossRefGoogle Scholar
Shao, Y. L., Ditmire, T., Tisch, J. W. G., Springate, E., Marangos, J. P. and Hutchinson, M. H. R. (1996), “Multi-keV Electron Generation in the Interaction of Intense Laser Pulses with Xe Clusters,” Physical Review Letters 77, 3343.CrossRefGoogle ScholarPubMed
Siedschlag, C. and Rost, J. M. (2002), “Electron Release of Rare-Gas Atomic Clusters under an Intense Laser Pulse,” Physical Review Letters 89, 173401.CrossRefGoogle ScholarPubMed
Smirnov, M. B. and Krainov, V. P. (2003), “Hot Electron Generation in Laser Cluster Plasma,” Physics of Plasmas 10, 443.CrossRefGoogle Scholar
Smirnov, M. B. and Krainov, V. P. (2004), “Ionization of Cluster Atoms in a Strong Laser Field,” Physical Review A 69, 043201.CrossRefGoogle Scholar
Springate, E., Hay, N., Tisch, J. W. G., Mason, M. B., Ditmire, T., Marangos, J. P. and Hutchinson, M. H. R. (2000), “Enhanced Explosion of Atomic Clusters Irradiated by a Sequence of Two High-Intensity Laser Pulses,” Physical Review A 61, 044101.CrossRefGoogle Scholar
Stewart, J. C. and Pyatt, K. D. (1966), “Lowering of Ionization Potentials in Plasmas,” Astrophysical Journal 144, 1203.CrossRefGoogle Scholar
Symes, D. R., Hohenberger, M., Henig, A. and Ditmire, T. (2007), “Anisotropic Explosions of Hydrogen Clusters under Intense Femtosecond Laser Irradiation,” Physical Review Letters 98, 123401.CrossRefGoogle ScholarPubMed
Zweiback, J., Ditmire, T. and Perry, M. D. (1999), “Femtosecond Time-Resolved Studies of the Dynamics of Noble-Gas Cluster Explosions,” Physical Review A 59, R3166.CrossRefGoogle Scholar
Zweiback, J., Ditmire, T. and Perry, M. D. (2000a), “Resonance in Scattering and Absorption from Large Noble Gas Clusters,” Optics Express 6, 236.CrossRefGoogle ScholarPubMed
Zweiback, J., Smith, R. A., Cowan, T. E., Hays, G., Wharton, K. B., Yanovsky, V. P. and Ditmire, T. (2000b), “Nuclear Fusion Driven by Coulomb Explosions of Large Deuterium Clusters,” Physical Review Letters 84, 2634.CrossRefGoogle ScholarPubMed
Akhiezer, A. I. and Polovin, R. V. (1956), “Theory of Wave Motion of an Electron Plasma,” Soviet Physics JETP-USSR 3, 696.Google Scholar
Albert, F. and Thomas, A. G. R. (2016), “Applications of Laser Wakefield Accelerator-Based Light Sources,” Plasma Physics and Controlled Fusion 58, 103001.CrossRefGoogle Scholar
Andreev, N. E., Gorbunov, L. M., Kirsanov, V. I., Pogosova, A. A. and Ramazashvili, R. R. (1992), “Resonant Excitation of Wakefields by a Laser-Pulse in a Plasma,” JETP Letters 55, 571.Google Scholar
Auguste, T., Monot, P., Lompre, L. A., Mainfray, G. and Manus, C. (1992), “Defocusing Effects of a Picosecond Terawatt Laser-Pulse in an Underdense Plasma,” Optics Communications 89, 145.CrossRefGoogle Scholar
Barr, H. C., Boyd, T. J. M., Gordon, F. I. and Berwick, S. J. (1995), “Stimulated Raman Scattering in Plasmas Produced by Short Intense Laser Pulses,” Laser and Particle Beams 13, 525.CrossRefGoogle Scholar
Berezhiani, V. I. and Murusidze, I. G. (1990), “Relativistic Wake-Field Generation by an Intense Laser-Pulse in a Plasma,” Physics Letters A 148, 338.CrossRefGoogle Scholar
Bernstein, A. C., McCormick, M., Dyer, G. M., Sanders, J. C. and Ditmire, T. (2009), “Two-Beam Coupling between Filament-Forming Beams in Air,” Physical Review Letters 102, 123902.CrossRefGoogle ScholarPubMed
Bingham, R., Mendonca, J. T. and Shukla, P. K. (2004), “Plasma Based Charged-Particle Accelerators,” Plasma Physics and Controlled Fusion 46, R1.CrossRefGoogle Scholar
Blyth, W. J., Preston, S. G., Offenberger, A. A., Key, M. H., Wark, J. S., Najmudin, Z., Modena, A., Djaoui, A. and Dangor, A. E. (1995), “Plasma Temperature in Optical-Field Ionization of Gases by Intense Ultrashort Pulses of Ultraviolet-Radiation,” Physical Review Letters 74, 554.CrossRefGoogle ScholarPubMed
Brandi, H. S., Manus, C., Mainfray, G., Lehner, T. and Bonnaud, G. (1993), “Relativistic and Ponderomotive Self-Focusing of a Laser-Beam in a Radially Inhomogeneous Plasma: 1. Paraxial Approximation,” Physics of Fluids B-Plasma Physics 5, 3539.CrossRefGoogle Scholar
Braun, A., Korn, G., Liu, X., Du, D., Squier, J. and Mourou, G. (1995), “Self-Channeling of High-Peak-Power Femtosecond Laser-Pulses in Air,” Optics Letters 20, 73.CrossRefGoogle ScholarPubMed
Bulanov, S. V., Inovenkov, I. N., Kirsanov, V. I., Naumova, N. M. and Sakharov, A. S. (1992), “Nonlinear Depletion of Ultrashort and Relativistically Strong Laser-Pulses in an Underdense Plasma,” Physics of Fluids B-Plasma Physics 4, 1935.CrossRefGoogle Scholar
Bulanov, S. V., Naumova, N., Pegoraro, F. and Sakai, J. (1998), “Particle Injection into the Wave Acceleration Phase due to Nonlinear Wave Wave-Breaking,” Physical Review E 58, R5257.CrossRefGoogle Scholar
Chessa, P., De Wispelaere, E., Dorchies, F., Malka, V., Marques, J. R., Hamoniaux, G., Mora, P. and Amiranoff, F. (1999), “Temporal and Angular Resolution of the Ionization-Induced Refraction of a Short Laser Pulse in Helium Gas,” Physical Review Letters 82, 552.CrossRefGoogle Scholar
Chin, S. L., Brodeur, A., Petit, S., Kosareva, O. G. and Kandidov, V. P. (1999), “Filamentation and Supercontinuum Generation during the Propagation of Powerful Ultrashort Laser Pulses in Optical Media (White Light Laser),” Journal of Nonlinear Optical Physics & Materials 8, 121.CrossRefGoogle Scholar
Cipiccia, S., Islam, M. R., Ersfeld, B., Shanks, R. P., Brunetti, E., Vieux, G., Yang, X., Issac, R. C., Wiggins, S. M., Welsh, G. H., Anania, M. P., Maneuski, D., Montgomery, R., Smith, G., Hoek, M., Hamilton, D. J., Lemos, N. R. C., Symes, D., Rajeev, P. P., Shea, V. O., Dias, J. M. and Jaroszynski, D. A. (2011), “Gamma-Rays from Harmonically Resonant Betatron Oscillations in a Plasma Wake,” Nature Physics 7, 867.CrossRefGoogle Scholar
Cipiccia, S., Islam, M. R., Ersfeld, B., Welsh, G. H., Brunetti, E., Vieux, G., Yang, X., Wiggins, S. M., Grant, P., Gil, D. R., Grant, D. W., Shanks, R. P., Issac, R. C., Anania, M. P., Manueski, D., Montgomery, R., Smith, G., Hoek, M., Hamilton, D., Symes, D., Rajeev, P. P., O’Shea, V., Dias, J. M., Lemos, N. R. C. and Jaroszynski, D. A. (2015), “ Gamma-Ray Production from Resonant Betatron Oscillations in Plasma Wakes,” in Advances in X-Ray Free-Electron Lasers Instrumentation, Proceedings of SPIE, ed. Biedron, S. G., Vol 9512.Google Scholar
Corde, S., Phuoc, K. T., Lambert, G., Fitour, R., Malka, V., Rousse, A., Beck, A. and Lefebvre, E. (2013), “Femtosecond X Rays from Laser-Plasma Accelerators,” Reviews of Modern Physics 85, 1.CrossRefGoogle Scholar
