Skip to main content Accessibility help
×
Hostname: page-component-54dcc4c588-5q6g5 Total loading time: 0 Render date: 2025-10-04T01:01:36.345Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  13 September 2025

David T. Sandwell
Affiliation:
Scripps Institution of Oceanography, University of California, San Diego
Xiaohua Xu
Affiliation:
University of Science and Technology of China
Jingyi Chen
Affiliation:
University of Texas at Austin
Robert J. Mellors
Affiliation:
Scripps Institution of Oceanography, University of California, San Diego
Meng Wei
Affiliation:
University of Rhode Island
Xiaopeng Tong
Affiliation:
Institute of Geophysics, China Earthquake Administration
John B. DeSanto
Affiliation:
University of Washington
Qi Ou
Affiliation:
University of Edinburgh
HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the 'Save PDF' action button.

Information

Type
Chapter
Information
Satellite Radar Interferometry
Theory and Practice
, pp. 184 - 194
Publisher: Cambridge University Press
Print publication year: 2025
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This content is Open Access and distributed under the terms of the Creative Commons Attribution licence CC-BY-NC-ND 4.0 https://creativecommons.org/cclicenses/

References

Adam, N., Kampes, B., Eineder, M., Worawattanamateekul, J., and Kircher, M., The development of a scientific permanent scatterer system, in Proceedings of the Joint ISPRS/EARSeL Workshop “High Resolution Mapping from Space 2003,” ISPRS, 2003.Google Scholar
Agnew, D., 6-Earth tides, Treatise Geophysics, 3, 163–195, 2010.CrossRefGoogle Scholar
Agnew, D. C., SPOTL: Some programs for ocean-tide loading, Technical report, Scripps Institution of Oceanography, 2012.Google Scholar
Altamimi, Z., Rebischung, P., Collilieux, X., Métivier, L., and Chanard, K., ITRF2020: An augmented reference frame refining the modeling of nonlinear station motions, Journal of Geodesy, 97(5), 47, 2023.CrossRefGoogle Scholar
Antoine, S. L., Klinger, Y., Delorme, A., Wang, K., Bürgmann, R., and Gold, R. D., Diffuse deformation and surface faulting distribution from submetric image correlation along the 2019 Ridgecrest, California, ruptures, Bulletin of the Seismological Society of America, 111(5), 2275–2302, 2021.CrossRefGoogle Scholar
Avouac, J.-P., Ayoub, F., Leprince, S., Konca, O., and Helmberger, D. V., The 2005, Mw 7.6 Kashmir earthquake: Sub-pixel correlation of ASTER images and seismic waveforms analysis, Earth and Planetary Science Letters, 249(3–4), 514–528, 2006.CrossRefGoogle Scholar
Bamler, R., and Eineder, M., ScanSAR processing using standard high precision SAR algorithms, IEEE Transactions on Geoscience and Remote Sensing, 34(1), 212–218, 1996.CrossRefGoogle Scholar
Baran, I., Stewart, M., Kampes, B., Perski, Z., and Lilly, P., A modification to the Goldstein Radar interferogram filter, IEEE Transactions on Geoscience and Remote Sensing, 41(9), 2114–2118, 2003.CrossRefGoogle Scholar
Bechor, N. B., and Zebker, H. A., Measuring two-dimensional movements using a single InSAR pair, Geophysical Research Letters, 33(16), 2006.CrossRefGoogle Scholar
Bekaert, D., Walters, R., Wright, T., Hooper, A., and Parker, D., Statistical comparison of InSAR tropospheric correction techniques, Remote Sensing of Environment, 170, 40–47, 2015.CrossRefGoogle Scholar
Bendat, J. S., and Piersol, A. G., Random Data: Analysis and Measurement Procedures, John Wiley & Sons, New York, 2011.Google Scholar
Berardino, P., Fornaro, G., Lanari, R., and Sansosti, E., A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms, IEEE Transactions on Geoscience and Remote Sensing, 40(11), 2375–2383, 2002.CrossRefGoogle Scholar
Bertran-Ortiz, A., and Zebker, H. A., ScanSAR-to-Stripmap mode interferometry processing using ENVISAT/ASAR data, IEEE Transactions on Geoscience and Remote Sensing, 45(11), 3468–3480, 2007.CrossRefGoogle Scholar
Bevis, M., Businger, S., Chiswell, S., Herring, T. A., Anthes, R. A., Rocken, C., and Ware, R. H., GPS meteorology: Mapping zenith wet delays onto precipitable water, Journal of Applied Meteorology (1988–2005), 33(3), 379–386, 1994.Google Scholar
Biggs, J., and Wright, T. J., How satellite InSAR has grown from opportunistic science to routine monitoring over the last decade, Nature Communications, 11(1), 1–4, 2020.CrossRefGoogle ScholarPubMed
Bracewell, R., The Fourier Transform and Its Applications, 2nd ed., McGraw-Hill Book Company, New York, 1978.Google Scholar
Brcic, R., Parizzi, A., Eineder, M., Bamler, R., and Meyer, F., Ionospheric effects in SAR interferometry: An analysis and comparison of methods for their estimation, in 2011 IEEE International Geoscience and Remote Sensing Symposium, pp. 1497–1500, IEEE, 2011.Google Scholar
Bürgmann, R., Rosen, P. A., and Fielding, E. J., Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation, Annual Review of Earth and Planetary Sciences, 28(1), 169–209, 2000.CrossRefGoogle Scholar
Cerri, L., et al., Precision orbit determination standards for the Jason series of altimeter missions, Marine Geodesy, 33(S1), 379–418, 2010.CrossRefGoogle Scholar
Chelton, D. B., and Wentz, F. J., Global microwave satellite observations of sea surface temperature for numerical weather prediction and climate research, Bulletin of the American Meteorological Society, 86(8), 1097–1116, 2005.CrossRefGoogle Scholar
