Skip to main content Accessibility help
×
Hostname: page-component-6bb9c88b65-x9fsb Total loading time: 0 Render date: 2025-07-25T01:44:48.801Z Has data issue: false hasContentIssue false

Section 13 - Venoms and Poisons

Published online by Cambridge University Press:  18 June 2025

David Mabey
Affiliation:
London School of Hygiene and Tropical Medicine
Martin W. Weber
Affiliation:
World Health Organization
Moffat Nyirenda
Affiliation:
London School of Hygiene and Tropical Medicine
Dorothy Yeboah-Manu
Affiliation:
Noguchi Memorial Institute for Medical Research, University of Ghana
Jackson Orem
Affiliation:
Uganda Cancer Institute, Kampala
Laura Benjamin
Affiliation:
University College London
Michael Marks
Affiliation:
London School of Hygiene and Tropical Medicine
Nicholas A. Feasey
Affiliation:
Liverpool School of Tropical Medicine
Get access

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

References

Abu-Zidan, F. M., Hefny, A. F., Eid, H. O., Bashir, M. O. & Branicki, F. J. 2012. Camel-related injuries: prospective study of 212 patients. World Journal of Surgery, 36, 2384–2389.10.1007/s00268-012-1673-2CrossRefGoogle ScholarPubMed
Abubakar, I. S., Abubakar, S. B., Habib, A. G. et al. 2010. Randomised controlled double-blind non-inferiority trial of two antivenoms for saw-scaled or carpet viper (Echis ocellatus) envenoming in Nigeria. PLOS Neglected Tropical Diseases, 4, e767.10.1371/journal.pntd.0000767CrossRefGoogle ScholarPubMed
Alcoba, G., Chabloz, M., Eyong, J. et al. 2020. Snakebite epidemiology and health-seeking behavior in Akonolinga health district, Cameroon: cross-sectional study. PLOS Neglected Tropical Diseases, 14, e0008334.10.1371/journal.pntd.0008334CrossRefGoogle ScholarPubMed
Arfaoui, A., Hmimou, R., Ouammi, L. et al. 2009. Epidemiological profile of snakebites in Morocco. Journal of Venomous Animals and Toxins including Tropical Diseases, 15, 653666.10.1590/S1678-91992009000400005CrossRefGoogle Scholar
Balde, M. C., Camara, A. M., Bah, H., Barry, A. O. & Camara, S. K. 2005. Impact of snakebites in rural environment: community survey in the rural development community (DRC) of Frilguiagbe, Republic of Guinea. Bulletin de la Société de pathologie exotique, 98, 283284.Google ScholarPubMed
Barber, C. M., Isbister, G. K. & Hodgson, W. C. 2013. Alpha neurotoxins. Toxicon, 66, 4758.10.1016/j.toxicon.2013.01.019CrossRefGoogle ScholarPubMed
Blaylock, R. 2004. Epidemiology of snakebite in Eshowe, KwaZulu-Natal, South Africa. Toxicon, 43, 159166.10.1016/j.toxicon.2003.11.019CrossRefGoogle ScholarPubMed
Burnett, J. W., Burnett, J. & Rifkin, J. F. 1996. Venomous and poisonous marine animals: a medical and biological handbook. UNSW Press.Google Scholar
Chippaux, J.-P. 2011. Estimate of the burden of snakebites in sub-Saharan Africa: a meta-analytic approach. Toxicon, 57, 586599.10.1016/j.toxicon.2010.12.022CrossRefGoogle ScholarPubMed
Chippaux, J. P., Baldé, M. C., Sessinou, É. , Boiro, Yéro, M. & Massougbodji, A. 2015. Evaluation of a new polyvalent antivenom against snakebite envenomation (Inoserp® Panafricain) in two different epidemiological settings: Northern Benin and Maritime Guinea. Médecine et Santé Tropicales, 25, 5664.Google ScholarPubMed
de Silva, H. A., Pathmeswaran, A., Ranasinha, C. D. et al. (2011) Low-dose adrenaline, promethazine, and hydrocortisone in the prevention of acute adverse reactions to antivenom following snakebite: a randomised, double-blind, placebo-controlled trial. PLoS Medicine, 8(5), e1000435 https://doi.org/10.1371/journal.pmed.1000435.CrossRefGoogle ScholarPubMed
Ducancel, F. 2002. The sarafotoxins. Toxicon, 40, 15411545.10.1016/S0041-0101(02)00159-9CrossRefGoogle ScholarPubMed
