Skip to main content Accessibility help
×
Hostname: page-component-6bb9c88b65-kfd97 Total loading time: 0 Render date: 2025-07-23T07:57:53.464Z Has data issue: false hasContentIssue false

Section 2 - Mother and Child Health

Published online by Cambridge University Press:  18 June 2025

David Mabey
Affiliation:
London School of Hygiene and Tropical Medicine
Martin W. Weber
Affiliation:
World Health Organization
Moffat Nyirenda
Affiliation:
London School of Hygiene and Tropical Medicine
Dorothy Yeboah-Manu
Affiliation:
Noguchi Memorial Institute for Medical Research, University of Ghana
Jackson Orem
Affiliation:
Uganda Cancer Institute, Kampala
Laura Benjamin
Affiliation:
University College London
Michael Marks
Affiliation:
London School of Hygiene and Tropical Medicine
Nicholas A. Feasey
Affiliation:
Liverpool School of Tropical Medicine
Get access

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

References

Adhikari, M. & Jeena, P. (2009) Tuberculosis in pregnancy and in the neonate. In H.S. Schaaf and A. Zumia, eds. Tuberculosis: A Comprehensive Clinical Reference, 572580. Philadelphia: Saunders/Elsevier.Google Scholar
Bailey, H. et al. (2018) HIV treatment in pregnancy. The Lancet HIV 5(8), e457e467. doi: 10.1016/S2352-3018(18)30059-6.Google ScholarPubMed
Bankole, A. et al. (2020) From Unsafe to Safe Abortion in Sub-Saharan Africa: Slow but Steady Progress. www.guttmacher.org/report/from-unsafe-to-safe-abortion-in-subsaharan-africa.Google Scholar
Bauserman, M. et al. (2019) An overview of malaria in pregnancy. Seminars in Perinatology 43(5), 282290. doi: 10.1053/j.semperi.2019.03.018.CrossRefGoogle ScholarPubMed
Beaton, A. et al. (2019) Impact of heart disease on maternal, fetal and neonatal outcomes in a low-resource setting. Heart 105(10), 755760. doi: 10.1136/heartjnl-2018-313810.Google Scholar
Black, V., Brooke, S. & Chersich, M.F. (2009) Effect of human immunodeficiency virus treatment on maternal mortality at a tertiary center in South Africa: a 5-year audit. Obstetrics & Gynecology 114(2 Part 1), 292299. doi: 10.1097/AOG.0b013e3181af33e6.CrossRefGoogle Scholar
Brooker, S., Hotez, P.J. & Bundy, D.A.P. (2008) Hookworm-related anaemia among pregnant women: a systematic review. PLOS Neglected Tropical Diseases 2(9), e291. doi: 10.1371/journal.pntd.0000291.CrossRefGoogle ScholarPubMed
Colagiuri, S. et al. (2014) Strategies for implementing the WHO diagnostic criteria and classification of hyperglycaemia first detected in pregnancy. Diabetes Research and Clinical Practice 103(3), 364372. doi: 10.1016/j.diabres.2014.02.012.CrossRefGoogle ScholarPubMed
Creasy, R., Resnik, R. & Iams, J. (2009) Creasy and Resnick’s Maternal-Fetal Medicine: Principles and Practice. 6th ed. Philadelphia: Saunders Elsevier.Google Scholar
Daru, J. et al. (2018) Risk of maternal mortality in women with severe anaemia during pregnancy and post partum: a multilevel analysis. The Lancet Global Health 6(5), e548e554. doi: 10.1016/S2214-109X(18)30078-0.CrossRefGoogle ScholarPubMed
Duley, L. (2009) The global impact of pre-eclampsia and eclampsia. Seminars in Perinatology 33(3), 130137. doi: 10.1053/j.semperi.2009.02.010.Google ScholarPubMed
Duley, L. & Henderson-Smart, D. (2000) Magnesium sulphate versus diazepam for eclampsia. Cochrane Database of Systematic Reviews (2), CD000127. doi: 10.1002/14651858.CD000128.Google Scholar
Fawcus, S.R. (2008) Maternal mortality and unsafe abortion. Best Practice & Research Clinical Obstetrics & Gynaecology 22(3), 533548. doi: 10.1016/j.bpobgyn.2007.10.006.CrossRefGoogle ScholarPubMed
Feng, G. et al. (2009) Antibodies to variant surface antigens of Plasmodium falciparum – infected erythrocytes are associated with protection from treatment failure and the development of anemia in pregnancy. Journal of Infectious Diseases 200(2), 299306. doi: 10.1086/599841.Google ScholarPubMed
Fleming, A.F. & DeSilva, P.S. (2009) Haematological diseases in the tropics. In Cook, G.C. & Zumla, A., eds. Manson’s Tropical Diseases, 22nd ed. Philadelphia: Saunders Elsevier.Google Scholar
Guinn, D.A., Abel, D.E. & Tomlinson, M.W. (2007) Early goal directed therapy for sepsis during pregnancy. Obstetrics and Gynecology Clinics of North America 34(3), 459479. doi: 10.1016/j.ogc.2007.06.009.CrossRefGoogle ScholarPubMed
Herklots, T. et al. (2020) “I lost my happiness, I felt half dead and half alive” – a qualitative study of the long-term aftermath of obstetric near-miss in the urban district of Zanzibar, Tanzania. BMC Pregnancy and Childbirth 20(1), 594. doi: 10.1186/s12884-020-03261-8.CrossRefGoogle ScholarPubMed
Hossain, M., Broutet, N. & Hawkes, S. (2007) The elimination of congenital syphilis: a comparison of the proposed World Health Organization Action Plan for the elimination of congenital syphilis with existing national maternal and congenital syphilis policies. Sexually Transmitted Diseases 34(7), S22. doi: 10.1097/01.olq.0000261049.84824.40.CrossRefGoogle ScholarPubMed
Kajubi, R. et al. (2019) Monthly sulfadoxine–pyrimethamine versus dihydroartemisinin–piperaquine for intermittent preventive treatment of malaria in pregnancy: a double-blind, randomised, controlled, superiority trial. The Lancet 393(10179), 14281439. doi: 10.1016/S0140-6736(18)32224-4.CrossRefGoogle ScholarPubMed