Chen, C. W., and Zebker, H. A., Network approaches to two-dimensional phase unwrapping: Intractability and two new algorithms, Journal of the Optical Society of America A, 17(3), 401–414, 2000.CrossRefGoogle ScholarPubMed
Chen, C. W., and Zebker, H. A., Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization, Journal of the Optical Society of America A, 18(2), 338–351, 2001.CrossRefGoogle ScholarPubMed
Chen, C. W., and Zebker, H. A., Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models, IEEE Transactions on Geoscience and Remote Sensing, 40(8), 1709–1719, 2002.CrossRefGoogle Scholar
Chen, J., Zebker, H. A., and Knight, R., A persistent scatterer interpolation for retrieving accurate ground deformation over InSAR-decorrelated agricultural fields, Geophysical Research Letters, 42(21), 9294–9301, 2015.CrossRefGoogle Scholar
Chen, J., Knight, R., and Zebker, H. A., The temporal and spatial variability of the confined aquifer head and storage properties in the San Luis Valley, Colorado inferred from multiple InSAR missions, Water Resources Research, 53(11), 9708–9720, 2017.CrossRefGoogle Scholar
Colesanti, C., and Wasowski, J., Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry, Engineering Geology, 88(3–4), 173–199 2006.CrossRefGoogle Scholar
Costantini, M., Falco, S., Malvarosa, F., and Minati, F., A new method for identification and analysis of persistent scatterers in series of SAR images, in IGARSS 2008–2008 IEEE International Geoscience and Remote Sensing Symposium, vol. 2, pp. II-449–II-452, 2008.CrossRefGoogle Scholar
Costantini, M., Falco, S., Malvarosa, F., Minati, F., Trillo, F., and Vecchioli, F., Persistent scatterer pair interferometry: Approach and application to COSMO-SkyMed SAR data, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(7), 2869–2879, 2014.CrossRefGoogle Scholar
Curlander, J. C., and McDonough, R. N., Synthetic Aperture Radar: Systems and Signal Processing, John Wiley & Sons, New York, chapter 4, 1991.Google Scholar
Daout, S., Sudhaus, H., Kausch, T., Steinberg, A., and Dini, B., Interseismic and post-seismic shallow creep of the North Qaidam thrust faults detected with a multi-temporal InSAR analysis, Journal of Geophysical Research: Solid Earth, 124(7), 7259–7279, 2019.Google Scholar
Daout, S., Dini, B., Haeberli, W., Doin, M. P., and Parsons, B., Ice loss in the Northeastern Tibetan Plateau permafrost as seen by 16 yr of ESA SAR missions, Earth and Planetary Science Letters, 545, 116404, 2020a.CrossRefGoogle Scholar
Daout, S., Steinberg, A., Isken, M. P., Heimann, S., and Sudhaus, H., Illuminating the spatio-temporal evolution of the 2008–2009 Qaidam earthquake sequence with the joint use of InSAR time series and teleseismic data, Remote Sensing, 12(2850), 1–23, 2020b.CrossRefGoogle Scholar
Doin, M.-P., Lasserre, C., Peltzer, G., Cavalié, O., and Doubre, C., Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models, Journal of Applied Geophysics, 69(1), 35–50, 2009.CrossRefGoogle Scholar
Donlon, C. J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E., and Wimmer, W., The operational sea surface temperature and sea ice analysis (OSTIA) system, Remote Sensing of Environment, 116, 140–158, 2012.CrossRefGoogle Scholar
Drusch, M., et al., Sentinel-2: ESA’s optical high-resolution mission for GMES operational services, Remote Sensing of Environment, 120, 25–36, 2012.CrossRefGoogle Scholar
Ebmeier, S. K., Application of independent component analysis to multitemporal InSAR data with volcanic case studies, Journal of Geophysical Research: Solid Earth, 121(12), 8970–8986, 2016.Google Scholar
Elachi, C., Spaceborne Radar Remote Sensing: Applications and Techniques, IEEE Press, New York, 1988.Google Scholar
Elachi, C., and Van Zyl, J. J., Introduction to the Physics and Techniques of Remote Sensing, John Wiley & Sons, 2021.CrossRefGoogle Scholar
Emardson, T., Simons, M., and Webb, F., Neutral atmospheric delay in interferometric synthetic aperture radar applications: Statistical description and mitigation, Journal of Geophysical Research: Solid Earth, 108(B5), 2003.CrossRefGoogle Scholar
Farr, T. G., et al., The shuttle radar topography mission, Reviews of Geophysics, 45(2), 1–33, 2007.CrossRefGoogle Scholar
Fattahi, H., Geodetic Imaging of Tectonic Deformation with InSAR, University of Miami, Miami, 2015.Google Scholar
Fattahi, H., Simons, M., and Agram, P., InSAR time-series estimation of the ionospheric phase delay: An extension of the split range-spectrum technique, IEEE Transactions on Geoscience and Remote Sensing, 55(10), 5984–5996, 2017.CrossRefGoogle Scholar
Fernandez, J., Escobar, D., Bock, H., and Femenias, P., Copernicus POD Operations – Orbital Accuracy of Sentinel-1A and Sentinel-2A, International Symposium on Space Flight Dynamics, 4(2), 201–213, an optional note, 2015.Google Scholar
Ferretti, A., Prati, C., and Rocca, F., Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry, IEEE Transactions on Geoscience and Remote Sensing, 38(5), 2202–2212, 2000.CrossRefGoogle Scholar
Ferretti, A., Prati, C., and Rocca, F., Permanent scatterers in SAR interferometry, IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8–20, 2001.CrossRefGoogle Scholar
