Skip to main content Accessibility help
×
Hostname: page-component-6bb9c88b65-9c7xm Total loading time: 0 Render date: 2025-07-24T13:10:42.783Z Has data issue: false hasContentIssue false

Section 7 - Protozoal Infections

Published online by Cambridge University Press:  18 June 2025

David Mabey
Affiliation:
London School of Hygiene and Tropical Medicine
Martin W. Weber
Affiliation:
World Health Organization
Moffat Nyirenda
Affiliation:
London School of Hygiene and Tropical Medicine
Dorothy Yeboah-Manu
Affiliation:
Noguchi Memorial Institute for Medical Research, University of Ghana
Jackson Orem
Affiliation:
Uganda Cancer Institute, Kampala
Laura Benjamin
Affiliation:
University College London
Michael Marks
Affiliation:
London School of Hygiene and Tropical Medicine
Nicholas A. Feasey
Affiliation:
Liverpool School of Tropical Medicine
Get access

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Bibliography

Abeijon, C, Alves, F, Monnerat, S et al. (2020). Urine-based antigen detection assay for diagnosis of visceral leishmaniasis using monoclonal antibodies specific for six protein biomarkers of Leishmania infantum/Leishmania donovani. PLoS Neglect Trop Dis 14(4):e0008246.10.1371/journal.pntd.0008246CrossRefGoogle ScholarPubMed
Alvar, J, Aparicio, P, Aseffa, A et al. (2008). The relationship between Leishmaniasis and AIDS: the second ten years. Clin Microbiol Rev 21:334359.10.1128/CMR.00061-07CrossRefGoogle Scholar
Alves, F, Bilbe, G, Blessoin, S et al. (2018). Recent development of visceral leishmaniasis treatments: successes, pitfalls and perspectives. Clin Microbiol Rev 31:e00048-18. doi.org/10.1128/CMR00048–18.CrossRefGoogle Scholar
Bahrami, F, Harandi, AM, Rafati, S. (2018). Biomarkers of cutaneous leishmaniasis. Front Cell Infect Microbiol doi.org/10.3389/fcimb.2018.00222.CrossRefGoogle Scholar
Berman, JD (1997). Human leishmaniasis: clinical, diagnostic, and chemotherapeutic developments in the last 10 years. Clin Infect Dis 24:684703.10.1093/clind/24.4.684CrossRefGoogle ScholarPubMed
Boelaert, M, Verdonck, K, Menten, J et al. (2014). Rapid tests for the diagnosis of visceral leishmaniasis in patients with suspected disease. Cochrane Database System Rev 6:CD009135.Google Scholar
Chappuis, F, Rijal, S, Soto, A et al. (2006). A meta-analysis of the diagnostic performance of the direct agglutination test and rK39 dipstick for visceral leishmaniasis. BMJ. doi: 10.1136/bmj.38917.503056.7C.CrossRefGoogle ScholarPubMed
Elamin, EM, Guizani, I, Guerbouj, S et al. (2008). Identification of Leishmania donovani as a cause of cutaneous leishmaniasis in Sudan. Trans R Soc Trop Med Hyg 102:5457.10.1016/j.trstmh.2007.10.005CrossRefGoogle ScholarPubMed
El-Hassan, AM, Meredith, SEO et al. (1995). Sudanese mucosal leishmaniasis: epidemiology, clinical features, diagnosis, immune responses and treatment. Trans R Soc Trop Med Hyg 89:647652.10.1016/0035-9203(95)90428-XCrossRefGoogle ScholarPubMed
El-Hassan, AM, Zijlstra, EE (2001). Leishmaniasis in Sudan. 1. Cutaneous leishmaniasis. Trans R Soc Trop Med Hyg 95, suppl. 1:S1S18.Google ScholarPubMed
González, U, Pinart, M, Reveiz, L, Alvar, J. (2008). Interventions for Old World cutaneous leishmaniasis. Cochrane Database System Rev Issue 4. Art. No. CD005067. doi: 10.1002/14651858.CD005067.pub3.CrossRefGoogle ScholarPubMed
Guiguemdé, R, Sawadogo, O, Bories, C et al. (2003). Leishmania major HIV co-infection in Burkina Faso. Trans R Soc Hyg Trop Med 97:168169.CrossRefGoogle ScholarPubMed
Hong, A, Andrade Zampieri, R, Shaw, JJ et al. (2020). One Health approach to leishmaniasis: understanding the disease dynamics through diagnostic tools. Pathogens 9:809. doi: 10:103390/pathogens9100809.CrossRefGoogle ScholarPubMed
Kolczinski, et al. (2008). Risk factors of visceral leishmaniasis in East Africa: a case-control study in Pokot territory of Kenya and Uganda. Int J Epidemiol 37, 344352.10.1093/ije/dym275CrossRefGoogle Scholar
Kubba, R, Al Gindan, Y, El Hassan, AM, Omer, AHS (1987). Clinical diagnosis of cutaneous leishmaniasis (oriental sore). J Am Acad Dermatol 16:11831189.10.1016/S0190-9622(87)70155-8CrossRefGoogle ScholarPubMed
Musa, AM, Khalil, EA, Mahgoub, FA et al. (2008). Immunochemotherapy of persistent post-kala-azar dermal leishmaniasis: a novel approach to treatment. Trans R Soc Trop Med Hyg 102:5863.CrossRefGoogle ScholarPubMed