Kassebaum, N.J. et al. (2016) Global, regional, and national levels of maternal mortality, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet 388(10053), 17751812. doi: 10.1016/S0140-6736(16)31470-2.CrossRefGoogle Scholar
Khan, M. et al. (2000) Maternal mortality associated with tuberculosis-HIV coinfection in Durban, South Africa. Annals of the New York Academy of Sciences 918(1), 367369. doi: 10.1111/j.1749-6632.2000.tb05508.x.CrossRefGoogle ScholarPubMed
Kuznik, A. et al. (2015) Estimating the public health burden associated with adverse pregnancy outcomes resulting from syphilis infection across 43 countries in sub-Saharan Africa. Sexually Transmitted Diseases 42(7), 369375. doi: 10.1097/OLQ.0000000000000291.Google ScholarPubMed
Lathrop, E., Jamieson, D.J. & Danel, I. (2014) HIV and maternal mortality. International Journal of Gynecology & Obstetrics 127(2), 213215. doi: 10.1016/j.ijgo.2014.05.024.CrossRefGoogle ScholarPubMed
Leduc, D. et al. (2010) Active management of the third stage of labour: prevention and treatment of postpartum hemorrhage: No. 235 October 2009 (Replaces No. 88, April 2000). International Journal of Gynecology & Obstetrics 108(3), 258267. doi: 10.1016/j.ijgo.2009.11.002.CrossRefGoogle Scholar
Menéndez, C. et al. (2008) An autopsy study of maternal mortality in Mozambique: the contribution of infectious diseases. PLOS Medicine 5(2), e44. doi: 10.1371/journal.pmed.0050044.Google ScholarPubMed
Mockenhaupt, F.P. et al. (2000) Anaemia in pregnant Ghanaian women: importance of malaria, iron deficiency, and haemoglobinopathies. Transactions of the Royal Society of Tropical Medicine and Hygiene 94(5), 477483. doi: 10.1016/S0035-9203(00)90057-9.CrossRefGoogle ScholarPubMed
Natamba, B.K., Namara, A.A. & Nyirenda, M.J. (2019) Burden, risk factors and maternal and offspring outcomes of gestational diabetes mellitus (GDM) in sub-Saharan Africa (SSA): a systematic review and meta-analysis. BMC Pregnancy and Childbirth 19(1), 450. doi: 10.1186/s12884-019-2593-z.CrossRefGoogle Scholar
Neilson, J. et al. (2003) Obstructed labour: reducing maternal death and disability during pregnancy. British Medical Bulletin 67(1), 191204. doi: 10.1093/bmb/ldg018.Google Scholar
Nguyen, H. T. et al. (2014) Tuberculosis care for pregnant women: a systematic review. BMC Infectious Diseases 14(1), 617. doi: 10.1186/s12879-014-0617-x.Google ScholarPubMed
Nqayana, T., Moodley, J. & Naidoo, D. (2008) Cardiac disease in pregnancy. Cardiovascular Journal of Africa 19(3), 145151. www.ncbi.nlm.nih.gov/pmc/articles/PMC3974559/.Google ScholarPubMed
Ogu, R.N., Agholor, K.N. & Okonofua, F.E. (2016) Engendering the attainment of the SDG-3 in Africa: overcoming the socio cultural factors contributing to maternal mortality. African Journal of Reproductive Health 20(3), 6274. doi: 10.4314/ajrh.v20i3.CrossRefGoogle ScholarPubMed
Rahimy, M.C. et al. (2000) Effect of active prenatal management on pregnancy outcome in sickle cell disease in an African setting. Blood 96(5), 16851689. doi: 10.1182/blood.V96.5.1685.Google Scholar
Say, L. et al. (2014) Global causes of maternal death: a WHO systematic analysis. The Lancet Global Health 2(6), e323333. doi: 10.1016/S2214-109X(14)70227-X.CrossRefGoogle ScholarPubMed
Sibai, B.M. (2005) Diagnosis, prevention, and management of eclampsia. Obstetrics & Gynecology 105(2), 402410. doi: 10.1097/01.AOG.0000152351.13671.99.CrossRefGoogle ScholarPubMed
Vogel, J.P. et al. (2019) WHO recommendations on uterotonics for postpartum haemorrhage prevention: what works, and which one? BMJ Global Health 4(2). doi: 10.1136/bmjgh-2019-001466.CrossRefGoogle ScholarPubMed
Watson-Jones, D. et al. (2002) Syphilis in pregnancy in Tanzania. II. The effectiveness of antenatal syphilis screening and single-dose benzathine penicillin treatment for the prevention of adverse pregnancy outcomes. Journal of Infectious Diseases 186(7), 948957. doi: 10.1086/342951.CrossRefGoogle ScholarPubMed
Weze, K. et al. (2021) Spatio-temporal trends in anaemia among pregnant women, adolescents and preschool children in sub-Saharan Africa. Public Health Nutrition 24(12), 36483661. doi: 10.1017/S1368980020004620.CrossRefGoogle ScholarPubMed
WHO (2020) Trends in maternal mortality, 2000 to 2017, Estimates by WHO, UNICEF, UNFPA, World Bank and the United Nations Population Division. www.unfpa.org/featured-publication/trends-maternal-mortality-2000-2017.Google Scholar
WOMAN Trial Collaborators (2017) Effect of early tranexamic acid administration on mortality, hysterectomy, and other morbidities in women with post-partum haemorrhage (WOMAN): an international, randomised, double-blind, placebo-controlled trial. Lancet (London, England) 389(10084), 21052116. doi: 10.1016/S0140-6736(17)30638-4.Google Scholar
Yaya, S. et al. (2018) Disparities in caesarean section prevalence and determinants across sub-Saharan Africa countries. Global Health Research and Policy 3(1), 19. doi: 10.1186/s41256-018-0074-y.CrossRefGoogle ScholarPubMed
Zijp, I.M., Korver, O. & Tijburg, L.B.M. (2000) Effect of tea and other dietary factors on iron absorption. Critical Reviews in Food Science and Nutrition 40(5), 371398. doi: 10.1080/10408690091189194.CrossRefGoogle ScholarPubMed