Coverdale, C. A., Darrow, C. B., Decker, C. D., Mori, W. B., Tzeng, K. C., Marsh, K. A., Clayton, C. E. and Joshi, C. (1995), “Propagation of Intense Subpicosecond Laser-Pulses through Underdense Plasma,” Physical Review Letters 74, 4659.CrossRefGoogle Scholar
Curcio, A., Giulietti, D., Dattoli, G. and Ferrario, M. (2015), “Resonant Interaction between Laser and Electrons Undergoing Betatron Oscillations in the Bubble Regime,” Journal of Plasma Physics 81, 495810513.CrossRefGoogle Scholar
Darrow, C. B., Coverdale, C., Perry, M. D., Mori, W. B., Clayton, C., Marsh, K. and Joshi, C. (1992), “Strongly Coupled Stimulated Raman Backscatter from Subpicosecond Laser–Plasma Interactions,” Physical Review Letters 69, 442.CrossRefGoogle ScholarPubMed
Decker, C. D. and Mori, W. B. (1994), “Group-Velocity of Large-Amplitude Electromagnetic-Waves in a Plasma,” Physical Review Letters 72, 490.CrossRefGoogle ScholarPubMed
Decker, C. D., Mori, W. B., Tzeng, K. C. and Katsouleas, T. (1996b), “Evolution of Ultra-Intense, Short-Pulse Lasers in Underdense Plasmas,” Physics of Plasmas 3, 2047.CrossRefGoogle Scholar
Drake, J. F., Kaw, P. K., Lee, Y. C. and Schmidt, G., Liu, C. S. and Rosenbluth, M. (1974), “Parametric-Instabilities of Electromagnetic-Waves in Plasmas,” Physics of Fluids 17, 778.CrossRefGoogle Scholar
Esarey, E., Krall, J. and Sprangle, P. (1994), “Envelope Analysis of Intense Laser-Pulse Self-Modulation in Plasmas,” Physical Review Letters 72, 2887.CrossRefGoogle ScholarPubMed
Esarey, E., Sprangle, P., Pilloff, M. and Krall, J. (1995), “Theory and Group-Velocity of Ultrashort, Tightly Focused Laser-Pulses,” Journal of the Optical Society of America B – Optical Physics 12, 1695.CrossRefGoogle Scholar
Esarey, E., Sprangle, P., Krall, J. and Ting, A. (1997), “Self-Focusing and Guiding of Short Laser Pulses in Ionizing Gases and Plasmas,” IEEE Journal of Quantum Electronics 33, 1879.CrossRefGoogle Scholar
Esarey, E., Shadwick, B. A., Catravas, P. and Leemans, W. P. (2002), “Synchrotron Radiation from Electron Beams in Plasma-Focusing Channels,” Physical Review E 65, 056505.CrossRefGoogle ScholarPubMed
Esarey, E., Schroeder, C. B. and Leemans, W. P. (2009), “Physics of Laser-Driven Plasma-Based Electron Accelerators,” Reviews of Modern Physics 81, 1229.CrossRefGoogle Scholar
Feit, M. D., Garrison, J. C. and Rubenchik, A. M. (1996), “Short Pulse Laser Propagation in Underdense Plasmas,” Physical Review E 53, 1068.CrossRefGoogle ScholarPubMed
Fill, E. E. (1994), “Focusing Limits of Ultrashort Laser-Pulses: Analytical Theory,” Journal of the Optical Society of America B – Optical Physics 11, 2241.CrossRefGoogle Scholar
Forslund, D. W., Kindel, J. M. and Lindman, E. L., “Theory of Stimulated Scattering Processes in Laser-Irradiated Plasmas,” Physics of Fluids 18, 1002 (1975).CrossRefGoogle Scholar
Gahn, C., Tsakiris, G. D., Pukhov, A., Meyer-ter-Vehn, J., Pretzler, G., Thirolf, P., Habs, D. and Witte, K. J. (1999), “Multi-MeV Electron Beam Generation by Direct Laser Acceleration in High-Density Plasma Channels,” Physical Review Letters 83, 4772.CrossRefGoogle Scholar
Geints, Y. E., Bulygin, A. D. and Zemlyanov, A. A. (2012), “Model Description of Intense Ultra-Short Laser Pulse Filamentation: Multiple Foci and Diffraction Rays,” Applied Physics B – Lasers and Optics 107, 243.CrossRefGoogle Scholar
Giulietti Andre, A., Dufrenoy, A., Dobosz Giulietti, S., Hosokai, D., Koester, T., Kotaki, P., Labate, H., Levato, L., Nuter, T., Pathak, R., Monot, N. C., Gizzi, P., Gizzi, L. A. and Leonida, A. (2013), “Space- and Time-Resolved Observation of Extreme Laser Frequency Upshifting during Ultrafast-Ionization,” Physics of Plasmas 20, 082307.CrossRefGoogle Scholar
Gonsalves, A. J., Nakamura, K., Daniels, J., Benedetti, C., Pieronek, C., de Raadt, T. C. H., Steinke, S., Bin, J. H., Bulanov, S. S., van Tilborg, J., Geddes, C. G. R., Schroeder, C. B., Toth, C., Esarey, E., Swanson, K., Fan-Chiang, L., Bagdarov, G., Bobrova, N., Gasilov, V., Korn, G., Sasorov, P. and Leemans, W. P. (2019) “Petawatt Laser Guiding and Electron Beam Acceleration to 8 GeV in a Laser-Heated Capillary Discharge Waveguide,” Physical Review Letters 122, 084801.CrossRefGoogle Scholar
Guerin, S., Laval, G., Mora, P., Adam, J. C., Heron, A. and Bendib, A. (1995), “Modulational and Raman Instabilities in the Relativistic Regime,” Physics of Plasmas 2, 2807.CrossRefGoogle Scholar
Hazra, D., Moorti, A., Rao, B. S., Upadhyay, A., Chakera, J. A. and Naik, P. A. (2018), “Betatron Resonance Electron Acceleration and Generation of Relativistic Electron Beams Using 200fs Ti: Sapphire Laser Pulses,” Plasma Physics and Controlled Fusion 60, 085015.CrossRefGoogle Scholar
Hooker, S. M. (2013), “Developments in Laser-Driven Plasma Accelerators,” Nature Photonics 7, 775.CrossRefGoogle Scholar
Jones, R. D. and Lee, K. (1982), “Kinetic-Theory, Transport, and Hydrodynamics of a High-Z Plasma in the Presence of an Intense Laser Field,” Physics of Fluids 25, 2307.CrossRefGoogle Scholar
Joshi, C. (2017), “Laser-Driven Plasma Accelerators Operating in the Self-Guided, Blowout Regime,” IEEE Transactions on Plasma Science 45, 3134.CrossRefGoogle Scholar
Kahaly, S., Sylla, F., Lifschitz, A., Flacco, A., Veltcheva, M. and Malka, V. (2016), “Detailed Experimental Study of Ion Acceleration by Interaction of an Ultra-Short Intense Laser with an Underdense Plasma,” Scientific Reports 6, 31647.CrossRefGoogle ScholarPubMed
Kandidov, V. P., Shlenov, S. A. and Kosareva, O. G. (2009), “Filamentation of High-Power Femtosecond Laser Radiation,” Quantum Electronics 39, 205.CrossRefGoogle Scholar
Kar, S., Borghesi, M., Cecchetti, C. A., Romagnani, L., Ceccherini, F., Liseykina, T. V., Macchi, A., Jung, R., Osterholz, J., Willi, O., Gizzi, L. A., Schiavi, A., Galimberti, M. and Heathcote, R. (2007), “Dynamics of Charge-Displacement Channeling in Intense Laser–Plasma Interactions,” New Journal of Physics 9, 402.CrossRefGoogle Scholar
Kim, J. K. and Umstadter, D. (1999), “Cold Relativistic Wavebreaking Threshold of Two-Dimensional Plasma Waves,” in Advanced Accelerator Concepts, Eighth Workshop, Lawson, W., Bellamy, C. and Brosius, D. F., eds., pp. 404.Google Scholar
Kostyukov, I., Pukhov, A. and Kiselev, S. (2004), “Phenomenological Theory of Laser–Plasma Interaction in Bubble Regime,” Physics of Plasmas 11, 5256.CrossRefGoogle Scholar
Krall, J., Ting, A., Esarey, E. and Sprangle, P. (1993), “Enhanced Acceleration in a Self-Modulated-Laser Wake-Field Accelerator,” Physical Review E 48, 2157.CrossRefGoogle Scholar