Musa AM, Mbui J, Mohammed R et al. (2023). Paromomycin and miltefosine combination as an alternative to treat patients with visceral Leishmaniasis in Eastern Africa: A randomized, controlled, multicountry trial. Clin Infect Dis 8, 76(3):e1177–e1185. doi: 10.1093/cid/ciac643. PMID: 36164254; PMCID: PMC9907539.CrossRefGoogle Scholar
Musa, A, Khalil, E, Hailu, A et al. (2012). Sodium stibogluconate (SSG) & paromomycin combination compared to SSG for visceral leishmaniasis in East Africa: a randomised controlled trial. PLoS Negl Trop Dis 6(6):e1674. doi: 10.1371/journal.pntd.000167.CrossRefGoogle ScholarPubMed
Olliaro, P, Grogl, M, Boni et al. (2018). Harmonized clinical trial methodologies for localized cutaneous leishmaniasis and potential for extensive network with capacities for clinical evaluation. PLoS Neglect Trop Dis 12:e0006141.CrossRefGoogle ScholarPubMed
Osman, M, Mistry, A, Keding, A et al. (2017). A third generation vaccine for human visceral leishmaniasis and post kala azar dermal leishmaniasis: First-in-human trial of ChAd63-KH. PLoS Negl Trop Dis 11(5):e0005527.CrossRefGoogle ScholarPubMed
Ritmeijer, K, Dejenie, A, Assefa, Y et al. (2006). A comparison of miltefosine and sodium stibogluconate in the treatment of visceral leishmaniasis in an Ethiopian population with high prevalence of HIV infection. Clin Infect Dis 43:357364.10.1086/505217CrossRefGoogle Scholar
Seaman, J, Mercer, AJ, Sondorp, E. (1996). The epidemic of visceral leishmaniasis in Western Upper Nile, southern Sudan: course and impact from 1984 to 1994. Int J Epidem 25:862871.10.1093/ije/25.4.862CrossRefGoogle ScholarPubMed
van Henten, Tesfaye AB, Abdela, SG et al. (2021). Miltefosene for the treatment of cutaneous leishmaniasis – a pilot study from Ethiopia. PLoS Negl Trop Dis 15(5):e0009460CrossRefGoogle ScholarPubMed
Verrest, L, Kip, AE, Musa, A, Schoone, GJ et al. (2021). Blood parasite load as an early marker to predict treatment response in visceral leishmaniasis in Eastern Africa. Clin Infect Dis 73:775782. doi.org/10.1093/cid/ciab124.CrossRefGoogle Scholar
Expert Committee, WHO (2010). Control of leishmaniasis. WHO Technical report Series No. 949. Geneva: WHO.Google Scholar
WHO/HTM/NTD/IDM (2012). The Post Kala-azar Dermal Leishmaniasis (PKDL) Atlas. A manual for health workers. https://apps.who.int/iris/bitstream/handle/10665/101164/978924.Google Scholar
WHO/HTM/NTD/IDM (2013). Post-kala-azar dermal leishmaniasis: a manual for case management and control: report of a WHO consultative meeting, Kolkata, India, 23 July 2012. https://apps.who.int/iris/bitstream/handle/10665/78608/9789241.Google Scholar
Younis, BM, Mohammed, HAA, Dafalla, MMM et al. (2016). Cure of post Kala-azar dermal leishmaniasis with paromomycin/sodium stibogluconate combination: a proof of concept. Int J Res Med Sci 3(1):1621.Google Scholar
Younis, BM, Osman, M, Khalil, EAG et al (2021). Safety and immunogenicity of ChAd63-KH vaccine in post-kala-azar dermal leishmaniasis patients in Sudan. Mol Ther 29(7):23662377. doi: 10.1016/j.ymthe.2021.03.020.CrossRefGoogle ScholarPubMed
Younis BM, Mudawi Musa A, Monnerat S et al. (2023). Safety and efficacy of paromomycin/miltefosine/liposomal amphotericin B combinations for the treatment of post-kala-azar dermal leishmaniasis in Sudan: A phase II, open label, randomized, parallel arm study. PLoS Negl Trop Dis 21, 17(11):e0011780. doi: 10.1371/journal.pntd.0011780. PMID: 37988402; PMCID: PMC10721181.CrossRefGoogle Scholar
Zackay, A, Cotton, JA, Sanders, M et al. (2018). Genome wide comparison of Ethiopian Leishmania donovani strains reveals differences potentially related to parasite survival. PLoS Genet 14(1):e1007133.CrossRefGoogle ScholarPubMed
Zijlstra, EE (2016). The immunology of post-kala-azar dermal leishmaniasis (PKDL). Parasites Vectors 9:464.10.1186/s13071-016-1721-0CrossRefGoogle ScholarPubMed
Zijlstra, EE (2019). Biomarkers in post-kala-azar dermal leishmaniasis. Front Cell Infect Microbiol 9:228.CrossRefGoogle ScholarPubMed
Zijlstra, EE, El-Hassan, AM (2001). Leishmaniasis in Sudan. Trans R Soc Trop Med Hyg 95:2758.CrossRefGoogle ScholarPubMed
Zijlstra, EE, Musa, AM, Khalil, EA et al. (2003). Post-kala-azar dermal leishmaniasis. Lancet Infect Dis (2):8798. doi: 10.1016/s1473-3099(03)00517-6.CrossRefGoogle ScholarPubMed