References and suggested reading

Boundy, EO et al. (2016). Kangaroo mother care and neonatal outcomes: a meta-analysis. Pediatrics 137: e20152238. doi: 10.1542/peds.2015–2238.Google Scholar
Charpak, N et al. (2017). Twenty-year follow-up of kangaroo mother care versus traditional care. Pediatric 139(1): pii: e20162063.Google ScholarPubMed
Global Health Media Project (2022). Childbirth, newborn, small newborn, breastfeeding, nutrition videos for health workers and for mothers. https://globalhealthmedia.org/.Google Scholar
Hall, S (2021). COVID vaccines and breastfeeding: what the data say. Nature 594: 492494.10.1038/d41586-021-01680-xCrossRefGoogle ScholarPubMed
Mullins, E. (2021). Pregnancy and neonatal outcomes of COVID-19: co-reporting of common outcomes from PAN-COVID and AAP-SONPM registries. Ultrasound in Obstetrics & Gynecology 51: 573581.10.1002/uog.23619CrossRefGoogle Scholar
NEST 360 International Alliance (2022). Clinical and Technical Resources. https://nest360.org/resources/.Google Scholar
Sankar, MJ (2016). Umbilical cord cleansing with chlorhexidine in neonates: a systematic review. Journal of Perinatology 36, Fasc. S1: S12–S20. doi: 10.1038/jp.2016.28.CrossRefGoogle ScholarPubMed
Tamburlini, G et al. (2020). Use of a participatory quality assessment and improvement tool for maternal and neonatal hospital care. Part 1: Review of implementation features and observed quality gaps in 25 countries. Part 2: Review of the results of quality cycles and of factors influencing change. Journal of Global Health 10(2): 020432–3.Google Scholar
WHO (2003a). Kangaroo Mother Care. Practical Guide. www.who.int/publications/i/item/9241590351.Google Scholar
WHO (2003b). Managing Newborns Problems: A Guide for Doctors, Nurses and Midwives. https://apps.who.int/iris/handle/10665/42753.Google Scholar
WHO (2013). Pocket Book of Hospital Care for Children, 2nd ed. www.who.int/publications/i/item/978-92-4-154837–3.Google Scholar
WHO (2014). WHO Recommendations on Postnatal Care of the Mother and Newborn. https://apps.who.int/iris/bitstream/handle/10665/97603/9789241506649_eng.pdf;sequence=1.Google Scholar
WHO (2014b) Integrated Management of Childhood Illness – Chart Booklet (March 2014). www.who.int/publications/m/item/integrated-management-of-childhood-illness---chart-booklet-(march-2014).Google Scholar
WHO (2015) Pregnancy, Childbirth, Postpartum and Newborn Care (PCPNC). A Guide for Essential Practice, 3rd ed. www.who.int/publications/i/item/pregnancy-childbirth-postpartum-and-newborn-care.Google Scholar
WHO–UNICEF (2016). Guideline: Updates on HIV and Infant Feeding: The Duration of Breastfeeding, and Support from Health Services to Improve Feeding Practices Among Mothers Living with HIV. www.who.int/publications/i/item/9789241549707.Google Scholar
WHO (2016). Standards for Improving Quality of Maternal and Newborn Care in Health Facilities. www.who.int/publications/i/item/9789241511216.Google Scholar
WHO (2017). WHO Recommendations on Newborn Health: Guidelines Approved by the WHO Guidelines Review Committee. www.who.int/publications/i/item/WHO-MCA-17.07.Google Scholar
WHO (2018) Guideline: Counselling of Women to Improve Breastfeeding Practices. www.who.int/publications/i/item/9789241550468.Google Scholar
WHO (2019) Survive and Thrive: Transforming Care for Every Small and Sick Newborn. www.who.int/publications/i/item/9789241515887.Google Scholar
WHO–UNICEF (2020) Protecting, Promoting and Supporting Breastfeeding: the Baby-friendly Hospital Initiative for Small, Sick and Preterm Newborns. www.who.int/publications/i/item/9789240005648.Google Scholar
WHO (2020) Improving the Quality of Care for Mothers and Newborns in Health Facilities – Point of Care Quality Improvement, Facilitator and Learner Manuals. https://apps.who.int/iris/bitstream/handle/10665/259860/9789290226291-en.pdf;sequence=1.Google Scholar
WHO (2020) Nurturing Care for every Newborn. www.who.int/publications/i/item/9789240035201.Google Scholar
WHO (2020) Clinical Management of COVID-19: Interim Guidance (27 May 2020). https://apps.who.int/iris/handle/10665/332196.Google Scholar
WHO (2020) Standards for Improving the Quality of Care for Small and Sick Newborns in Health Facilities. www.who.int/publications/i/item/9789240010765.Google Scholar
WHO (2021) Safe Maternal and Newborn Care. www.who.int/campaigns/world-patient-safety-day/2021.Google Scholar