Krushelnick, K., Clark, E. L., Najmudin, Z., Salvati, M., Santala, M. I. K., Tatarakis, M., Dangor, A. E., Malka, V., Neely, D., Allott, R. and Danson, C. (1999), “Multi-MeV Ion Production from High-Intensity Laser Interactions with Underdense Plasmas,” Physical Review Letters 83, 737.CrossRefGoogle Scholar
Langdon, A. B. (1980), “Non-Linear Inverse Bremsstrahlung and Heated-Electron Distributions,” Physical Review Letters 44, 575.CrossRefGoogle Scholar
Leemans, W. P., Clayton, C. E., Mori, W. B., Marsh, K. A., Kaw, P. K., Dyson, A., Joshi, C. and Wallace, J. M. (1992a), “Experiments and Simulations of Tunnel-Ionized Plasmas,” Physical Review A 46, 1091.CrossRefGoogle ScholarPubMed
Leemans, W. P., Joshi, C., Mori, W. B., Clayton, C. E. and Johnston, T. W. (1992b), “Nonlinear Dynamics of Driven Relativistic Electron-Plasma Waves,” Physical Review A 46, 5112.CrossRefGoogle ScholarPubMed
Lu, W., Huang, C., Zhou, M., Mori, W. B. and Katsouleas, T. (2006), “Nonlinear Theory for Relativistic Plasma Wakefields in the Blowout Regime,” Physical Review Letters 96, 165002.CrossRefGoogle ScholarPubMed
Lu, W., Tzoufras, M., Joshi, C., Tsung, F. S., Mori, W. B., Vieira, J., Fonseca, R. A. and Silva, L. O. (2007), “Generating Multi-GeV Electron Bunches Using Single Stage Laser Wakefield Acceleration in a 3D Nonlinear Regime,” Physical Review Special Topics: Accelerators and Beams 10, 061301.Google Scholar
Mackinnon, A. J., Borghesi, M., Iwase, A., Jones, M. W., Pert, G. J., Rae, S., Burnett, K. and Willi, O. (1996), “Quantitative Study of the Ionization-Induced Refraction of Picosecond Laser Pulses in Gas-Jet Targets,” Physical Review Letters 76, 1473.CrossRefGoogle ScholarPubMed
Malka, V. (2012), “Laser Plasma Accelerators,” Physics of Plasmas 19, 055501.CrossRefGoogle Scholar
Malka, V., Faure, J., Gauduel, Y. A., Lefebvre, E., Rousse, A. and Phuoc, K. T. (2008), “Principles and Applications of Compact Laser-Plasma Accelerators,” Nature Physics 4, 447.CrossRefGoogle Scholar
Marburger, J. H (1975), “Self-focusing: Theory,” Progress in Quantum Electronics 4, 35.CrossRefGoogle Scholar
McKinstrie, C. J. and Bingham, R. (1992), “Stimulated Raman Forward Scattering and the Relativistic Modulational Instability of Light Waves in Rarefied Plasma,” Physics of Fluids B – Plasma Physics 4, 2626.CrossRefGoogle Scholar
Mlejnek, M., Wright, E. M. and Moloney, J. V. (1999), “Moving-Focus versus Self-Waveguiding Model for Long-Distance Propagation of Femtosecond Pulses in Air,” IEEE Journal of Quantum Electronics 35, 1771.CrossRefGoogle Scholar
Monot, P., Auguste, T., Lompre, L. A., Mainfray, G. and Manus, C. (1992), “Focusing Limits of a Terawatt Laser in an Underdense Plasma,” Journal of the Optical Society of America B – Optical Physics 9, 1579.CrossRefGoogle Scholar
Mori, W. B. (1997), “The Physics of the Nonlinear Optics of Plasmas at Relativistic Intensities for Short-Pulse Lasers,” IEEE Journal of Quantum Electronics 33, 1942.CrossRefGoogle Scholar
Mori, W. B., Decker, C. D., Hinkel, D. E. and Katsouleas, T. (1994), “Raman Forward Scattering of Short-Pulse High-Intensity Lasers,” Physical Review Letters 72, 1482.CrossRefGoogle ScholarPubMed
Nibbering, E. T. J., Curley, P. F., Grillon, G., Prade, B. S., Franco, M. A., Salin, F. and Mysyrowicz, A. (1996), “Conical Emission from Self-Guided Femtosecond Pulses in Air,” Optics Letters 21, 62.CrossRefGoogle ScholarPubMed
Noble, R. J. (1985), “Plasma-Wave Generation in the Beat-Wave Accelerator,” Physical Review A 32, 460.CrossRefGoogle ScholarPubMed
Panwar, A. and Sharma, A. K. (2009), “Self-Phase Modulation of a Laser in Self-Created Plasma Channel,” Laser and Particle Beams 27, 249.CrossRefGoogle Scholar
Penetrante, B. M., Bardsley, J. N., Wood, W. M., Siders, C. W. and Downer, M. C. (1992), “Ionization-Induced Frequency-Shifts in Intense Femtosecond Laser-Pulses,” Journal of the Optical Society of America B – Optical Physics 9, 2032.CrossRefGoogle Scholar
Pert, G. J. (1972), “Inverse Bremsstrahlung Absorption in Large Radiation Fields During Binary Collisions: Classical Theory,” Journal of Physics A: General Physics 5, 506.CrossRefGoogle Scholar
Phuoc, K. T., Burgy, F., Rousseau, J. P., Malka, V., Rousse, A., Shah, R., Umstadter, D., Pukhov, A. and Kiselev, S. (2005), “Laser Based Synchrotron Radiation,” Physics of Plasmas 12, 023101.CrossRefGoogle Scholar
Pukhov, A., Sheng, Z. M. and Meyer-ter-Vehn, J. (1999), “Particle Acceleration in Relativistic Laser Channels,” Physics of Plasmas 6, 2847.CrossRefGoogle Scholar
Rae, S. C. (1993), “Ionization-Induced Defocusing of Intense Laser-Pulses in High-Pressure Gases,” Optics Communications 97, 25.CrossRefGoogle Scholar
Rajouria, S. K., Malik, H. K., Tripathi, V. K. and Kumar, P. (2015), “Step Density Model of Laser Sustained Ion Channel and Coulomb Explosion,” Physics of Plasmas 22, 023104.CrossRefGoogle Scholar
Rankin, R., Capjack, C. E., Burnett, N. H. and Corkum, P. B. (1991), “Refraction Effects Associated with Multiphoton Ionization and Ultrashort-Pulse Laser Propagation in Plasma Wave-Guides,” Optics Letters 16, 835.CrossRefGoogle Scholar
Rau, B., Siders, C. W., LeBlanc, S. P., Fisher, D. L., Downer, M. C. and Tajima, T. (1997), “Spectroscopy of Short, Intense Laser Pulses due to Gas Ionization Effects,” Journal of the Optical Society of America B-Optical Physics 14, 643.CrossRefGoogle Scholar
Ritchie, B. (1994), “Relativistic Self-Focusing and Channel Formation in Laser–Plasma Interactions,” Physical Review E 50, R687.CrossRefGoogle ScholarPubMed
Sakharov, A. S. and Kirsanov, V. I. (1994), “Theory of Raman-Scattering for a Short Ultrastrong Laser-Pulse in a Rarefied Plasma,” Physical Review E 49, 3274.CrossRefGoogle Scholar
Seely, J. F. and Harris, E. G. (1973), “Heating of a Plasma by Multiphoton Inverse Bremsstrahlung,” Physical Review A 7, 1064.CrossRefGoogle Scholar
Silin, V. P. (1965), “Nonlinear High-Frequency Plasma Conductivity,” Soviet Physics JETP-USSR 20, 1510.Google Scholar
Sprangle, P., Tang, C. M. and Esarey, E. (1987), “Relativistic Self-Focusing of Short-Pulse Radiation Beams in Plasmas,” IEEE Transactions on Plasma Science 15, 145.CrossRefGoogle Scholar
Sprangle, P., Esarey, E. and Ting, A. (1990a), “Nonlinear-Interaction of Intense Laser-Pulses in Plasmas,” Physical Review A 41, 4463.CrossRefGoogle ScholarPubMed
Sprangle, P., Esarey, E. and Ting, A. (1990b), “Nonlinear-Theory of Intense Laser–Plasma Interactions,” Physical Review Letters 64, 2011.Google ScholarPubMed