Ferretti, A., Fumagalli, A., Novali, F., Prati, C., Rocca, F., and Rucci, A., A new algorithm for processing interferometric data-stacks: SqueeSAR, IEEE Transactions on Geoscience and Remote Sensing, 49(9), 3460–3470, 2011.CrossRefGoogle Scholar
Fialko, Y., Simons, M., and Agnew, D., The complete (3-D) surface displacement field in the epicentral area of the 1999 Mw7. 1 Hector Mine earthquake, California, from space geodetic observations, Geophysical Research Letters, 28(16), 3063–3066, 2001.CrossRefGoogle Scholar
Franceschetti, G., and Lanari, R., Synthetic Aperture Radar Processing, CRC press, Boca Raton, 2018.CrossRefGoogle Scholar
Freeman, A., Krieger, G., Rosen, P., Younis, M., Johnson, W. T., Huber, S., Jordan, R., and Moreira, A., SweepSAR: Beam-forming on receive using a reflector-phased array feed combination for spaceborne SAR, in 2009 IEEE Radar Conference, pp. 1–9, IEEE, 2009.Google Scholar
Fu, L.-L., and Cazenave, A., Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications, Elsevier, 2000.Google Scholar
Fuhrmann, T., and Garthwaite, M. C., Resolving three-dimensional surface motion with InSAR: Constraints from multi-geometry data fusion, Remote Sensing, 11(3), 241, 2019.CrossRefGoogle Scholar
Gaddes, M. E., Hooper, A., Bagnardi, M., Inman, H., and Albino, F., Blind signal separation methods for InSAR: The potential to automatically detect and monitor signals of volcanic deformation, Journal of Geophysical Research: Solid Earth, 123(11), 10,226–10,251, 2018.Google Scholar
Gaddes, M. E., Hooper, A., and Bagnardi, M., Using machine learning to automatically detect volcanic unrest in a time series of interferograms, Journal of Geophysical Research: Solid Earth, 124(11), 12,304–12,322, 2019.Google Scholar
Galetzka, J., et al., Slip pulse and resonance of the Kathmandu basin during the 2015 Gorkha earthquake, Nepal, Science, 349(6252), 1091–1095, 2015.CrossRefGoogle ScholarPubMed
Galloway, D. L., and Hoffmann, J., The application of satellite differential SAR interferometry-derived ground displacements in hydrogeology, Hydrogeology Journal, 15(1), 133–154, 2007.CrossRefGoogle Scholar
Ghiglia, D. C., and Pritt, M. D., Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software, A Wiley Interscience Publication, New York, 1998.Google Scholar
Ghiglia, D. C., and Romero, L. A., Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods, Journal of the Optical Society of America A, 11(1), 107–117, 1994.CrossRefGoogle Scholar
Goel, K., and Adam, N., A distributed scatterer interferometry approach for precision monitoring of known surface deformation phenomena, IEEE Transactions on Geoscience and Remote Sensing, 52(9), 5454–5468, 2014.CrossRefGoogle Scholar
Goldstein, R., and Werner, C., Radar ice motion interferometry, in Proceedings 3rd ERS Sympposium, vol. 2:11, pp. 969–972, Florence, Italy, 1997.Google Scholar
Goldstein, R. M., and Werner, C. L., Radar interferogram filtering for geophysical applications, Geophysical Research Letters, 25(21), 4035–4038, 1998.CrossRefGoogle Scholar
Goldstein, R. M., Zebker, H. A., and Werner, C. L., Satellite radar interferometry: Two-dimensional phase unwrapping, Radio Science, 23(4), 713–720, 1988.CrossRefGoogle Scholar
Goldstein, R. M., Engelhardt, H., Kamb, B., and Frolich, R. M., Satellite radar interferometry for monitoring ice sheet motion: Application to an Antarctic ice stream, Science, 262(5139), 1525–1530, 1993.CrossRefGoogle Scholar
Gomba, G., and De Zan, F., Bayesian data combination for the estimation of ionospheric effects in SAR interferograms, IEEE Transactions on Geoscience and Remote Sensing, 55(11), 6582–6593, 2017.CrossRefGoogle Scholar
Gomba, G., Parizzi, A., Zan, F. D, Eineder, M., and Bamler, R., Toward operational compensation of ionospheric effects in SAR interferograms: The split-spectrum method, IEEE Transactions on Geoscience and Remote Sensing, 54(3), 1446–1461, 2015.Google Scholar
Grandin, R., Klein, E., Métois, M., and Vigny, C., Three-dimensional displacement field of the 2015 Mw8. 3 Illapel earthquake (Chile) from across-and along-track Sentinel-1 TOPS interferometry, Geophysical Research Letters, 43(6), 2552–2561, 2016.CrossRefGoogle Scholar
Gray, A. L., Mattar, K. E., and Sofko, G., Influence of ionospheric electron density fluctuations on satellite radar interferometry, Geophysical Research Letters, 27(10), 1451–1454, 2000.CrossRefGoogle Scholar
Guarnieri, A. M., and Tebaldini, S., On the exploitation of target statistics for SAR interferometry applications, IEEE Transactions on Geoscience and Remote Sensing, 46(11), 3436–3443, 2008.CrossRefGoogle Scholar
Guns, K., Xu, X., Bock, Y., and Sandwell, D., GNSS-corrected InSAR displacement time-series spanning the 2019 Ridgecrest, CA earthquakes, Geophysical Journal International, 230(2), 1358–1373, 2022.CrossRefGoogle Scholar
Haines, A. J., and Holt, W. E., A procedure for obtaining the complete horizontal motions within zones of distributed deformation from the inversion of strain rate data, Journal of Geophysical Research, 98(B7), doi:10.1029/93jb00892, 1993.CrossRefGoogle Scholar
Haines, A. J., Dimitrova, L. L., Wallace, L. M., and Williams, C. A., Introduction to the Vertical Derivatives of Horizontal Stress (VDoHS) Rates, pp. 9–18, Springer International Publishing, Cham, 2015.CrossRefGoogle Scholar
Hanssen, Ramon F. Radar Interferometry: Data Interpretation and Error Analysis. Vol. 2. Springer Science & Business Media, New York, 2001.CrossRefGoogle Scholar