References

Boschi-Pinto, C et al. (2018). Global implementation survey of Integrated Management of Childhood Illness (IMCI): 20 years on. BMJ Open 8(7): e019079.10.1136/bmjopen-2017-019079CrossRefGoogle Scholar
Campbell, H et al.; Pediatric Hospital Improvement Group (2008). Global initiatives for improving hospital care for children: state of the art and future prospects. Pediatrics 121(4): e984–e92.10.1542/peds.2007-1395CrossRefGoogle ScholarPubMed
Every Woman Every Child (EWEC) (2015). The Global Strategy for Women’s, Children’s And Adolescents’ Health. New York, NY: Every Woman Every Child.Google Scholar
Maitland, K et al.; Trial Group, FEAST (2011). Mortality after fluid bolus in African children with severe infection. New England Journal of Medicine 364(26): 24832495.10.1056/NEJMoa1101549CrossRefGoogle ScholarPubMed
Reñosa, M D et al. (2020). Key challenges of health care workers in implementing the integrated management of childhood illnesses (IMCI) program: a scoping review. Global Health Action 13(1): 1732669.10.1080/16549716.2020.1732669CrossRefGoogle ScholarPubMed
Simoes, EA et al. (2003). Management of severely ill children at first-level health facilities in sub-Saharan Africa when referral is difficult. Bulletin of the World Health Organization 81(7): 522531.Google ScholarPubMed
Tulloch, J. (1999). Integrated approach to child health in developing countries. Lancet 354: SII16–SII20.10.1016/S0140-6736(99)90252-0CrossRefGoogle ScholarPubMed
United Nations Inter-Agency Group for Child Mortality Estimation (UN IGME) 2023 Levels and Trends in Child Mortality: Report 2023 Estimates developed by the United Nations Inter-Agency Group for Child Mortality Estimation. New York: United Nations Children’s Fund.Google Scholar
Weber, MW et al. (1997). Evaluation of an algorithm for the integrated management of childhood illness in an area with seasonal malaria in the Gambia. Bulletin of the World Health Organization 75: 525532.Google Scholar
WHO (1995). Integrated Management of Childhood Illness. Geneva: World Health Organization, Division of Child Health and Development.Google Scholar
WHO (2004). Chronic Suppurative Otitis Media: Burden of Illness and Management Options. Geneva: World Health Organization.Google Scholar
WHO (2013). Pocket Book of Hospital Care for Children: Guidelines for the Management of Common Childhood Illnesses, 2nd ed. Geneva: World Health Organization.Google Scholar
WHO (2014). Integrated Management of Childhood Illness: Distance Learning Course. Geneva: World Health Organization.Google Scholar
WHO (2015). Pregnancy, Childbirth, Postpartum and Newborn Care: A Guide for Essential Practice, 3rd ed. Geneva: World Health Organization.Google Scholar
WHO (2016). Guideline: Updates on Paediatric Emergency Triage, Assessment and Treatment: Care of Critically Ill Children. Geneva: World Health Organization.Google Scholar
WHO (2021a). The Global Health Observatory. Child Mortality and Causes of Death. www.who.int/data/gho/data/themes/topics/topic-details/GHO/child-mortality-and-causes-of-death.Google Scholar
WHO (2021b). Website of the WHO Department of Maternal, Newborn, Child and Adolescent Health and Ageing. www.who.int/tools/child-growth-standards/standards.Google Scholar
Young Infants Clinical Signs Study Group (2008). Clinical signs that predict severe illness in children under age 2 months: a multicentre study. Lancet 371(9607): 135142.CrossRefGoogle Scholar