Sprangle, P., Esarey, E., Krall, J. and Joyce, G. (1992), “Propagation and Guiding of Intense Laser-Pulses in Plasmas,” Physical Review Letters 69, 2200.CrossRefGoogle ScholarPubMed
Sprangle, P., Esarey, E. and Krall, J. (1996), “Self-Guiding and Stability of Intense Optical Beams in Gases Undergoing Ionization,” Physical Review E 54, 4211.CrossRefGoogle ScholarPubMed
Tajima, T. and Dawson, J. M. (1979), “Laser Electron-Accelerator,” Physical Review Letters 43, 267.CrossRefGoogle Scholar
Thomas, A. G. R. and Krushelnick, K. (2009), “Betatron X-Ray Generation from Electrons Accelerated in a Plasma Cavity in the Presence of Laser Fields,” Physics of Plasmas 16, 103103.CrossRefGoogle Scholar
Trines, R. and Norreys, P. A. (2006), “Wave-Breaking Limits for Relativistic Electrostatic Waves in a One-Dimensional Warm Plasma,” Physics of Plasmas 13, 123102.CrossRefGoogle Scholar
Tripathi, V. K., Taguch, T. and Liu, C. S. (2005), “Plasma Channel Charging by an Intense Short Pulse Laser and Ion Coulomb Explosion,” Physics of Plasmas 12, 043106.CrossRefGoogle Scholar
Tzoufras, M., Lu, W., Tsung, F. S., Huang, C., Mori, W. B., Katsouleas, T., Vieira, J., Fonseca, R. A. and Silva, L. O. (2009), “Beam Loading by Electrons in Nonlinear Plasma Wakes,” Physics of Plasmas 16, 056705.CrossRefGoogle Scholar
Tzoufras, M., Lu, W., Tsung, F. S., Huang, C., Mori, W. B., Vieira, J., Fonseca, R. A. and Silva, L. O. (2007), “The Physical Picture of Beam Loading in the Blowout Regime,” 2007 IEEE Particle Accelerator Conference, Vols 1–11.Google Scholar
Umstadter, D. (2003), “Relativistic Laser–Plasma Interactions,” Journal of Physics D – Applied Physics 36, R151.CrossRefGoogle Scholar
Umstadter, D., Esarey, E. and Kim, J. (1994), “Nonlinear Plasma-Waves Resonantly Driven by Optimized Laser-Pulse Trains,” Physical Review Letters 72, 1224.CrossRefGoogle ScholarPubMed
Umstadter, D., Chen, S. Y., Maksimchuk, A., Mourou, G. and Wagner, R. (1996), “Nonlinear Optics in Relativistic Plasmas and Laser Wake Field Acceleration of Electrons,” Science 273, 472.CrossRefGoogle ScholarPubMed
Umstadter, D., Sepke, S. and Chen, S. Y. (2005), “Relativistic Nonlinear Optics,” in Advances in Atomic Molecular and Optical Physics, Vol. 52, Berman, P. R. and Lin, C. C., eds., p. 331.Google Scholar
Wang, X. M., Zgadzaj, R., Fazel, N., Li, Z. Y., Yi, S. A., Zhang, X., Henderson, W., Chang, Y. Y., Korzewkwa, R., Tsai, H. E., Pai, C. H., Quevedo, H., Dyer, G., Gaul, E.. Martinez, M., Bernstein, A. C., Borger, T., Spinks, M., Donovan, M., Khudik, V., Shvets, G., Ditmire, T. and Downer, M. C. (2013), “Quasi-monoenergetic Laser-Plasma Acceleration of Electrons to 2 GeV,” Nature Communications 4, 1988.Google ScholarPubMed
Watts, I., Zepf, M., Clark, E. L., Tatarakis, M., Krushelnick, K., Dangor, A. E., Allott, R., Clarke, R. J., Neely, D. and Norreys, P. A. (2002), “Measurements of Relativistic Self-Phase-Modulation in Plasma,” Physical Review E 66, 036409.CrossRefGoogle ScholarPubMed
Wilks, S. C., Kruer, W. L., Estabrook, K. and Langdon, A. B. (1992), “Theory and Simulation of Stimulated Raman Scatter at Near-Forward Angles,” Physics of Fluids B – Plasma Physics 4, 2794.CrossRefGoogle Scholar
Albritton, J. R. and Langdon, A. B. (1980), “Profile Modification and Hot-Electron Temperature from Resonant Absorption at Modest Intensity,” Physical Review Letters 45, 1794.CrossRefGoogle Scholar
Atzeni, S., Schiavi, A. and Davies, J. R. (2009), “Stopping and Scattering of Relativistic Electron Beams in Dense Plasmas and Requirements for Fast Ignition,” Plasma Physics and Controlled Fusion 51, 015016.CrossRefGoogle Scholar
Bae, L. J. and Cho, B. I. (2015), “Coherent Transition Radiation from Thin Targets Irradiated by High Intensity Laser Pulses,” Current Applied Physics 15, 242.CrossRefGoogle Scholar
Baeva, T., Gordienko, S. and Pukhov, A. (2006), “Theory of High-Order Harmonic Generation in Relativistic Laser Interaction with Overdense Plasma,” Physical Review E 74, 046404.CrossRefGoogle ScholarPubMed
Beg, F. N., Bell, A. R., Dangor, A. E., Danson, C. N., Fews, A. P., Glinsky, M. E., Hammel, B. A., Lee, P., Norreys, P. A. and Tatarakis, M. (1997), “A Study of Picosecond Laser-Solid Interactions up to ,” Physics of Plasmas 4, 447.Google Scholar
Bell, A. R., Davies, J. R. and Guerin, S. M. (1997), “Magnetic Field in Short-Pulse High-Intensity Laser-Solid Experiments,” Physical Review E 58, 2471.CrossRefGoogle Scholar
Bell, A. R., Davies, J. R., Guerin, S. and Ruhl, H. (1998), “Fast-Electron Transport in High-Intensity Short-Pulse Laser-Solid Experiments,” Plasma Physics and Controlled Fusion 39, 653.CrossRefGoogle Scholar
Bell, A. R. and Kingham, R. J. (2003), “Resistive Collimation of Electron Beams in Laser-Produced Plasmas,” Physical Review Letters 91, 035003.CrossRefGoogle ScholarPubMed
Belyaev, V. S., Krainov, V. P., Lisitsa, V. S. and Matafonov, A. P. (2008), “Generation of Fast Charged Particles and Superstrong Magnetic Fields in the Interaction of Ultrashort High-Intensity Laser Pulses with Solid Targets,” Physics-Uspekhi 51, 793.CrossRefGoogle Scholar
Borghesi, M., Fuchs, J., Bulanov, S. V., Mackinnon, A. J., Patel, P. K. and Roth, M. (2006), “Fast Ion Generation by High-Intensity Laser Irradiation of Solid Targets and Applications,” Fusion Science and Technology 49, 412.CrossRefGoogle Scholar
Borghesi, M. J., MacKinnon, A. J., Bell, A. R., Gaillard, R. and Willi, O. (1998), “Megagauss Magnetic Field Generation and Plasma Jet Formation on Solid Targets Irradiated by an Ultraintense Picosecond Laser Pulse,” Physical Review Letters 81, 112.CrossRefGoogle Scholar
Brunel, F. (1987), “Not-So-Resonant, Resonant Absorption,” Physical Review Letters 59, 52.CrossRefGoogle ScholarPubMed
Cai, H. B., Yu, W., Zhu, S. P. and Zheng, C. Y. (2006a), “Short-Pulse Laser Absorption via J x B Heating in Ultrahigh Intensity Laser Plasma Interaction,” Physics of Plasmas 13, 113105.CrossRefGoogle Scholar
Cai, H. B., Yu, W., Zhu, S. P., Zheng, C. Y., Cao, L. H. and Pei, W. B. (2006b), “Vacuum Heating in the Interaction of Ultrashort, Relativistically Strong Laser Pulses with Solid Targets,” Physics of Plasmas 13, 063108.CrossRefGoogle Scholar
Califano, F., Pegoraro, F. and Bulanov, S. V. (1997), “Spatial Structure and Time Evolution of the Weibel Instability in Collisionless Inhomogeneous Plasmas,” Physical Review E 56, 963.CrossRefGoogle Scholar