References

Brun, R, Blum, J, Chappuis, F, Burri, C. Human African trypanosomiasis. Lancet 2010;375(9709):148-59.10.1016/S0140-6736(09)60829-1CrossRefGoogle ScholarPubMed
Büscher, P, Mertens, P, Leclipteux, T et al. Sensitivity and specificity of HAT Sero-K-SeT, a rapid diagnostic test for serodiagnosis of sleeping sickness caused by Trypanosoma brucei gambiense: a case-control study. Lancet Glob Health 2014;2(6):e359–63. doi: 10.1016/S2214-109X(14)70203-7.CrossRefGoogle ScholarPubMed
Kennedy, PG. Clinical features, diagnosis, and treatment of human African trypanosomiasis (sleeping sickness). Lancet Neurol. 2013;12(2):186–94.CrossRefGoogle ScholarPubMed
Kuepfer, I, Hhary, EP, Allan, M, Edielu, A, Burri, C, Blum, JA. Clinical presentation of T.b. rhodesiense sleeping sickness in second stage patients from Tanzania and Uganda. PLoS Negl Trop Dis. 2011;5(3):e968. doi: 10.1371/journal.pntd.0000968.PMID: 21407802.CrossRefGoogle ScholarPubMed
Mesu, VKBK, Kalonji, WM, Bardonneau, C et al. Oral fexinidazole for late-stage African Trypanosoma brucei gambiense trypanosomiasis: a pivotal multicentre, randomised, non-inferiority trial. Lancet 2018;391:144–54. doi: 10.1016/S0140-6736(17)32758-7.CrossRefGoogle ScholarPubMed
Pepin, J, Milord, F, Guern, C et al. Trial of prednisolone for prevention of melarsoprol-induced encephalopathy in gambiense sleeping sickness. Lancet 1989;1(8649):1246–50. doi: 10.1016/s0140-6736(89)92340-4.Google ScholarPubMed