References

Bailey J, Opondo C, Lelijveld N et al. (2020). A simplified combined protocol versus standard treatment for acute malnutrition in children 6–59 months (ComPAS trial): a cluster-randomized controlled non-inferiority trial in Kenya and South Sudan. PLOS Medicine; https://doi.org/10.1371/journal.pmed.1003192.CrossRefGoogle Scholar
Bandsma, RHJ, Voskuijl, W, Chimwezi, E et al. (2019). A reduced-carbohydrate and lactose-free formulation for stabilization among hospitalized children with severe acute malnutrition: a double-blind, randomized controlled trial. PLoS Med; 16(2): e1002747. doi: 10.1371/journal.pmed.1002747.CrossRefGoogle ScholarPubMed
Berkley JA, Walson JL, Bahl R, Rollins N. (2024). Differentiating mortality risk of individual infants and children to improve survival: opportunity for impact. Lancet; 404: 492–4.Google Scholar
Black, RE, Victora, CG, Walker, SP, et al. (2013). Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet; 382(9890): 427–51. doi.org/10.1016/S0140-6736(13)60937-X.CrossRefGoogle ScholarPubMed
Brent, B, Obonyo, N, Akech, S et al. (2019). Assessment of myocardial function in Kenyan children with severe, acute malnutrition: The Cardiac Physiology in Malnutrition (CAPMAL) Study. JAMA Netw Open; 2: e191054.10.1001/jamanetworkopen.2019.1054CrossRefGoogle ScholarPubMed
Childhood Acute Illness and Nutrition Network (CAINN). (2022). Childhood mortality during and after acute illness in Africa and south Asia: a prospective cohort study. Lancet Glob Health; 10: e673–84.Google Scholar
Collins, S, Dent, N, Binns, P et al. (2006). Management of severe acute malnutrition in children. Lancet; 368: 1992–2000.CrossRefGoogle ScholarPubMed
Collins, S, Sadler, K, Dent, N et al. (2006). Key issues in the success of community-based management of severe malnutrition. Food Nutr Bull; 27: S4982.10.1177/15648265060273S304CrossRefGoogle ScholarPubMed
Grantham-McGregor, SM, Fernald, LC, Kagawa, RM, et al. Effects of integrated child development and nutrition interventions on child development and nutritional status. Ann N Y Acad Sci 2014; 1308: 1132. doi: 10.1111/nyas.12284.CrossRefGoogle ScholarPubMed
Grey, K, Gonzales, GB, Abera, M, et al. (2021). Severe malnutrition or famine exposure in childhood and cardiometabolic non-communicable disease later in life: a systematic review. BMJ Global Health 6(3): e003161. doi: 10.1136/bmjgh-2020-003161.Google ScholarPubMed
Heikens, GT, Bunn, J, Amadi, B et al. (2008). Case management of HIV-infected severely malnourished children: challenges in the area of highest prevalence. Lancet; 371: 1305–7.10.1016/S0140-6736(08)60565-6CrossRefGoogle ScholarPubMed
Hughes, SM, Amadi, B, Mwiya, M et al. (2009). CD4 counts decline despite nutritional recovery in HIV-infected Zambian children with severe malnutrition. Pediatrics; 123: e347–51.10.1542/peds.2008-1316CrossRefGoogle ScholarPubMed
Isanaka, S, Hanson, KE, Frison, S, et al. (2019). MUAC as the sole discharge criterion from community-based management of severe acute malnutrition in Burkina Faso. Matern Child Nutr; 15(2): e12688. doi: 10.1111/mcn.12688.CrossRefGoogle Scholar
Kerac, M, McGrath, M, Connell, N, et al. (2020). ‘Severe malnutrition’: thinking deeplyS, communicating simply. BMJ Global Health; 5(11): e003023. doi: 10.1136/bmjgh-2020-003023.CrossRefGoogle ScholarPubMed
Maitland, K, Berkley, JA, Shebbe, M et al. (2006). Children with severe malnutrition: can those at highest risk of death be identified with the WHO protocol? PLoS Med; 3: e500.CrossRefGoogle ScholarPubMed
Care Pathway., MAMI Management of small and nutritionally At-risk Infants u6 months and their Mothers. www.ennonline.net/mamicarepathway.Google Scholar
Manary, MJ, Sandige, HL (2008). Management of acute moderate and severe childhood malnutrition. Br Med J; 337: a2180.10.1136/bmj.a2180CrossRefGoogle ScholarPubMed
Meier, R, Stratton, R. (2008). Basic concepts in nutrition: Epidemiology of malnutrition. e-SPEN, the European e-Journal of Clinical Nutrition and Metabolism; 3(4): e167e170. doi.org/10.1016/j.eclnm.2008.04.002.Google Scholar
Nyeko, R, Kalyesubula, I, Mworozi, E et al. (2010). Lactose intolerance among severely malnourished children with diarrhoea admitted to the nutrition unit, Mulago hospital, Uganda. BMC Pediatr; 10: 31.CrossRefGoogle Scholar
Obonyo, N, Brent, B, Olupot-Olupot, P et al. (2017). Myocardial and haemodynamic responses to two fluid regimens in African children with severe malnutrition and hypovolaemic shock (AFRIM study). Critical care (London, England); 21: 103–103.CrossRefGoogle ScholarPubMed
Ocal, B, Unal, S, Zorlu, P et al. (2001). Echocardiographic evaluation of cardiac functions and left ventricular mass in children with malnutrition. J Paediatr Child Health; 37: 1417.10.1046/j.1440-1754.2001.00566.xCrossRefGoogle ScholarPubMed
UNICEF (2020). Conceptual Framework for malnutrition. www.unicef.org/reports/nutrition-strategy–2020–2030.Google Scholar
Victora, CG, Bahl, R, Barros, AJD, et al. (2016). Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet; 387(10017): 475–90. doi.org/10.1016/S0140-6736(15)01024-7.CrossRefGoogle ScholarPubMed
WHO (2005). Child Reference Growth Standards. www.who.int/childgrowth/software/en/index.html.Google Scholar