Carman, R. L., Forslund, D. W. and Kindel, J. M. (1980), ”Visible Harmonic Emission as a Way of Measuring Profile Steepening,” Physical Review Letters 46, 29.CrossRefGoogle Scholar
Cattani, F., Kim, A., Anderson, D. and Lisak, M. (2000), “Threshold of Induced Transparency in the Relativistic Interaction of an Electromagnetic Wave with Overdense Plasmas,” Physical Review E 62, 1234.CrossRefGoogle ScholarPubMed
Catto, P. J. and More, R. M. (1977), “Sheath Inverse Bremsstrahlung in Laser-Produced Plasmas,” Physics of Fluids 20, 704.CrossRefGoogle Scholar
Chen, C. D., Patel, P. K., Hey, D. S., Mackinnon, A. J., Key, M. H., Akli, K. U., Bartal, T. and Beg, F. N. (2009), “Bremsstrahlung and K-alpha Fluorescence Measurements for Inferring Conversion Efficiencies into Fast Ignition Relevant Hot Electrons,” Physics of Plasmas 16, 082705.CrossRefGoogle Scholar
Chen, H., Link, A., Sentoku, Y., Audebert, P., Fiuza, F., Hazi, A., Heeter, R. F., Hill, M., Hobbs, L., Kemp, A. J., Kemp, G. E., Kerr, S., Meyerhofer, D. D., Myatt, J., Nagel, S. R., Park, J., Tommasini, R. and Williams, G. J. (2015), “The Scaling of Electron and Positron Generation in Intense Laser–Solid Interactions,” Physics of Plasmas 22, 056705.CrossRefGoogle Scholar
Chen, H., Wilks, S. C., Kruer, W. L., Patel, P. K. and Shepherd, R. (2009), “Hot Electron Energy Distributions from Ultraintense Laser Solid Interactions,” Physics of Plasmas 16, 020705.CrossRefGoogle Scholar
Cho, B. I., Osterholz, J., Bernstein, A. C., Dyer, G. M., Karmakar, A., Pukhov, A. and Ditmire, T. (2009), “Characterization of Two Distinct, Simultaneous Hot Electron Beams in Intense Laser–Solid Interactions,” Physical Review E 80, 055402.CrossRefGoogle ScholarPubMed
Cobble, J. A., Kyrala, G. A., Hauer, A. A., Taylor, A. J., Gomez, C. C., Delamater, N. D. and Schappert, G. T. (1989), “Kilovolt X-Ray Spectroscopy of a Subpicosecond-Laser-Excited Source,” Physical Review A 39, 454.CrossRefGoogle ScholarPubMed
Consoli, F., Tikhonchuk, V. T., Bardon, M., Bradford, P., Carroll, D. C., Cikhardt, J., Cipriani, M., Clarke, R. J., Cowen, T. E., Danson, C. N., De Angelis, R., De Marco, M., Dubois, J. L., Etchessahar, B., Garcia, A. L., Hillier, D. I., Honsa, A., Jiang, W. M., Kmetik, V., Krasa, J., Li, Y. T., Lubrano, F., McKenna, P., Metzkes-Ng, J., Poye, A., Principe, I., Raczka, P., Smith, R. A., Vrana, R., Woolsey, N. C., Zemaiyte, E., Zhang, Y. H., Zhang, Z., Zielbauer, B. and Neely, D. (2020), “Laser Produced Electromagnetic Pulses: Generation, Detection and Mitigation,” High Power Laser Science and Engineering 8, e22.CrossRefGoogle Scholar
Cowan, T. E., Perry, M. D., Key, M. H., Ditmire, T. R., Hatchett, S. P., Henry, E. A., Moody, J. D., Moran, M. J., Pennington, D. M., Phillips, T. W., Sangster, T. C., Sefcik, J. A., Singh, M. S., Snavely, R. A., Stoyer, M. A., Wilks, S. C., Young, P. E., Takahashi, Y., Don, B., Fountain, W., Parnell, T., Johnson, J., Hunt, A. W. and Kuhl, T. (1999), “High Energy Electrons, Nuclear Phenomena and Heating in Petawatt Laser-Solid Experiments,” Laser and Particle Beams 17, 773.CrossRefGoogle Scholar
Cowan, T. E., Hunt, A. W., Phillips, T. W., Wilks, S. C., Perry, M. D., Brown, C., Fountain, W., Hatchett, S., Johnson, J., Key, M. H., Parnell, T., Pennington, D. M., Snavely, R. A. and Takahashi, Y. (2000a), “Photonuclear Fission from High Energy Electrons from Ultraintense Laser–Solid Interactions,” Physical Review Letters 84, 903.CrossRefGoogle ScholarPubMed
Cowan, T. E., Roth, M., Johnson, J., Brown, C., Christl, M., Fountain, W., Hatchett, S., Henry, E. A., Hunt, A. W., Key, M. H., MacKinnon, A., Parnell, T., Pennington, D. M., Perry, M. D., Phillips, T. W., Sangstewr, T. C., Singh, M., Snavely, R., Stoyer, M., Takahashi, Y., Wilks, S. C. and Yasuike, K. (2000b), “Intense Electron and Proton Beams from Petawatt Laser–Matter Interactions,” Nuclear Instruments & Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 455, 130.CrossRefGoogle Scholar
Crow, J. E., Auer, P. L. and Allen, J. E. (1975), “Expansion of a Plasma into a Vacuum,” Journal of Plasma Physics 14, 65.CrossRefGoogle Scholar
Cui, Y. Q., Wang, W. M., Sheng, Z. M., Li, Y. T. and Zhang, J. (2013), “Laser Absorption and Hot Electron Temperature Scalings in Laser Plasma Interactions,” Plasma Physics and Controlled Fusion 55, 085008.CrossRefGoogle Scholar
Daido, H., Nishiuchi, M. and Pirozhkov, A. S. (2012), “Review of Laser-Driven Ion Sources and Their Applications,” Reports on Progress in Physics 75, 056401.CrossRefGoogle ScholarPubMed
Ditmire, T., Roth, M., Patel, P. K., Callahan, D., Cheriaux, G., Gibbon, P., Hammond, D., Hannasch, A., Jarrot, L. C., Shaumann, G., Theobald, W., Therrot, C., Turianska, O., Vaisseau, X., Wasser, F., Zähter, S., Zimmer, M. and Goldstein, W. (2023), “Focused Energy, A New Approach Towards Inertial Fusion Energy,” Journal of Fusion Energy 42, 27.CrossRefGoogle Scholar
Eliasson, B., Liu, C. S., Shao, Z., Sagdeev, R. Z. and Shukla, P. K. (2009), “Laser Acceleration of Monoenergetic Protons via a Double Layer Emerging from an Ultra-thin Foil,” New Journal of Physics 11, 073006.CrossRefGoogle Scholar
Eremin, V. I., Korzhimanov, A. V. and Kim, A. V. (2010), “Relativistic Self-Induced Transparency Effect during Ultraintense Laser Interaction with Overdense Plasmas: Why it Occurs and its Use for Ultrashort Electron Bunch Generation,” Physics of Plasmas 17, 043102.CrossRefGoogle Scholar
Estabrook, K. and Kruer, W. L. (1978), “Properties of Resonantly Heated Electron Distributions,” Physical Review Letters 40, 42.CrossRefGoogle Scholar
Findley, D. J. S. (1989), “Analytic Representation of Bremsstrahlung Spectra from Thick Radiators as a Function of Photon Energy and Angle,” Nuclear Instruments and Methods A: Accelerators, Spectrometers, Detectors and Associated Equipment 276, 598.CrossRefGoogle Scholar
Forslund, D. W., Kindel, J. M., Lee, K., Lindman, E. L. and Morse, R. L. (1975), “Theory and Simulation of Resonant Absorption in a Hot Plasma,” Physical Review A 11, 679.CrossRefGoogle Scholar
Fuchs, J., Adams, J. C., Amiranoff, F., Baton, S. D., Blanchot, N., Gallant, P., Gremillet, L., Heron, A., Kieffer, J. C., Laval, G., Malka, G., Miquel, J. L., Mora, P., Pepin, H. and Rousseaux, C. (1999), “Experimental Study of Laser Penetration in Overdense Plasmas at Relativistic Intensities. I: Hole Boring through Preformed Plasmas Layers,” Physics of Plasmas 6, 2563.CrossRefGoogle Scholar