Dunham, K. M., Ghiurghi, A., Cumbi, R. & Urbano, F. 2010. Human–wildlife conflict in Mozambique: a national perspective, with emphasis on wildlife attacks on humans. Oryx, 44, 185193.10.1017/S003060530999086XCrossRefGoogle Scholar
Gutiérrez, J. M., Calvete, J. J., Habib, A. G. et al. 2017. Snakebite envenoming. Nature Reviews Disease Primers, 3, 17063.10.1038/nrdp.2017.63CrossRefGoogle ScholarPubMed
Haddara, M. M., Haberisoni, J. B., Trelles, M. et al. 2020. Hippopotamus bite morbidity: a report of 11 cases from Burundi. Oxford Medical Case Reports, 2020.10.1093/omcr/omaa061CrossRefGoogle ScholarPubMed
Halilu, S., Iliyasu, G., Hamza, M., Chippaux, J.-P., Kuznik, A. & Habib, A. G. 2019. Snakebite burden in Sub-Saharan Africa: estimates from 41 countries. Toxicon, 159, 14.CrossRefGoogle ScholarPubMed
Halstead, B. W. 1988. Poisonous and venomous marine animals of the world. Darwin Press.Google Scholar
Happold, D. C. D. 1995. The interactions between humans and mammals in Africa in relation to conservation: a review. Biodiversity & Conservation, 4, 395414.10.1007/BF00058424CrossRefGoogle Scholar
Harrison, R. A., Hargreaves, A., Wagstaff, S. C., Faragher, B. & Lalloo, D. G. 2009. Snake envenoming: a disease of poverty. PLOS Neglected Tropical Diseases, 3, e569.10.1371/journal.pntd.0000569CrossRefGoogle ScholarPubMed
Harvey, A. L. & Robertson, B. 2004. Dendrotoxins: structure-activity relationships and effects on potassium ion channels. Current Medicinal Chemistry, 11, 30653072.10.2174/0929867043363820CrossRefGoogle ScholarPubMed
Igawe, P. B., Muhammad, J. O., Nwokoro, U. U. et al. 2020. Snakebite outbreak and associated risk factors in Donga, Taraba State, Nigeria, June, 2016. Pan African Medical Journal, 37, 82.Google ScholarPubMed
ISAF. 2016. International shark attack file. www.flmnh.ufl.edu/fish/sharks/isaf/isaf.htm.Google Scholar
Kasolo, G. 2016. An assessment of human crocodile conflict along Zambezi River in Binga District: Matabeleland North Province. BUSE.Google Scholar
Kasturiratne, A, Wickremasinghe, AR, de Silva, N et al. (2008) The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Medicine, 5(11), e218. doi.org/10.1371/journal.pmed.0050218.CrossRefGoogle ScholarPubMed
Kerkkamp, H. M., Casewell, N. R. & Vonk, F. J. 2015. Evolution of the snake venom delivery system. In Malhotra, A. (ed.), Evolution of venomous animals and their toxins, 1–11. Amsterdam: Springer.Google Scholar
Kini, R. M. & Koh, C. Y. 2016. Metalloproteases affecting blood coagulation, fibrinolysis and platelet aggregation from snake venoms: definition and nomenclature of interaction sites. Toxins, 8, 284.10.3390/toxins8100284CrossRefGoogle ScholarPubMed
Lam, A., Camara, B., Kane, O., Diouf, A. & Chippaux, J.-P. 2016. Epidemiology of snakebites in Kédougou region (eastern Senegal): comparison of various methods for assessment of incidence and mortality. Journal of Venomous Animals and Toxins including Tropical Diseases, 22, 9.10.1186/s40409-016-0064-9CrossRefGoogle ScholarPubMed
Lam, A., Cabral, M., Touré, A. et al. 2019. Évaluation de l’efficacité et la tolérance de Inoserp® Panafricain au Sénégal. Toxicologie Analytique et Clinique, 31, 1829.10.1016/j.toxac.2018.12.008CrossRefGoogle Scholar
Mion, G., Larréché, S., Benois, A., Petitjeans, F. & Puidupin, M. 2013. Hemostasis dynamics during coagulopathy resulting from Echis envenomation. Toxicon, 76, 103-109.10.1016/j.toxicon.2013.09.003CrossRefGoogle ScholarPubMed
Montecucco, C., Gutiérrez, J. M. & Lomonte, B. 2008. Cellular pathology induced by snake venom phospholipase A2 myotoxins and neurotoxins: common aspects of their mechanisms of action. Cellular and Molecular Life Sciences, 65, 28972912.10.1007/s00018-008-8113-3CrossRefGoogle ScholarPubMed