He, L., Feng, G., Xu, W., Wang, Y., Xiong, Z., Gao, H., and Liu, X., Coseismic kinematics of the 2023 Kahramanmaras, Turkey earthquake sequence from InSAR and optical data, Geophysical Research Letters, 50(17), e2023GL104,693, 2023.CrossRefGoogle Scholar
Hooper, A., and Zebker, H. A., Phase unwrapping in three dimensions with application to InSAR time series, Journal of the Optical Society of America A, 24(9), 2737–2747, 2007.CrossRefGoogle ScholarPubMed
Hooper, A., Zebker, H., Segall, P., and Kampes, B., A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers, Geophysical Research Letters, 31(23), 2004.CrossRefGoogle Scholar
Hu, X., Bürgmann, R., Xu, X., Fielding, E., and Liu, Z., Machine-learning characterization of tectonic, hydrological and anthropogenic sources of active ground deformation in California, Journal of Geophysical Research: Solid Earth, 126(11), 1–21, 2021.Google Scholar
Huang, S., and Zebker, H. A., Persistent scatterer density by image resolution and terrain type, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(7), 2069–2079, 2019.CrossRefGoogle Scholar
Hussain, E., Hooper, A., Wright, T. J., Walters, R. J., and Bekaert, D. P., Interseismic strain accumulation across the central North Anatolian Fault from iteratively unwrapped InSAR measurements, Journal of Geophysical Research: Solid Earth, 121(12), 9000–9019, 2016.Google Scholar
Itoh, K., Analysis of the phase unwrapping algorithm, Applied Optics, 21(14), 2470–2470, 1982.CrossRefGoogle ScholarPubMed
Jackson, J. D., Classical Electrodynamics, John Wiley & Sons, New York, 2012.Google Scholar
Jin, Z., and Fialko, Y., Finite slip models of the 2019 Ridgecrest earthquake sequence constrained by space geodetic data and aftershock locations, Bulletin of the Seismological Society of America, 110(4), 1660–1679, 2020.CrossRefGoogle Scholar
Joughin, I., Kwok, R., and Fahnestock, M., Estimation of ice-sheet motion using satellite radar interferometry: Method and error analysis with application to Humboldt Glacier, Greenland, Journal of Glaciology, 42(142), 564–575, 1996a.CrossRefGoogle Scholar
Joughin, I., Winebrenner, D., Fahnestock, M., Kwok, R., and Krabill, W., Measurement of ice-sheet topography using satellite-radar interferometry, Journal of Glaciology, 42(140), 10–22, 1996b.CrossRefGoogle Scholar
Joughin, I., Smith, B. E., and Abdalati, W., Glaciological advances made with interferometric synthetic aperture radar, Journal of Glaciology, 56(200), 1026–1042, 2010.CrossRefGoogle Scholar
Kaula, W. M., Theory of satellite geodesy: Applications of satellites to geodesy, p. 124, Blaisdell Publlishing Company, Waltham Massachusetts, 1966.Google Scholar
Khoshmanesh, M., Shirzaei, M., and Nadeau, R. M., Time-dependent model of aseismic slip on the central San Andreas Fault from InSAR time series and repeating earthquake, Journal of Geophysical Research: Solid Earth, 120, 3076–6658–6679, 2015.Google Scholar
Lazeckỳ, M., Hooper, A., and Piromthong, P., InSAR-derived horizontal velocities in a global reference frame, Geophysical Research Letters, 50(10), e2022GL101,173, 2023.CrossRefGoogle Scholar
Lemrabet, L., Doin, M. P., Lasserre, C., and Durand, P., Referencing of continental-scale InSAR-derived velocity fields: Case study of the Eastern Tibetan plateau, Journal of Geophysical Research: Solid Earth, 128(7), 1–28, 2023.Google Scholar
Li, X., Jónsson, S., and Cao, Y., Interseismic deformation from Sentinel-1 burst-overlap interferometry: Application to the southern Dead Sea fault, Geophysical Research Letters, 48(16), e2021GL093,481, 2021.Google Scholar
Li, Y., Bürgmann, R., and Taira, T., Spatiotemporal variations of surface deformation, shallow creep rate, and slip partitioning between the San Andreas and Southern Calaveras Fault, Journal of Geophysical Research: Solid Earth, 128(1), 1–23, 2023.Google Scholar
Li, Z., Zhao, R., Hu, J., Wen, L., Feng, G., Zhang, Z., and Wang, Q., InSAR analysis of surface deformation over permafrost to estimate active layer thickness based on one-dimensional heat transfer model of soils, Scientific Reports, 5(October), 1–9, 2015.Google ScholarPubMed
Liang, C., and Fielding, E. J., Measuring azimuth deformation with L-band ALOS-2 ScanSAR interferometry, IEEE Transactions on Geoscience and Remote Sensing, 55(5), 2725–2738, 2017.Google Scholar
Liang, C., Agram, P., Simons, M., and Fielding, E. J., Ionospheric correction of InSAR time series analysis of C-band Sentinel-1 TOPS data, IEEE Transactions on Geoscience and Remote Sensing, 57(9), 6755–6773, 2019.CrossRefGoogle Scholar
Lindsey, E. O., Sahakian, V. J., Fialko, Y., Bock, Y., Barbot, S., and Rockwell, T. K., Interseismic strain localization in the San Jacinto fault zone, Pure and Applied Geophysics, 171(11), 2937–2954, 2014.CrossRefGoogle Scholar
Lindsey, E. O., Natsuaki, R., Xu, X., Shimada, M., Hashimoto, M., Melgar, D., and Sandwell, D. T., Line-of-sight displacement from ALOS-2 interferometry: Mw 7.8 Gorkha Earthquake and Mw 7.3 aftershock, Geophysical Research Letters, 42(16), 6655–6661, 2015.CrossRefGoogle Scholar
Liu, F., Elliott, J. R., Craig, T. J., Hooper, A., and Wright, T. J., Improving the resolving power of InSAR for earthquakes using time series: A case study in Iran, Geophysical Research Letters, 48(14), e2021GL093,043, 2021.Google Scholar