Bibliography

Marie, C, Petri, WA. (2013). Amoebic dysentery. BMJ Clin Evid;2013:0918.Google ScholarPubMed
Pritt, BS, Clark, CG (2008). Amebiasis. Mayo Clin Proc;83:1154–60.CrossRefGoogle ScholarPubMed
Shirley, DT, Farr, L, Watanabe, K et al. (2018). A review of the global burden, new diagnostics and current therapeutics for amebiasis. Open Forum Infect Dis;5:ofy161.10.1093/ofid/ofy161CrossRefGoogle ScholarPubMed
Visvesvara, GS (2010). Free-living amebae as opportunistic agents of human disease. J Neuroparasitol;1:113.10.4303/jnp/N100802CrossRefGoogle Scholar

References

Amadi, B, Mwiya, M, Musuku, J et al. Effect of nitazoxanide on morbidity and mortality in Zambian children with cryptosporidiosis: a randomised controlled trial. Lancet 2002; 360(9343): 13751380. doi: 10.1016/S0140-6736(02)11401-2.CrossRefGoogle ScholarPubMed
Ashigbie, PG, Shepherd, S, Steiner, KL et al. Use-case scenarios for an anti-Cryptosporidium therapeutic. PLoS Negl Trop Dis 2021; 15: e0009057.10.1371/journal.pntd.0009057CrossRefGoogle ScholarPubMed
Dubey, JP, Almeria, S. Cystoisospora belli infections in humans: the past 100 years. Parasitology 2019; 146: 14901527. doi: 10.1017/S0031182019000957.CrossRefGoogle ScholarPubMed
Han, B, Pan, G, Weiss, LM. Microsporidiosis in humans. Clin Microbiol Rev. 2021: e0001020. doi: 10.1128/CMR.00010-20. PMID: 34190570.CrossRefGoogle Scholar
Heyworth, MF. Giardia duodenalis genetic assemblages and hosts. Parasite 2016; 23: 13. doi: 10.1051/parasite/2016013.CrossRefGoogle ScholarPubMed
Kotloff, KL, Platts-Mills, JA, Nasrin, D, Roose, A, Blackwelder, WC, Levine, MM. Global burden of diarrheal diseases among children in developing countries: incidence, etiology, and insights from new molecular diagnostic techniques. Vaccine 2017; 35 (49 Pt A): 67836789. doi: 10.1016/j.vaccine.2017.07.036.CrossRefGoogle ScholarPubMed
Leung, AKC, Leung, AAM, Wong, AHC, Sergi, CM, Kam, JKM. Giardiasis: an overview. Recent Pat Inflamm Allergy Drug Discov 2019; 13: 134143. doi: 10.2174/1872213X13666190618124901.CrossRefGoogle ScholarPubMed
Molbak, K, Andersen, M, Aaby, P et al. Cryptosporidium infection in infancy as a cause of malnutrition: a community study from Guinea-Bissau, West Africa. Am J Clin Nutr 1997; 65: 149152.CrossRefGoogle ScholarPubMed
Nchito, M, Kelly, P, Sianongo, S et al. Cryptosporidiosis in urban Zambian children: an analysis of risk factors. Am J Trop Hyg 1998; 59: 435437.10.4269/ajtmh.1998.59.435CrossRefGoogle Scholar
Robertson, LJ, Johansen, ØH, Kifleyohannes, T, Efunshile, AM, Terefe, G. Cryptosporidium infections in Africa – how important is zoonotic transmission? A review of the evidence. Front Vet Sci 2020; 7: 575881. doi: 10.3389/fvets.2020.575881.CrossRefGoogle ScholarPubMed
Rogawski, ET, Liu, J, Platts-Mills, JA et al. Use of quantitative molecular diagnostic methods to investigate the effect of enteropathogen infections on linear growth in children in low-resource settings: longitudinal analysis of results from the MAL-ED cohort study. Lancet Glob Health 2018; 6: e1319e1328. doi: 10.1016/S2214-109X(18)30351-6.CrossRefGoogle ScholarPubMed
Yang, X, Guo, Y, Xiao, L, Feng, Y. Molecular epidemiology of human cryptosporidiosis in low- and middle-income countries. Clin Microbiol Rev 2021; 34: e00087–19. doi: 10.1128/CMR.00087-19.CrossRefGoogle ScholarPubMed

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×