Published online by Cambridge University Press: 05 June 2012
We have previously shown that the translational energy mode for an ideal gas, even through a shock wave, invariably displays classical equilibrium behavior. In contrast, the rotational, vibrational, and electronic modes generally require significant time for re-equilibration upon disturbances in their equilibrium particle distributions. On this basis, we may expand our statistical discourse to nonequilibrium topics by grounding any dynamic redistribution on the presumption of translational equilibrium. For this reason, we now shift to elementary kinetic theory, which focuses solely on the translational motion of a gaseous assembly. Specifically, in this chapter, we consider equilibrium kinetic theory and its applications to velocity distributions, surface collisions, and pressure calculations. We then proceed to nonequilibrium kinetic theory with particular emphasis on calculations of transport properties and chemical reaction rates, as pursued in Chapters 16 and 17, respectively.
The Maxwell–Boltzmann Velocity Distribution
In Section 9.1, we showed that the translational energy mode for a dilute assembly displays classical behavior because of the inherently minute spacing between its discrete energy levels (Δε ≪ kT).
To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.