Liu, F., Elliott, J. R., Ebmeier, S. K., Craig, T. J., Hooper, A., Novoa Lizama, C., and Delgado, F., First onset of unrest captured at Socompa: A recent geodetic survey at central Andean volcanoes in Northern Chile, Geophysical Research Letters, 50(10), e2022GL102,480, 2023.Google Scholar
Lv, X., Yazıcı, B., Zeghal, M., Bennett, V., and Abdoun, T., Joint-scatterer processing for time-series InSAR, IEEE Transactions on Geoscience and Remote Sensing, 52(11), 7205–7221, 2014.Google Scholar
Lyons, S., and Sandwell, D., Fault creep along the southern San Andreas from interferometric synthetic aperture radar, permanent scatterers, and stacking, Journal of Geophysical Research: Solid Earth, 108(B1), 2003.CrossRefGoogle Scholar
Madsen, S., Estimating the Doppler centroid of SAR data., IEEE Trans. Aerospace and Electronic Systems, AES-25, 134–140, 1989.CrossRefGoogle Scholar
Markus, T., et al., The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation, Remote Sensing of Environment, 190, 260–273, 2017.CrossRefGoogle Scholar
Massonnet, D., and Feigl, K. L., Radar interferometry and its application to changes in the Earth’s surface, Reviews of Geophysics, 36(4), 441–500, 1998.CrossRefGoogle Scholar
Massonnet, D., and Rabaute, T., Radar interferometry: Limits and potential, IEEE Transactions on Geoscience and Remote Sensing, 31(2), 455–464, 1993.CrossRefGoogle Scholar
Materna, K., Maurer, J., and Sandoe, L., Strain-2D (version 1.1.1), doi:10.5281/zenodo.5240908, 2021.CrossRefGoogle Scholar
Maubant, L., Pathier, E., Daout, S., Radiguet, M., Doin, M.-P. P., Kazachkina, E., Kostoglodov, V., Cotte, N., and Walpersdorf, A., Independent component analysis and parametric approach for source separation in InSAR time series at regional scale: Application to the 2017–2018 slow slip event in Guerrero (Mexico), Journal of Geophysical Research: Solid Earth, 125(3), 1–18, 2020.Google Scholar
Maurer, J., and Materna, K., Quantification of geodetic strain rate uncertainties and implications for seismic hazard estimates, Geophysical Journal International, pp. 4–7, 2023.CrossRefGoogle Scholar
McCarthy, D. D., Petit, G., et al., IERS conventions (2003), Bundesamt für Kartographie und Geodäsie Frankfurt am Main, Germany, 2004.Google Scholar
McClain, E. P., Pichel, W. G., and Walton, C. C., Comparative performance of AVHRR-based multichannel sea surface temperatures, Journal of Geophysical Research: Oceans, 90(C6), 11,587–11,601, 1985.Google Scholar
Meta, A., Mittermayer, J., Prats, P., and Steinbrecher, U., TOPS imaging with TerraSAR-X: Mode design and performance analysis, Geoscience and Remote Sensing, IEEE Transactions on, 48(2), 759–769, 2010.CrossRefGoogle Scholar
Meyer, F., Bamler, R., Jakowski, N., and Fritz, T., The potential of low-frequency SAR systems for mapping ionospheric TEC distributions, IEEE Geoscience and Remote Sensing Letters, 3(4), 560–564, 2006.CrossRefGoogle Scholar
Milliner, C. W., Dolan, J. F., Hollingsworth, J., Leprince, S., Ayoub, F., and Sammis, C. G., Quantifying near-field and off-fault deformation patterns of the 1992 Mw 7.3 L anders earthquake, Geochemistry, Geophysics, Geosystems, 16(5), 1577–1598, 2015.CrossRefGoogle Scholar
Miranda, N., Definition of the TOP SSLC deramping function for products generated by the S-1 IPF, Tech. rep., European Space Agency, cOPE-GSEG-EOPG-TN-14-0025, 2015.Google Scholar
Mittermayer, J., et al., TOPS Sentinel-1 and TerraSAR-X processor comparison based on simulated data., in Synthetic Aperture Radar (EUSAR), 2010 8th European Conference on., VDE, 2010.Google Scholar
Morishita, Y., Lazecky, M., Wright, T. J., Weiss, J. R., Elliott, J. R., and Hooper, A., LiCSBAS: An open-source insar time series analysis package integrated with the LiCSAR automated sentinel-1 InSAR processor, Remote Sensing, 12(3), 5–8, 2020.CrossRefGoogle Scholar
Neely, W. R., Borsa, A. A., and Silverii, F., Ginsar: A cGPS correction for enhanced insar time series, IEEE Transactions on Geoscience and Remote Sensing, 58(1), 136–146, 2020.CrossRefGoogle Scholar
Neely, W. R., Borsa, A. A., Burney, J. A., Levy, M. C., Silverii, F., and Sneed, M., Characterization of groundwater recharge and flow in california’s San Joaquin Valley from InSAR-observed surface deformation, Water Resources Research, 57(4), e2020WR028,451, 2021.CrossRefGoogle Scholar
Ou, Q., Daout, S., Weiss, J. R., Shen, L., Lazecký, M., Wright, T. J., and Parsons, B. E., Large-scale interseismic strain mapping of the NE Tibetan plateau from Sentinel-1 interferometry, Journal of Geophysical Research: Solid Earth, 127(6), 1–29, 2022.Google Scholar
Pagani, C., Bodin, T., Métois, M., and Lasserre, C., Bayesian estimation of surface strain rates from global navigation satellite system measurements: Application to the Southwestern United States, Journal of Geophysical Research: Solid Earth, 126(6), 1–25, doi:10.1029/2021JB021905, 2021.Google Scholar
Pany, T., “Tropospheric GPS slant delays at very low elevations.” Proc. Int., Workshop on GPS Meteorology, Tsukuba, Japan, 2003.Google Scholar
Prats-Iraola, P., Scheiber, R., Marotti, L., Wollstadt, S., and Reigber, A., TOPS interferometry with TerraSAR-X. Geoscience and remote sensing, Geoscience and Remote Sensing, IEEE Transactions on, 50(8), 3179–3188, 2012.CrossRefGoogle Scholar