References

Anon. (1996). Evaluation of an algorithm for the treatment of persistent diarrhoea: a multicentre study. International Working Group on Persistent Diarrhoea. Bull World Hlth Org 74: 479489.Google Scholar
Black, RE. (1993). Persistent diarrhea in children of developing countries. Pediatr Infect Dis J 12: 751761.10.1097/00006454-199309000-00010CrossRefGoogle ScholarPubMed
Brown, KH, Gastanaduy, AS, Saavedra, JM et al. (1988). Effect of continued oral feeding on clinical and nutritional outcomes of acute diarrhea in children. J Pediatr 112: 191200.10.1016/S0022-3476(88)80055-6CrossRefGoogle ScholarPubMed
Heymann, DL, Mbvundula, M, Macheso, A et al. (1990). Oral rehydration therapy in Malawi: impact on the severity of disease and on hospital admissions, treatment practices, and recurrent costs. Bull World Hlth Org 68: 193197.Google ScholarPubMed
Huttly, SR, Morris, SS, Pisani, V. (1997). Prevention of diarrhoea in young children in developing countries. Bull World Hlth Org 75: 163–74.Google Scholar
Kosek, M, Bern, C, Guerrant, RL. (2003). The global burden of diarrhoeal disease, as estimated from studies published between 1992 and 2000. Bull World Hlth Org 81: 197204.Google ScholarPubMed
Kotloff, K, Nataro, JP, Blackwelder, WC et al. (2013) Burden and aetiology of diarrheal disease in young children in developing countries (the Global Enteric Multicenter Study (GEMS): a prospective, case control study. Lancet 382: 209222.10.1016/S0140-6736(13)60844-2CrossRefGoogle Scholar
Lazzerini, M, Ronfani, L. (2008). Oral zinc for treating diarrhoea in children. Cochrane Database Syst Rev; 3: CD005436.10.1002/14651858.CD005436.pub2CrossRefGoogle Scholar
Munos, MK, Walker, CL, Black, RE. (2010). The effect of oral rehydration solution and recommended home fluids on diarrhoea mortality. Int J Epidemiol; 39: i75i87.10.1093/ije/dyq025CrossRefGoogle ScholarPubMed
JM, Mwenda, Burke, RM, Shaba, K et al. (2017). Implementation of rotavirus surveillance and vaccine introduction in the WHO African Region 2007–2016. MMWR 66 (43): 11921196.Google Scholar
Pavlinac, PB, Tickell, KD, Walson, JD. (2015). Management of diarrhea in HIV affected infants and children. Expert Rev Anti Infect Ther 13(1): 58.10.1586/14787210.2015.981157CrossRefGoogle ScholarPubMed
Pavlinac, PB, John-Steward, GC, Naulikha, JM et al. (2014). High risk enteric pathogens associated with HIV infection and HIV exposure in Kenyan children with acute diarrhoea. AIDS 28(15): 22872296.10.1097/QAD.0000000000000396CrossRefGoogle ScholarPubMed
WHO (1999). Management of Severe Malnutrition: A Manual for Physicians and Other Senior Health Workers. Geneva: World Health Organization.Google Scholar
WHO (2004). Antibiotics in the management of shigellosis. Wkly Epidemiol Rec 79: 355–6.Google Scholar
WHO (2005a). Shigellosis: disease burden, epidemiology and case management. Wkly Epidemiol Rec 80: 94–9.Google Scholar
WHO (2005b). The Treatment of Diarrhoea: A Manual for Physicians and Other Senior Health Workers. Geneva: World Health Organization.Google Scholar
WHO (2007). Rotavirus vaccines. Wkly Epidemiol Rec 82: 285–95.Google Scholar
WHO (2010). WHO recommendations on the management of diarrhoea and pneumonia in HIV-affected infants and children. Geneva: World Health Organization.Google Scholar
WHO (2013). Pocket Book of Hospital Care for Children. Geneva: World Health Organization.Google Scholar
WHO (2018). Largest cholera vaccine drive in history to target spike in outbreaks. www.who.int/groups/icg/cholera.Google Scholar
WHO (2021). The Global Health Observatory. Child mortality and causes of death. www.who.int/data/gho/data/themes/topics/topic-details/GHO/child-mortality-and-causes-of-death.Google Scholar