Muller, G. J., Modler, H., Wium, C. & Veale, D. 2012a. Scorpion sting in southern Africa: diagnosis and management. www.cmej.org.za/index.php/cmej/article/view/2545/2580.Google Scholar
Müller, G., Wium, C., Marks, C., Plessis, Du, C. & Veale, D. 2012b. Spider bite in southern Africa: diagnosis and management. Continuing Medical Education, 30.Google Scholar
Ordman, D. 1968. Bee stings in South Africa. South African Medical Journal, 42, 11941198.Google ScholarPubMed
Rigoni, M., Paoli, M., Milanesi, E. et al. 2008. Snake phospholipase A2 neurotoxins enter neurons, bind specifically to mitochondria, and open their transition pores. Journal of Biological Chemistry, 283, 3401334020.10.1074/jbc.M803243200CrossRefGoogle ScholarPubMed
Slagboom, J., Kool, J., Harrison, R. A. & Casewell, N. R. 2017. Haemotoxic snake venoms: their functional activity, impact on snakebite victims and pharmaceutical promise. British Journal of Haematology, 177, 947959.10.1111/bjh.14591CrossRefGoogle ScholarPubMed
Spawls, S. & Branch, B. 2020. The dangerous snakes of Africa. London: Bloomsbury Publishing.Google Scholar
Tchoffo, D., Kamgno, J., Kekeunou, S., Yadufashije, C., Nana Djeunga, H. C. & Nkwescheu, A. S. 2019. High snakebite underreporting rate in the Centre Region of Cameroon: an observational study. BMC Public Health, 19, 1040.10.1186/s12889-019-7363-3CrossRefGoogle ScholarPubMed
Van Der Walt, A. J. & Muller, G. J. 2019. Berg adder (Bitis atropos) envenoming: an analysis of 14 cases. Clinical Toxicology (Phila), 57, 131136.10.1080/15563650.2018.1499931CrossRefGoogle ScholarPubMed
Wallace, K. M., Leslie, A. J. & Coulson, T. 2011. Living with predators: a focus on the issues of human–crocodile conflict within the lower Zambezi valley. Wildlife Research, 38, 747755.CrossRefGoogle Scholar
Warrell, D. A., Davidson, N. M., Omerod, L. D. et al. 1974. Bites by the saw-scaled or carpet viper (Echis carinatus): trial of two specific antivenoms. British Medical Journal, 4, 437440.10.1136/bmj.4.5942.437CrossRefGoogle ScholarPubMed
Warrell, D. A., Ormerod, L. D. & Davidson, N. M. 1975. Bites by puff-adder (Bitis arietans) in Nigeria, and value of antivenom. British Medical Journal, 4, 697700.10.1136/bmj.4.5998.697CrossRefGoogle ScholarPubMed
Warrell, D. A., Davidson, N., Greenwood, B. M. et al. 1977. Poisoning by bites of the saw-scaled or carpet viper (Echis carinatus) in Nigeria. Quarterly Journal of Medicine, 46, 3362.Google ScholarPubMed
Wood, D., Sartorius, B. & Hift, R. 2016. Snakebite in north-eastern South Africa: clinical characteristics and risks for severity. South African Family Practice, 58, 6267.10.1080/20786190.2015.1120934CrossRefGoogle Scholar
Wood, D., Webb, C. & Demeyer, J. 2009. Severe snakebites in northern KwaZulu-Natal: treatment modalities and outcomes. South African Medical Journal, 99, 814818.Google ScholarPubMed
WHO 2010. Guidelines for the prevention and clinical management of snakebite in Africa. WHO Regional Office for Africa. www.afro.who.int/en/divisions-a-programmes/dsd/essential-medicines/edm-publications.html.Google Scholar
Group, World Bank 2020. Climate change knowledge portal for development practitioners and policy makers. 1991–2020. https://climateknowledgeportal.worldbank.org/download-data.Google Scholar
Yates, V. M., Lebas, E., Orpiay, R. & Bale, B. J. 2010. Management of snakebites by the staff of a rural clinic: the impact of providing free antivenom in a nurse-led clinic in Meserani, Tanzania. Annals of Tropical Medicine and Parasitology, 104, 439448.10.1179/136485910X12743554760306CrossRefGoogle Scholar