Press, W., Teukolsky, S., Vetterling, W., and Flannery, B., Numerical Recipes in C, second edition ed., Cambridge University Press, New York City, 994 pp, 1992.Google Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., Numerical Recipes 3rd Edition: The Art of Scientific Computing, Cambridge University Press, Cambridge, 2007.Google Scholar
Qiao, X., and Zhou, Y., Geodetic imaging of shallow creep along the Xianshuihe fault and its frictional properties, Earth and Planetary Science Letters, 567, 117,001, 2021.CrossRefGoogle Scholar
Rees, W., Physical Principles of Remote Sensing, Cambridge University Press, Cambridge, 2001.CrossRefGoogle Scholar
Reichle, R. H., Koster, R. D., Liu, P., Mahanama, S. P., Njoku, E. G., and Owe, M., Comparison and assimilation of global soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) and the Scanning Multichannel Microwave Radiometer (SMMR), Journal of Geophysical Research: Atmospheres, 112(D9), 2007.CrossRefGoogle Scholar
Rignot, E., Gogineni, S., Krabill, W., and Ekholm, S., North and northeast Greenland ice discharge from satellite radar interferometry, Science, 276(5314), 934–937, 1997.CrossRefGoogle Scholar
Rodriguez, E., and Martin, J., Theory and design of interferometric synthetic aperture radars, in IEE Proceedings F (Radar and Signal Processing), vol. 139, pp. 147–159, IET, 1992.Google Scholar
Rosen, P., Hensley, S., Zebra, H., Webb, F., and Felding, E., Surface deformation and coherence measurements of Kilauea Volcano, Hawaii from SIR-C radar interferometry, Journal of Geophysical Research, 101(E10), 23,109–23,125, 1996.CrossRefGoogle Scholar
Rosen, P., Hensley, S., Shaffer, S., Edelstein, W., Kim, Y., Kumar, R., Misra, T., Bhan, R., and Sagi, R., The NASA-ISRO SAR (NISAR) mission dual-band radar instrument preliminary design, in 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 3832–3835, IEEE, 2017.Google Scholar
Rosen, P. A., Hensley, S., Joughin, I. R., Li, F. K., Madsen, S. N., Rodriguez, E., and Goldstein, R. M., Synthetic aperture radar interferometry, Proceedings of the IEEE, 88(3), 333–382, 2000.CrossRefGoogle Scholar
Rosen, P. A., Gurrola, E., Sacco, G. F., and Zebker, H., The InSAR scientific computing environment, in EUSAR 2012; 9th European Conference on Synthetic Aperture Radar, pp. 730–733, VDE, 2012.Google Scholar
Sack, M., Ito, M., and Cumming, I., Application of efficient linear fm matched filtering algorithms to synthetic aperture radar processing, in IEE Proceedings F (Communications, Radar and Signal Processing), vol. 132, pp. 45–57, IET, 1985.Google Scholar
Sandwell, D. T., and Price, E. J., Phase gradient approach to stacking interferograms, Journal of Geophysical Research: Solid Earth, 103(B12), 30,183–30,204, 1998.CrossRefGoogle Scholar
Sandwell, D. T., and Sichoix, L., Topographic phase recovery from stacked ERS interferometry and a low-resolution digital elevation model, Journal of Geophysical Research: Solid Earth, 105(B12), 28,211–28,222, 2000.CrossRefGoogle Scholar
Sandwell, D. T., and Wessel, P., Interpolation of 2-D vector data using constraints from elasticity, Geophysical Research Letters, 43(10), 10,703–10,709, 2016.CrossRefGoogle Scholar
Sansosti, E., Bernardino, P., Manunta, M., Serafino, F., and Fornaro, G., Geometrical SAR image registration, IEEE Transactions on Geoscience and Remote Sensing, 44(10), 2861, 2006.CrossRefGoogle Scholar
Sarychikhina, O., Glowacka, E., Mellors, R., and Vidal, F., Land subsidence in the Cerro Prieto Geothermal Field, Baja California, Mexico, from 1994 to 2005: An integrated analysis of DInSAR, leveling and geological data, Journal of Volcanology and Geothermal Research, 204(1), 76–90, 2011.CrossRefGoogle Scholar
Satalino, G., Mattia, F., Davidson, M. W., Le Toan, T., Pasquariello, G., and Borgeaud, M., On current limits of soil moisture retrieval from ERS-SAR data, IEEE Transactions on Geoscience and Remote Sensing, 40(11), 2438–2447, 2002.Google Scholar
Scheiber, R., and Moreira, A., Coregistration of interferometric SAR images using spectral diversity, IEEE Transactions on Geoscience and Remote Sensing, 38(5), 2179–2191, 2000.CrossRefGoogle Scholar
Schmidt, D. A., and Bürgmann, R., Time-dependent land uplift and subsidence in the Santa Clara valley, California, from a large interferometric synthetic aperture radar data set, Journal of Geophysical Research: Solid Earth, 108(B9), 2003.CrossRefGoogle Scholar
Segall, P., Earthquake and Volcano Deformation, Princeton University Press, Princeton, NJ, 2010.Google Scholar
Shanker, A. P., and Zebker, H. A., Sparse two-dimensional phase unwrapping using regular grid methods, IEEE Geoscience and Remote Sensing Letters, 6(3), 519–522, 2009.CrossRefGoogle Scholar
Shanker, P., and Zebker, H., Persistent scatterer selection using maximum likelihood estimation, Geophysical Research Letters, 34(22), 2007.CrossRefGoogle Scholar
Simons, M., and Rosen, P., Interferometric ynthetic aperture radar geodesy, Geodesy, 3, 391–446, 2007.Google Scholar
Simons, M., and Rosen, P., 3.12 – Interferometric synthetic aperture radar geodesy, in Treatise on Geophysics (Second Edition), edited by Schubert, G., second edition ed., pp. 339–385, Elsevier, Oxford, 2015.Google Scholar
Smith, W., and Wessel, P., Gridding with continuous curvature splines in tension, Geophysics, 55(3), 293–305, 1990.CrossRefGoogle Scholar