Fuchs, J., Antici, P., D’Humieres, E., Lefebvre, E., Borghesi, M., Brambrink, E., Cecchetti, C. A., Kaluza, M., Malka, V., Manclossi, M., Meyroneinc, S., Mora, P., Schreiber, J., Toncian, T., Pepin, H. and Audebert, T. (2006), “Laser-Driven Proton Scaling Laws and New Paths Towards Energy Increase,” Nature Physics 2, 48.CrossRefGoogle Scholar
Galy, J., Maucec, M., Hamilton, D. J., Edwards, R. and Magill, J. (2007), “Bremsstrahlung Production with High-Intensity Laser Matter Interactions and Applications,” New Journal of Physics 9, 23.CrossRefGoogle Scholar
Gibbon, P. and Bell, A. R. (1992), “Collisionless Absorption in Sharp-Edged Plasmas,” Physical Review Letters 68, 1535.CrossRefGoogle ScholarPubMed
Grimes, M. K., Rundquist, A. R., Lee, Y. S. and Downer, M. C. (1999), “Experimental Identification of ‘Vacuum Heating’ at Femtosecond-Laser-Irradiated Metal Surfaces,” Physical Review Letters 82, 4010.CrossRefGoogle Scholar
Gryaznykh, D. A. (1998) “Cross Section for the Production of Electron–Positron Pairs by Electrons in the Field of a Nucleus,” Physics of Atomic Nuclei 61, 394.Google Scholar
Gurevich, A. V., Pariiska, L. V. and Pitaevsk, L. P. (1966), “Self-Similar Motion of Rarefied Plasma,” Soviet Physics JETP-USSR 22, 449.Google Scholar
Haines, M. G., Wei, M. S., Beg, F. N. and Stephens, R. B. (2009), “Hot-Electron Temperature and Laser-Light Absorption in Fast Ignition,” Physical Review Letters 102, 045008.CrossRefGoogle ScholarPubMed
Henig, A., Steinkie, S., Schnurer, M., Sokollik, T., Horlein, R., Kiefer, D., Jung, D., Schreiber, J., Hegelich, B. M., Yan, X. Q., Meyer-ter-Vehn, J., Tajima, T., Nickles, P. V., Sandner, W. and Habs, D. (2009), “Radiation-Pressure Acceleration of Ion Beams Driven by Circularly Polarized Laser Pulses,” Physical Review Letters 103, 245003.CrossRefGoogle ScholarPubMed
Higginson, D. P., McNaney, J. M., Swift, D. C., Petrov, G. M., Davis, J., Frenje, J. A., Jarrott, L. C., Kodama, R., Lancaster, K. L., MacKinnon, A. J, Nakamura, H., Patel, P. K., Tynan, G. and Beg, F. N. (2011), “Production of Neutrons up to 18 MeV in High-Intensity, Short-Pulse Laser Matter Interactions,” Physics of Plasmas 18, 100703.CrossRefGoogle Scholar
Huang, L. G., Takabe, H. and Cowan, T. E. (2019), “Maximizing Magnetic Field Generation in High Power Laser–Solid Interactions,” High Power Laser Science and Engineering 7, e22.CrossRefGoogle Scholar
Key, M. H., Cable, M. D., Cowan, T. E., Estabrook, K. G., Hammel, B. A., Hatchett, S. P., Hentry, E. A., Hijnkel, D. E., Kilkenny, J. D., Koch, J. A., Kruer, W. L., Langdon, A. B., Lasinski, B. F., Lee, R. W., MacGowan, B. J., MacKinnon, A., Kieffer, J. D., Chaker, J. C., M., Matte, J. P., Pepin, H., Cote, C. Y., Beaudoin, Y., Johnston, T. W., Chien, C. Y., Coe, S., Mourou, G. and Peyrusse, O. (1998), “Ultrafast X-Ray Sources,” Physics of Fluids B – Plasma Physics 5, 2676.Google Scholar
Kruer, W. L. and Estabrook, K. (1985), “JxB Heating by Very Intense Laser-Light,” Physics of Fluids 28, 430.CrossRefGoogle Scholar
Lee, K., Forslund, D. W., Kindel, J. M. and Lindman, E. L. (1977), “Theoretical Derivation of Laser-Induced Plasma Profiles,” Physics of Fluids 20, 51.CrossRefGoogle Scholar
Lefebvre, E. and Bonnaud, G. (1997), “Nonlinear Electron Heating in Ultrahigh-Intensity-Laser–Plasma Interaction,” Physical Review E 55, 1011.CrossRefGoogle Scholar
Liang, E. P., Wilks, S. C. and Tabak, M. (1998), “Pair Production by Ultraintense Lasers,” Physical Review Letters 81, 4887.CrossRefGoogle Scholar
Lichters, R., Meyer-ter-Vehn, J. and Pukhov, A. (1996), “Short-Pulse Laser Harmonics from Oscillating Plasma Surfaces Driven at Relativistic Intensity,” Physics of Plasmas 3, 3425.CrossRefGoogle Scholar
Lindl, J. D. and Kaw, P. K. (1971), “Pondermotive Force on Laser-Produced Plasmas,” Physics of Fluids 14, 371.CrossRefGoogle Scholar
Liseykina, T., Mulser, P. and Murakami, M. (2015), “Collisionless Absorption, Hot Electron Generation, and Energy,” Physics of Plasmas 22, 03302.CrossRefGoogle Scholar
Listykina, et al. 2015 Scaling in Intense Laser–Target Interaction,” Physics of Plasmas 22, 033302.CrossRefGoogle Scholar
Macchi, A., Veghini, S., Liseykina, T. V. and Pegoraro, F. (2010), “Radiation Pressure Acceleration of Ultrathin Foils,” New Journal of Physics 12, 045013.CrossRefGoogle Scholar
Macchi, A., Veghini, S. and Pegoraro, F. (2009), “‘Light Sail’ Acceleration Reexamined,” Physical Review Letters 103, 085003.CrossRefGoogle ScholarPubMed
Malka, G. and Miquel, J. L. (1996), “Experimental Confirmation of Ponderomotive-Force Electrons Produced by an Ultrarelativistic Laser Pulse on a Solid Target,” Physical Review Letters 77, 77.CrossRefGoogle Scholar
Mason, R. J. and Tabak, M. (1998), “Magnetic Field Generation in High-Intensity-Laser–Matter Interactions,” Physical Review Letters, 80, 524.CrossRefGoogle Scholar
McKenna, P. and Quinn, M. N. (2013), “Energetic Electron Generation and Transport in Intense Laser–Solid Interactions,” in Laser–Plasma Interactions and Applications, McKenna, P., Neely, D., Bingham, R. and Jaroszynski, D. A., eds. (Heidelberg: Springer).CrossRefGoogle Scholar
Meyerhofer, D. D., Chen, H., Delettrez, J. A., Soom, B., Uchida, S. and Yaakobi, B. (1993), “Resonance-Absorption in High-Intensity Contrast, Picosecond Laser–Plasma Interactions,” Physics of Fluids B – Plasma Physics 5, 2584.CrossRefGoogle Scholar
Mora, P. (2003), “Plasma Expansion into a Vacuum,” Physical Review Letters 90, 185002.CrossRefGoogle ScholarPubMed
Murnane, M. M., Kapteyn, H. C. and Falcone, R. W. (1989), “High-Density Plasmas Produced by Ultrafast Laser Pulses,” Physical Review Letters 62, 155.CrossRefGoogle ScholarPubMed
Myatt, J., Delettrez, J. A., Maximov, A. V., Meyerhofer, D. D., Short, R. W., Stoeckl, C. and Storm, M. (1993) “Optimizing Electron–Positron Pair Production on Kilojoule-Class High-Intensity Lasers for the Purpose of Pair-Plasma Creation,” Physical Review E 79, 066409.CrossRefGoogle Scholar
Naumova, N., Schlegel, T., Tikhonchuk, V. T., Labaune, C., Sokolov, I. V. and Mourou, G. (2009), “Hole Boring in a DT Pellet and Fast-Ion Ignition with Ultraintense Laser Pulses,” Physical Review Letters 102, 025002.CrossRefGoogle Scholar
Nilson, P. M., Theobald, W., Myatt, J., Stoeckl, C., Storm, M., Gotchev, O. V., Zuegel, J. D., Betti, T., Meyerhofer, D. D. and Sangster, T. C. (2008) “High-Intensity Laser–Plasma Interactions in the Refluxing Limit,” Physics of Plasmas 15, 056308.CrossRefGoogle Scholar
Norreys, P. A. (2009), “Progress in Fast Ignition,” in Laser–Plasma Interactions, Jaroszynski, D. A., Bingham, R., Cairns, R. A., eds. (Boca Raton: CRC Press), p. 361.Google Scholar