References

Charan, J., Goyal, J. P., Saxena, D. et al. (2012). Vitamin D for prevention of respiratory tract infections: a systematic review and meta-analysis. J Pharmacol Pharmacother, 3(4), 300303. doi: 10.4103/0976-500x.103685.CrossRefGoogle ScholarPubMed
Cowgill, K. D., Ndiritu, M., Nyiro, J. et al. (2006). Effectiveness of Haemophilus influenzae type b conjugate vaccine introduction into routine childhood immunization in Kenya. JAMA, 296(6), 671678. doi: 10.1001/jama.296.6.671.CrossRefGoogle ScholarPubMed
Green, R. J. & Kolberg, J. M. (2016). Neonatal pneumonia in sub-Saharan Africa. Pneumonia, 8(1), 3. doi:10.1186/s41479-016-0003-0.CrossRefGoogle ScholarPubMed
Hammitt, L. L., Etyang, A. O., Morpeth, S. C. et al. (2019). Effect of ten-valent pneumococcal conjugate vaccine on invasive pneumococcal disease and nasopharyngeal carriage in Kenya: a longitudinal surveillance study. Lancet (London, England), 393(10186), 21462154. doi:10.1016/S0140-6736(18)33005-8.CrossRefGoogle Scholar
Lassi, Z. S., Moin, A. & Bhutta, Z. A. (2016). Zinc supplementation for the prevention of pneumonia in children aged 2 months to 59 months. Cochrane Database of Systematic Reviews, doi:10.1002/14651858.CD005978.pub3.CrossRefGoogle ScholarPubMed
Lassi, Z. S., Padhani, Z. A., Das, J. K. et al. (2021). Antibiotic therapy versus no antibiotic therapy for children aged 2 to 59 months with WHO-defined non-severe pneumonia and wheeze. Cochrane Database Syst Rev, 1(1), Cd009576. doi: 10.1002/14651858.CD009576.pub3.Google ScholarPubMed
Mangtani, P., Mulholland, K., Madhi, S. A. et al. (2010). Haemophilus influenzae type b disease in HIV-infected children: a review of the disease epidemiology and effectiveness of Hib conjugate vaccines. Vaccine, 28(7), 16771683. doi: 10.1016/j.vaccine.2009.12.011.CrossRefGoogle ScholarPubMed
Mulholland, E. K., Simoes, E. A., Costales, M. O. et al. (1992). Standardized diagnosis of pneumonia in developing countries. Pediatr Infect Dis J, 11(2), 7781. doi: 10.1097/00006454-199202000-00004.CrossRefGoogle ScholarPubMed
O’Brien, K. L., Baggett, H. C., Brooks, W. A. et al. (2019). Causes of severe pneumonia requiring hospital admission in children without HIV infection from Africa and Asia: the PERCH multi-country case-control study. The Lancet, 394(10200), 757779. doi:10.1016/S0140-6736(19)30721-4CrossRefGoogle Scholar
Oliwa, J. N., Karumbi, J. M., Marais, B. J. et al. (2015). Tuberculosis as a cause or comorbidity of childhood pneumonia in tuberculosis-endemic areas: a systematic review. Lancet Respir Med, 3(3), 235243. doi: 10.1016/s2213-2600(15)00028-4.CrossRefGoogle ScholarPubMed
Sonego, M., Pellegrin, M. C., Becker, G. et al. (2015). Risk factors for mortality from acute lower respiratory infections (ALRI) in children under five years of age in low and middle-income countries: a systematic review and meta-analysis of observational studies. PLoS ONE, 10(1), e0116380. doi: 10.1371/journal.pone.0116380.CrossRefGoogle ScholarPubMed
UNICEF, & World Health Organization. (2013). The Integrated Global Action Plan for the Prevention and Control of Pneumonia and Diarrhoea (GAPPD). Retrieved from Geneva: www.who.int/maternal_child_adolescent/news_events/news/2013/gappd_launch/en/.Google Scholar
van der Zalm, M. M., Lishman, J., Verhagen, L. M. et al. (2020). Clinical experience with severe acute respiratory syndrome coronavirus 2–related illness in children: Hospital experience in Cape Town, South Africa. Clinical Infectious Diseases, 72(12), e938e944. doi: 10.1093/cid/ciaa1666.CrossRefGoogle Scholar
Vanker, A., Gie, R. P. & Zar, H. J. (2017). The association between environmental tobacco smoke exposure and childhood respiratory disease: a review. Expert Review of Respiratory Medicine, 11(8), 661673. doi: 10.1080/17476348.2017.1338949.CrossRefGoogle ScholarPubMed
Weber, M. W., Mulholland, E. K. & Greenwood, B. M. (1998). Respiratory syncytial virus infection in tropical and developing countries. Trop Med Int Health, 3(4), 268280. doi: 10.1046/j.1365-3156.1998.00213.x.CrossRefGoogle ScholarPubMed
World Health Organization (2013). Pocket Book of Hospital Care for Children: Guidelines for the Management of Common Childhood Illnesses.Google Scholar
World Health Organization (2014). Revised WHO classification and treatment of pneumonia in children at health facilities: evidence summaries. https://apps.who.int/iris/bitstream/handle/10665/137319/9789241507813_eng.pdf?sequence=1.Google Scholar
World Health Organization (2016). Oxygen therapy for children: a manual for health workers. https://apps.who.int/iris/bitstream/handle/10665/204584/9789241549554_eng.pdf?sequence=1&isAllowed=y.Google Scholar
Yakoob, M. Y., Salam, R. A., Khan, F. R. et al. (2016). Vitamin D supplementation for preventing infections in children under five years of age. Cochrane Database of Systematic Reviews, doi:10.1002/14651858.CD008824.pub2.CrossRefGoogle ScholarPubMed