Sneed, M., and Brandt, J., Detection and measurement of land subsidence using GPS surveying and InSAR, Coachella Valley, California, 1996–2006, Tech. Rep. 2007-5251, USGS Scientific Investigations Report, New York City, 2007.Google Scholar
Sneed, M., Brandt, J., and Solt, M., Land subsidence, groundwater levels, and geology in the Coachella Valley, California, 1993–2010, Tech. rep., US Geological Survey, 2014.CrossRefGoogle Scholar
Stephenson, O. L., Liu, Y.-K., Yunjun, Z., Simons, M., Rosen, P., and Xu, X., The impact of plate motions on long-wavelength InSAR-derived velocity fields, Geophysical Research Letters, 49(21), e2022GL099,835, 2022.CrossRefGoogle Scholar
Strozzi, T., Luckman, A., Murray, T., Wegmuller, U., and Werner, C. L., Glacier motion estimation using SAR offset-tracking procedures, IEEE Transactions on Geoscience and Remote Sensing, 40(11), 2384–2391, 2002.CrossRefGoogle Scholar
Sundal, A. V., Shepherd, A., Nienow, P., Hanna, E., Palmer, S., and Huybrechts, P., Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage, Nature, 469(7331), 521–524, 2011.CrossRefGoogle ScholarPubMed
Swarztrauber, P., Vectorizing the FFTs, in Parallel Computations (G. Rodrigue, ed.), pp. 51–83, Academic Press, Cambridge, MA, 1982.Google Scholar
Teunissen, P. J., and Montenbruck, O., Springer Handbook of Global Navigation Satellite Systems, vol. 10, Springer, 2017.CrossRefGoogle Scholar
Tong, X., and Schmidt, D., Active movement of the Cascade landslide complex in Washington from a coherence-based InSAR time series method, Remote Sensing of Environment, 186, 405–415, 2016.Google Scholar
Tong, X., Sandwell, D., and Fialko, Y., Coseismic slip model of the 2008 Wenchuan earthquake derived from joint inversion of interferometric synthetic aperture radar, GPS, and field data, Journal of Geophysical Research, 115(B04314), 2010.Google Scholar
Tymofyeyeva, E., and Fialko, Y., Mitigation of atmospheric phase delays in InSAR data, with application to the eastern California shear zone, Journal of Geophysical Research: Solid Earth, 120(8), 5952–5963, 2015.Google Scholar
Van Leijen, F. J., Persistent scatterer interferometry based on geodetic estimation theory, Ph.D. thesis, Delft University of Technology, 2014.Google Scholar
Van Puymbroeck, N., Michel, R., Binet, R., Avouac, J.-P., and Taboury, J., Measuring earthquakes from optical satellite images, Applied Optics, 39(20), 3486–3494, 2000.CrossRefGoogle ScholarPubMed
Wang, C., Mao, X., and Wang, Q., Landslide displacement monitoring by a fully polarimetric SAR offset tracking method, Remote Sensing, 8(8), 624, 2016.Google Scholar
Wang, H., and Wright, T. J., Satellite geodetic imaging reveals internal deformation of western Tibet, Geophysical Research Letters, 39(7), 1–5, 2012.Google Scholar
Wang, K., and Chen, J., Accurate persistent scatterer identification based on phase similarity of radar pixels, IEEE Transactions on Geoscience and Remote Sensing, pp. 1–1, 2022.Google Scholar
Wang, K., Xu, X., and Fialko, Y., Improving burst alignment in TOPS interferometry with bivariate enhanced spectral diversity, IEEE Geoscience and Remote Sensing Letters, 14(12), 2423–2427, 2017.CrossRefGoogle Scholar
Wang, M., and Shen, Z.-K., Present-day crustal deformation of continental China derived from GPS and its tectonic implications, Journal of Geophysical Research: Solid Earth, 125(2), 3782–3803, 2020.Google Scholar
Wegnüller, U., Werner, C., Strozzi, T., Wiesmann, A., Frey, O., and Santoro, M., Sentinel-1 support in the GAMMA software, Procedia Computer Science, 100, 1305–1312, 2016.CrossRefGoogle Scholar
Wei, M., Location and source characteristics of the 2016 January 6 North Korean nuclear test constrained by InSAR, Geophysical Journal International, 209(2), 762–769, 2017.CrossRefGoogle Scholar
Werner, C., Wegmuller, U., Strozzi, T., and Wiesmann, A., Precision estimation of local offsets between pairs of SAR SLCs and detected SAR images, in International Geoscience and Remote Sensing Symposium, vol. 7, p. 4803, 2005.Google Scholar
Wessel, P., and Smith, W., New, improved version of Generic Mapping Tools released, EOS Transactions of the American Geophysical Union, 79(47), 579, 1998.CrossRefGoogle Scholar
Wessel, P., Smith, W., S. R, J. Luis, and F. Wobbe, Generic Mapping Tools: Improved version released, EOS Transactions of the American Geophysical Union, 94, 409–410, 2013.CrossRefGoogle Scholar
Wessel, P., Luis, J., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H., and Tian, D., The generic mapping tools version 6, Geochemistry, Geophysics, Geosystems, 20(11), 5556–5564, 2019.CrossRefGoogle Scholar
Wright, T. J., Parsons, B. E., and Lu, Z., Toward mapping surface deformation in three dimensions using InSAR, Geophysical Research Letters, 31(1), 2004.CrossRefGoogle Scholar
Xu, X., and Sandwell, D. T., Toward absolute phase change recovery with InSAR: Correcting for earth tides and phase unwrapping ambiguities, IEEE Transactions on Geoscience and Remote Sensing, 58(1), 726–733, 2019.Google Scholar
Xu, X., Sandwell, D. T., Tymofyeyeva, E., Gonzalez-Ortega, A., and Tong, X., Tectonic and anthropogenic deformation at the Cerro Prieto geothermal step-over revealed by Sentinel-1A InSAR, IEEE Transactions on Geoscience and Remote Sensing, 55(9), 5284–5292, 2017.CrossRefGoogle Scholar