Norreys, P., Batani, D., Baton, S., Beg, F. N., Kodama, R., Nilson, P. M., Patel, P., Perez, F., Santos, J. J., Scott, R. H., Tikhonchuk, V. T., Wei, M. and Zhang, J. (2014) “Fast Electron Energy Transport in Solid Density and Compressed Plasma,” Nuclear Fusion 54, 054004.CrossRefGoogle Scholar
Ott, E. (1972), “Nonlinear Evolution of Rayleigh-Taylor Instability of a Thin-Layer,” Physical Review Letters 29, 1429.CrossRefGoogle Scholar
Palastro, J. P., Shaw, J. G., Follett, R. K., Colaitis, A., Turnbull, D., Maximov, A. V., Goncharov, V. N. and Froula, D. H. (2018), “Resonance Absorption of a Broadband Laser Pulse,” Physics of Plasmas 25, 123104.CrossRefGoogle Scholar
Pegoraro, F. and Bulanov, S. V. (2007), “Photon Bubbles and Ion Acceleration in a Plasma Dominated by the Radiation Pressure of an Electromagnetic Pulse,” Physical Review Letters 99, 065002.CrossRefGoogle Scholar
Pert, G. J. (1978), “Analytic Theory of Linear Resonant Absorption,” Plasma Physics and Controlled Fusion 20, 175.CrossRefGoogle Scholar
Petrov, G. M., Higginson, D. P., Davis, J., Tz, B. Petrova, McNaney, J. M., McGuffey, C., Qiao, B. and Beg, F. N. (2012), “Generation of High-Energy ( 15 MeV) Neutrons Using Short Pulse High Intensity Lasers,” Physics of Plasmas 19, 093106.CrossRefGoogle Scholar
Ping, Y., Shepherd, R., Lasinski, B. F., Tabak, M., Chen, H., Chung, H. K., Fournier, K. B., Hansen, S. B., Kemp, A., Liedahl, D. A., Widmann, K., Wilks, S. C., Rozmus, W. and Sherlock, M. (2008), “Absorption of Short Laser Pulses on Solid Targets in the Ultrarelativistic Regime,” Physical Review Letters 100, 085004.CrossRefGoogle ScholarPubMed
Price, D. F., More, R. M., Walling, R. S., Guethlein, G., Shepherd, R. L., Stewart, R. E. and White, W. E. (1995), “Absorption of Ultrashort Laser-Pulses by Solid Targets Heated Rapidly to Temperatures 1–1000 eV,” Physical Review Letter 75, 252.CrossRefGoogle ScholarPubMed
Pukhov, A. (2003), “Strong Field Interaction of Laser Radiation,” Reports on Progress in Physics 66, 47.CrossRefGoogle Scholar
Pukhov, A. and Meyer-ter-Veyn, J. (1997), “Laser Hole Boring into Overdense Plasma and Relativistic Electron Currents for Fast Ignition of ICF Targets,” Physical Review Letters 79, 2686.CrossRefGoogle Scholar
Rajouria, S. K., Kumar, K. K. M. and Tripathi, V. K. (2013), “Nonlinear Resonance Absorption of Laser in an Inhomogeneous Plasma,” Physics of Plasmas 20, 083112.CrossRefGoogle Scholar
Reich, C., Gibbon, P., Uschmann, I. and Forster, E. (2000), “Yield Optimization and Time Structure of Femtosecond Laser Plasma K Alpha Sources,” Physical Review Letters 84, 4846.CrossRefGoogle Scholar
Robinson, A. P. L., Zepf, M., Kar, S., Evans, R. G. and Bellei, C. (2008), “Radiation Pressure Acceleration of Thin Foils with Circularly Polarized Laser Pulses,” New Journal of Physics 10, 013021.CrossRefGoogle Scholar
Roth, M., Jung, D., Falk, K., Guler, N., Deppert, O., Devlin, M., Favalli, A., Fernandez, J., Gautier, D., Geissel, M., Haight, R., Hamilton, C. E., Hegelich, B. M., Johnson, R. P., Merrill, F., Schaumann, G., Schoenberg, K., Schollmeier, M., Shimada, T., Taddeucci, T., Tybo, J. L., Wagner, F., Wender, S. A., Wilde, C. H. and Wurden, G. A. (2001), “Fast Ignition by Intense Laser-Accelerated Proton Beams,” Physical Review Letters 86, 436.CrossRefGoogle ScholarPubMed
Roth, M. and Schollmeier, M. (2013), “Ion Acceleration: TNSA,” in Laser–Plasma Interactions and Applications, McKenna, P., Neely, D., Bingham, R. and Jaroszynski, D. A., eds. (Heidelberg: Springer).Google Scholar
Roth, M., Jung, D., Falk, K., Guler, N., Deppert, O., Devlin, M., Favalli, A., Fernandez, J., Gautier, D., Geissel, M., Haight, R., Hamilton, C. E., Hegelich, B. M., Johnson, R. P., Merrill, F., Schaumann, G., Schoenberg, K., Schollmeier, M., Shimada, T., Taddeucci, T., Tybo, J. L., Wagner, F., Wender, S. A., Wilde, C. H. and Wurden, G. A. (2013), “Bright Laser-Driven Neutron Source based on the Relativistic Transparency of Solids,” Physical Review Letters 110, 044802.CrossRefGoogle ScholarPubMed
Rozmus, W. and Tikhonchuk, V. T. (1990), “Skin Effect and Interaction of Short Laser-Pulses with Dense-Plasmas,” Physical Review A 42, 7401.CrossRefGoogle ScholarPubMed
Santala, M. I. K., Zepf, M., Watts, I., Beg, F. N., Clark, E., Tatarkis, M., Kruschelnick, K., Dangor, A. E., McCanny, T., Spencer, I., Singhal, R. P., Ledingham, K. W. D., Wilks, S. C., Machacek, A. C., Wark, J., Allott, R., Clarke, R. J. and Norreys, P. A. (2000), “Effect of the Plasma Density Scale Length on the Direction of Fast Electrons in Relativistic Laser–Solid Interactions,” Physical Review Letters 84, 1459.CrossRefGoogle ScholarPubMed
Schlegel, T., Naumova, N., Tikhonchuk, V. T., Labaune, C., Sokolov, I. V. and Mourou, G. (2009), “Relativistic Laser Piston Model: Ponderomotive Ion Acceleration in Dense Plasmas Using Ultraintense Laser Pulses,” Physics of Plasmas 16, 083103.CrossRefGoogle Scholar
Schmalz, R. F. (1985), “New Self-Similar Solutions for the Unsteady One-Dimensional Expansion of a Gas into a Vacuum,” Physics of Fluids 28, 2923.CrossRefGoogle Scholar
Singh, P. K., Adak, A., Lad, A. D., Chatterjee, G. and Kumar, G. R. (2020), “Two-Plasmon-Decay Induced Fast Electrons in Intense Femtosecond Laser–Solid Interactions,” Physics of Plasmas 27, 083105.CrossRefGoogle Scholar
Snavely, R. A., Key, M. H., Hatchett, S. P., Cowan, T. E., Roth, M., Phillips, T. W., Stoyer, M. A., Henry, E. A., Sangster, T. C., Singh, M. S., Wilks, S. C., MacKinnon, A., Offenberger, A., Pennington, D. M., Yasuike, K., Langdon, A. B., Lasinski, B. F., Johnson, J., Perry, M. D. and Campbell, E. M. (2000), “Intense High-Energy Proton Beams from Petawatt-Laser Irradiation of Solids,” Physical Review Letters 85, 2945.CrossRefGoogle ScholarPubMed
Sudan, R. N. (1993), “Mechanism for the Generation of G-Magnetic Fields in the Interaction of Ultraintense Short Laser-Pulse with an Overdense Plasma Target,” Physical Review Letters 70, 3075.CrossRefGoogle ScholarPubMed
Tabak, M., Hammer, J., Glinksky, M. E., Kruer, W. L., Wilks, S. C., Woodworth, J., Campbell, E. M., Perry, M. D. and Mason, R. J. (1994), “Ignition and High-Gain with Ultrapowerful Lasers,” Physics of Plasmas 1, 1626.CrossRefGoogle Scholar
Tarasevitch, A. and von der Linde, D. (2009), “High Order Harmonic Generation from Solid Targets: Towards Intense Attosecond Pulses,” European Physical Journal-Special Topics 175, 35.CrossRefGoogle Scholar