Bibliography

Ambali, SF, Mamman, M, Adaudi, AO et al. (2008). Toxicological screening of lyophilized extract of some Nigerian wild mushrooms in mice. Pak J Biol Sci; 11: 398403.10.3923/pjbs.2008.398.403CrossRefGoogle ScholarPubMed
Bushnan, V, Chintu, C, Gupta, K (1979). Accidental poisoning in children in Lusaka. Med J Zambia; 13: 6163.Google Scholar
Chibwana, C, Mhango, T, Molyneux, EM (2001). Childhood poisoning at the Queen Elizabeth Central Hospital, Blantyre, Malawi. E Afr Med J; 78: 292295.Google Scholar
Chitsike, I (1994). Acute poisoning in a paediatric intensive care unit in Harare. Centr Afr J Med; 40: 315319.Google Scholar
Cliff, J, Muguingue, H, Nhassico, D et al. (2011). Konzo and continuing cyanide intoxication from cassava in Mozambique. Food Chem Toxicol; 49: 631635.10.1016/j.fct.2010.06.056CrossRefGoogle ScholarPubMed
Hexdall, A, Eddleston, M (2006). International perspectives in medical toxicology. In Goldfrank’s toxicologic emergencies. 8th ed. McGraw-Hill, 18321846.Google Scholar
Joubert, P (1990). Poisoning admissions of black South Africans. J Tox Clin Tox; 28: 8594.Google ScholarPubMed
Kasilo, OMJ, Nhachi, CFB (1992). A pattern of acute poisoning in children in urban Zimbabwe: Ten years experience. Hum Exp Toxicol; 11: 335340.10.1177/096032719201100506CrossRefGoogle Scholar
Katibi, OS, Olaosebikan, R, Abdulkadir, MB et al. (2015). Ackee fruit poisoning in eight siblings: implications for public health awareness. Am J Trop Med Hyg; 93: 11221123.10.4269/ajtmh.15-0348CrossRefGoogle ScholarPubMed
Korb, FA, Young, MH (1985). The epidemiology of accidental poisoning in children. S Afr Med J; 68: 225228.Google ScholarPubMed
Koueta, F, Dao, L, Ye, D et al. (2009). Les intoxications aigues accidentelles de l’enfant: aspects epidemiologiques etiologiques et evolutifs au CHU pediatrique Charles-de-Gaulle de Ouagadougou (Burkina Faso). Cahiers Sante; 19: 5559.Google ScholarPubMed
Malangu, N (2008). Acute poisoning at two hospitals in Kampala, Uganda. J Forensic Legal Med; 15: 489492.CrossRefGoogle ScholarPubMed
Nhachi, CFB, Kasilo, OMJ (1992). The pattern of poisoning in urban Zimbabwe. J Appl Toxicol; 12: 435438.CrossRefGoogle ScholarPubMed
Nhachi, CFB, Habane, T, Satumba, P et al. (1992). Aspects of orthodox medicines (therapeutic drugs) poisoning in urban Zimbabwe. Hum Exp Toxicol; 11: 329333.10.1177/096032719201100505CrossRefGoogle ScholarPubMed
Oguche, S, Bukbuk, DN, Watila, IM (2007). Pattern of hospital admissions of children with poisoning in the Sudano-Sahelian North Eastern Nigeria. Niger J Clin Pract; 10: 111115.Google ScholarPubMed
Pruss-Ustun, A, Vickers, C, Haefliger, P et al. (2011). Knowns and unknowns on burden of disease due to chemicals: a systematic review. Environmental Health; 10: 9.10.1186/1476-069X-10-9CrossRefGoogle ScholarPubMed
Ruiz-Casares, M (2009). Unintentional childhood injuries in sub-Saharan Africa: an overview of risk and protective factors. J Health Care Poor Underserved; 20: 5167.10.1353/hpu.0.0226CrossRefGoogle ScholarPubMed
Tagwireyi, D et al. (2002). Traditional medicine poisoning in Zimbabwe: clinical presentation and management in adults. Hum Exp Toxicol; 21: 579586.10.1191/0960327102ht299oaCrossRefGoogle ScholarPubMed
Tagwireyi, D, Ball, DE, Nhachi, CFB (2006). Differences and similarities in poisoning admissions between urban and rural health centers in Zimbabawe. Clinical Toxicology; 44: 233241.10.1080/15563650600584279CrossRefGoogle Scholar

Open Access Websites for Additional Information on Poisoning

The International Programme on Chemical Safety: www.who.int/ipcs/en/.Google Scholar
IPCS Chemical Safety Information: www.inchem.org/.Google Scholar
The American Academy of Clinical Toxicology: www.clintox.org/index.cfm.Google Scholar
TOXNET (Toxicology Data Network), The United States National Library of Medicine: http://toxnet.nlm.nih.gov/.Google Scholar
The Clinical Toxicology Teaching Resource Project Open Source Clinical Toxicology Curriculum: http://curriculum.toxicology.Google Scholar
The Extension Toxicology Network (EXTOXNET): http://extoxnet.orst.edu/.Google Scholar
The Toxicon Multi-media Project: www.uic.edu/com/er/toxikon/.Google Scholar

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×