Xu, X., Sandwell, D. T., and Smith-Konter, B., Coseismic displacements and surface fractures from Sentinel-1 InSAR: 2019 Ridgecrest earthquakes, Seismological Research Letters, 91(4), 1979–1985, 2020.CrossRefGoogle Scholar
Xu, X., Sandwell, D. T., Klein, E., and Bock, Y., Integrated Sentinel-1 InSAR and GNSS time-series along the San Andreas Fault System, Journal of Geophysical Research: Solid Earth, 126(11), 1–14, 2021.Google Scholar
Yague-Martinez, N., and Prats-Iraola, P., Accurate azimuth ground deformation estimation from Sentinel-1 time series, IEEE Geoscience and Remote Sensing Letters, 19, 1–5, 2022.CrossRefGoogle Scholar
Yu, C., Li, Z., Penna, N. T., and Crippa, P., Generic atmospheric correction model for interferometric synthetic aperture radar observations, Journal of Geophysical Research: Solid Earth, 123(10), 9202–9222, 2018.Google Scholar
Zebker, H., and Chen, K., Accurate estimation of correlation in InSAR observations, IEEE Geoscience and Remote Sensing Letters, 2(2), 124–127, 2005.CrossRefGoogle Scholar
Zebker, H. A., User-friendly InSAR data products: Fast and simple timeseries processing, IEEE Geoscience and Remote Sensing Letters, 14(11), 2122–2126, 2017.CrossRefGoogle Scholar
Zebker, H. A., and Van Zyl, J. J., Imaging radar polarimetry: A review, Proceedings of the IEEE, 79(11), 1583–1606, 1991.CrossRefGoogle Scholar
Zebker, H. A., and Villasenor, J., Decorrelation in interferometric radar echoes, IEEE Transactions on Geoscience and Remote Sensing, 30(5), 950–959, 1992.CrossRefGoogle Scholar
Zebker, H. A., Farr, T. G., Salazar, R. P., and Dixon, T. H., Mapping the world’s topography using radar interferometry: The TOPSAT mission, Proceedings of the IEEE, 82(12), 1774–1786, 1994.CrossRefGoogle Scholar
Zebker, M. S., Chen, J., and Hesse, M. A., Robust surface deformation and tropospheric noise characterization from common-reference interferogram subsets, IEEE Transactions on Geoscience and Remote Sensing, 61, 1–14, 2023.CrossRefGoogle Scholar
Zhang, J., Bock, Y., Johnson, H., Fang, P., Williams, S., Genrich, J., Wdowinski, S., and Behr, J., Southern California Permanent GPS Geodetic Array: Error analysis of daily position estimates and site velocities, Journal of Geophysical Research, 102(B8), 18,005–18,035, 1997.CrossRefGoogle Scholar
Zhang, P.-Z., Beware of slowly slipping faults, Nature Geoscience, 6(5), 323–324, doi:10.1038/ngeo1811, 2013.CrossRefGoogle Scholar
Zheng, Y., and Zebker, H. A., Phase correction of single-look complex radar images for user-friendly efficient interferogram formation, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(6), 2694–2701, 2017.CrossRefGoogle Scholar
Zheng, Y., Fattahi, H., Agram, P., Simons, M., and Rosen, P., On closure phase and systematic bias in multilooked SAR interferometry, IEEE Transactions on Geoscience and Remote Sensing, 60, 1–11, 2022.CrossRefGoogle Scholar
Zink, M., Bachmann, M., Brautigam, B., Fritz, T., Hajnsek, I., Moreira, A., Wessel, B., and Krieger, G., TanDEM-X: The new global DEM takes shape, IEEE Geoscience and Remote Sensing Magazine, 2(2), 8–23, 2014.CrossRefGoogle Scholar
Zitova, B., and Flusser, J., Image registration methods: A survey, Image and Vision Computing, 21(11), 977–1000, 2003.CrossRefGoogle Scholar

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • David T. Sandwell, Scripps Institution of Oceanography, University of California, San Diego, Xiaohua Xu, University of Science and Technology of China, Jingyi Chen, University of Texas at Austin, Robert J. Mellors, Scripps Institution of Oceanography, University of California, San Diego, Meng Wei, University of Rhode Island, Xiaopeng Tong, Institute of Geophysics, China Earthquake Administration, John B. DeSanto, University of Washington, Qi Ou, University of Edinburgh
  • Book: Satellite Radar Interferometry
  • Online publication: 13 September 2025
  • Chapter DOI: https://doi.org/10.1017/9781009606226.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • David T. Sandwell, Scripps Institution of Oceanography, University of California, San Diego, Xiaohua Xu, University of Science and Technology of China, Jingyi Chen, University of Texas at Austin, Robert J. Mellors, Scripps Institution of Oceanography, University of California, San Diego, Meng Wei, University of Rhode Island, Xiaopeng Tong, Institute of Geophysics, China Earthquake Administration, John B. DeSanto, University of Washington, Qi Ou, University of Edinburgh
  • Book: Satellite Radar Interferometry
  • Online publication: 13 September 2025
  • Chapter DOI: https://doi.org/10.1017/9781009606226.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • David T. Sandwell, Scripps Institution of Oceanography, University of California, San Diego, Xiaohua Xu, University of Science and Technology of China, Jingyi Chen, University of Texas at Austin, Robert J. Mellors, Scripps Institution of Oceanography, University of California, San Diego, Meng Wei, University of Rhode Island, Xiaopeng Tong, Institute of Geophysics, China Earthquake Administration, John B. DeSanto, University of Washington, Qi Ou, University of Edinburgh
  • Book: Satellite Radar Interferometry
  • Online publication: 13 September 2025
  • Chapter DOI: https://doi.org/10.1017/9781009606226.013
Available formats
×