Tatarakis, M., Gopal, A., Watts, I., Beg, F. N., Dangor, A. E., Krushelnick, K., Wagner, U., Norreys, P. A., Clark, E. L., Zepf, M. and Evans, R. G. (2002), “Measurements of Ultrastrong Magnetic Fields during Relativistic Laser–Plasma Interactions,” Physics of Plasmas 9, 2244.CrossRefGoogle Scholar
Taylor, D., Liang, E., Clarke, T., Henderson, A., Chaguine, P., Wang, X., Dyer, G., Serratto, K., Riley, N., Donovan, M. and Ditmire, T. (2013), “Hot Electron Production Using the Texas Petawatt Laser Irradiating Thick Gold Targets,” High Energy Density Physics 9, 363.CrossRefGoogle Scholar
Teubner, U. and Gibbon, P. (2009), “High-Order Harmonics from Laser-Irradiated Plasma Surfaces,” Reviews of Modern Physics 81, 44.CrossRefGoogle Scholar
Thaury, C. and Quere, F. (2010), “High-Order Harmonic and Attosecond Pulse Generation on Plasma Mirrors: Basic Mechanisms,” Journal of Physics B – Atomic Molecular and Optical Physics 43, 213001.CrossRefGoogle Scholar
Tsakiris, G. D., Eidmann, K., Meyer-ter-Vehn, J. and Krausz, F. (2006), “Route to Intense Single Attosecond Pulses,” New Journal of Physics 8, 19.CrossRefGoogle Scholar
Wagner, U., Tatarkis, M., Gopal, A., Beg, F. N., Clark, E. L., Dangor, A. E., Evans, R. G., Haines, M. G., Mangles, S. P. D., Norrieys, P. A., Wei, M. S., Zepf, M. and Krruschelnick, K. (2004), “Laboratory Measurements of 0.7 GG Magnetic Fields Generated during High-Intensity Laser Interactions with Dense Plasmas,” Physical Review E 70, 026401.CrossRefGoogle ScholarPubMed
Weibel, E. S. (1959), “Spontaneously Growing Transverse Waves in a Plasma Due to an Anisotropic Velocity Distribution,” Physical Review Letters 2, 83.CrossRefGoogle Scholar
Wharton, K. B., Hatchett, S. P., Wilks, S. C., Key, M. H., Moody, J. D., Yanovsky, V., Offenberger, A. A., Hammel, B. A., Perry, M. D. and Joshi, C. (1998), “Experimental Measurements of Hot Electrons Generated by Ultraintense () Laser–Plasma Interactions on Solid-Density Targets,” Physical Review Letters 81, 822.CrossRefGoogle Scholar
Wickens, L. M. and Allen, J. E. (1979), “Free Expansion of a Plasma with 2 Electron Temperatures,” Journal of Plasma Physics 22, 167.CrossRefGoogle Scholar
Wickens, L. M. and Allen, J. E. (1981), “Ion Emission from Laser-Produced, Multi-Ion Species, 2-Electron Temperature Plasmas,” Physics of Fluids 24, 1894.CrossRefGoogle Scholar
Wickens, L. M., Allen, J. E. and Rumsby, P. T. (1978), “Ion Emission from Laser-Produced Plasmas with 2 Electron Temperatures,” Physical Review Letters 41, 243.CrossRefGoogle Scholar
Wilks, S. C. and Kruer, W. L. (1997), “Absorption of Ultrashort, Ultra-Intense Laser Light by Solids and Overdense Plasmas,” IEEE Journal of Quantum Electronics 33, 1954.CrossRefGoogle Scholar
Wilks, S. C., Kruer, W. L., Tabak, M. and Langdon, A. B. (1992), “Absorption of Ultra-Intense Laser-Pulses,” Physical Review Letters 69, 1383.CrossRefGoogle ScholarPubMed
Wilks, S. C., Langdon, A. B., Cowan, T. E., Roth, M., Singh, M., Hatchett, S., Key, M. H., Pennington, D., MacKinnon, A. and Snavely, R. A. (2001), “Energetic Proton Generation in Ultra–Intense Laser–Solid Interactions,” Physics of Plasmas 8, 542.CrossRefGoogle Scholar
Yang, T. Y. B., Kruer, W. L., Langdon, A. B. and Johnston, T. W. (1996), “Mechanisms for Collisionless Absorption of Light Waves Obliquely Incident on Overdense Plasmas with Steep Density Gradients,” Physics of Plasmas 3, 2702.CrossRefGoogle Scholar
Yang, T. Y. B., Kruer, W. L., More, R. M. and Langdon, A. B. (1995), “Absorption of Laser-Light in Overdense Plasmas by Sheath Inverse Bremsstrahlung,” Physics of Plasmas 2, 3146.CrossRefGoogle Scholar
Yin, L., Albright, B. J., Jung, D., Bowers, K. J., Shah, R. C., Palaniyappan, S., Fernandez, J. C. and Hegelich, B. M. (2011), “Mono-energetic Ion Beam Acceleration in Solitary Waves during Relativistic Transparency Using High-Contrast Circularly Polarized Short-Pulse Laser and Nanoscale Targets,” Physics of Plasmas 18, 053103.CrossRefGoogle Scholar
Yuan, X. H., Robinson, A. P. L., Quinn, M. N., Carroll, D. C., Borghesi, M., Clarke, R. J., Evans, R. G., Fuchs, J., Gallegos, P., Lancia, L., Neely, D., Quinn, K., Romagnani, L., Sarri, G., Wilson, P. A. and McKenna, P. (2010), “Effect of Self-Generated Magnetic Fields on Fast-Electron Beam Divergence in Solid Targets,” New Journal of Physics 12, 063018.CrossRefGoogle Scholar
Zel’dovich, Ya. , B. and Kompaneets, A. S. (1959), “On the Propagation of Heat for Nonlinear Heat Conduction,” in Collection Dedicated to the Seventieth Birthday of Academician A. F. Ioffe, ed. P. I. Lukirskii, (Moscow: Izdat Akad. Nauk SSSR).Google Scholar
Zepf, M., CastroColin, M., Chambers, D., Preston, S. G., Wark, J. S., Zhang, J., Danson, C. N., Neely, D., Norreys, P. A., Dangor, A. E., Dyson, A., Lee, P.. Fews, A. P., Gibbon, P., Moustaizis, S. and Key, M. (1996), “Measurements of the Hole Boring Velocity from Doppler Shifted Harmonic Emission from Solid Targets,” Physics of Plasmas 3, 3242.CrossRefGoogle Scholar
Zheng, J., Tanaka, K. A., Sato, T., Yabuuchi, T., Kurahashi, T., Kitagawa, Y., Kodama, R., Norimatsu, T. and Yamanaka, T. (2004), “Study of Hot Electrons by Measurement of Optical Emission from the Rear Surface of a Metallic Foil Irradiated with Ultraintense Laser Pulse,” Physical Review Letters 92, 165001.CrossRefGoogle ScholarPubMed
Zimmer, M., Scheuren, S., Ebert, T., Schaumann, G., Schmitz, B., Hornung, J., Bagnoud, V., Rödel, C. and Roth, M. (2021), “Analysis of Laser-Proton Acceleration Experiments for Development of Empirical Scaling Laws,” Physical Review E 104, 045210.CrossRefGoogle ScholarPubMed
Braginskii, S. I. (1965), “Transport Processes in a Plasma,” in Reviews of Plasma Physics, Vol. 1, Leontovich, M. A., ed. (New York: Consultants Bureau).Google Scholar
Spitzer, L. and Härm, R. (1953), “Transport Phenomena in Completely Ionized Gas,” Physical Review 89, 977.CrossRefGoogle Scholar

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Todd Ditmire, University of Texas, Austin
  • Book: Strong Field Physics
  • Online publication: 05 July 2025
  • Chapter DOI: https://doi.org/10.1017/9781139027984.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Todd Ditmire, University of Texas, Austin
  • Book: Strong Field Physics
  • Online publication: 05 July 2025
  • Chapter DOI: https://doi.org/10.1017/9781139027984.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Todd Ditmire, University of Texas, Austin
  • Book: Strong Field Physics
  • Online publication: 05 July 2025
  • Chapter DOI: https://doi.org/10.1017/9781139027984.012
Available formats
×