References

Aaby, P & Clements, CJ (1989). Measles immunization research: a review. Bull Wld Hlth Org; 67: 443–8.Google ScholarPubMed
Aaby, P (1998). Malnutrition and overcrowding – exposure in severe measles infection; a review of community studies. Rev Infect Dis; 10: 478–91.Google Scholar
Akramuzzaman, SM et al. (2000). Increased childhood morbidity after measles is short-term in urban Bangladesh. J Epidemiol; 151: 723–35.Google ScholarPubMed
Barrett, T (1999). Morbillivirus infections, with special emphasis on morbillivirus of carnivores. Vet Microbiol; 69: 313.10.1016/S0378-1135(99)00080-2CrossRefGoogle ScholarPubMed
Benn, CS et al (2020). Vaccinology: time to change the paradigm? Lancet Inf Dis; 10: e274e283.10.1016/S1473-3099(19)30742-XCrossRefGoogle Scholar
Burnet, FM (1968). Measles as an index of immunological function. Lancet; ii: 610–13.Google Scholar
Do, LAH et al. (2020). Exploring the possible cause of the dramatic increase in measles mortality during the 2015–2016 Mongolian outbreak. J Infect Dis; 7(1): 1266–8.Google Scholar
Griffin DE, Ward BJ & Esolen LM (1994). Pathogenesis of measles virus infection: an hypothesis for the altered immune responses. J Infect Dis; 170: s24–s31.Google Scholar
Guerra, FM et al. (2017). The basic reproduction number (R0) of measles: a systematic review. Lancet Infect Dis; 17(12): e420e428.10.1016/S1473-3099(17)30307-9CrossRefGoogle ScholarPubMed
Hussey, GD, Klein, M (1990). A randomised, controlled trial of vitamin A in children with severe measles. N Engl J Med; 323: 160–4.10.1056/NEJM199007193230304CrossRefGoogle ScholarPubMed
Mina, MJ et al. (2015) Long-term measles-induced immunomodulation increases overall childhood infectious disease mortality. Science; 348: 694–9.10.1126/science.aaa3662CrossRefGoogle ScholarPubMed
Moss, WJ et al. (2002). Prospective study of measles in hospitalized, HIV-infected and uninfected children in Zambia. Clin Infect Dis; 35: 189–96.10.1086/341248CrossRefGoogle ScholarPubMed
Mulholland, K et al. (2020). Action needed now to prevent further increases in measles and measles deaths in the coming years. Lancet; 396: 1782–4.10.1016/S0140-6736(20)32394-1CrossRefGoogle ScholarPubMed
Patel, MK et al. (2020). Progress towards regional measles elimination – worldwide, 2000 – 2019. MMWR Morb Mortal Wkly Rep; 69(45): 17005.10.15585/mmwr.mm6945a6CrossRefGoogle Scholar
Permar, SR et al. (2001). Prolonged measles virus shedding in human immunodeficiency virus – infected children, detected by reverse transcriptase – polymerase chain reaction. J Infect Dis; 183: 532–8.10.1086/318533CrossRefGoogle Scholar
Petrova, VN et al. (2019). Incomplete genetic reconstitution of B cell pools contributes to prolonged immunosuppression after measles. Sci Immunol; 4.10.1126/sciimmunol.aay6125CrossRefGoogle ScholarPubMed
Plotkin, S et al. (2012). Passive immunisation. In Plotkin, S., Orenstein, W., Offit, P., eds. Vaccines. 6th ed. Saunders; 807.Google Scholar
Portnoy, A et al. (2019). Estimates of case-fatality ratios of measles in low-income and middle-income countries: a systematic review and modelling analysis. Lancet Glob Health; 7(4): e472e481.10.1016/S2214-109X(18)30537-0CrossRefGoogle ScholarPubMed
Rota, P et al. (2016). Measles. Nat Rev Dis Primers; 2, 16049.10.1038/nrdp.2016.49CrossRefGoogle ScholarPubMed
Salama, P et al. (2001). Malnutrition, mortality, and humanitarian response during a famine in Ethiopia, JAMA; 286(5): 563–71.10.1001/jama.286.5.563CrossRefGoogle Scholar
Scott, S et al. (2007). The influence of HIV-1 exposure and infection on levels of passively acquired antibodies to measles virus in Zambian infants. Clin Infect Dis; 45: 1417–24.10.1086/522989CrossRefGoogle ScholarPubMed
Smythe, PM et al. (1971). Thymolymphatic deficiency and depression of cell-mediated immunity in protein calorie malnutrition. Lancet; ii: 939–43.Google Scholar
Wariri, O et al. (2021). A scorecard of progress towards measles elimination in 15 west African countries, 2001–19: a retrospective, multicountry analysis of national immunisation coverage and surveillance data. Lancet Glob Health; 9: e280–90.10.1016/S2214-109X(20)30481-2CrossRefGoogle ScholarPubMed
Whittle, HC et al. (1979). Severe ulcerative herpes of mouth and eye following measles. Trans Roy Soc Trop Med Hyg; 73: 66–9.10.1016/0035-9203(79)90132-9CrossRefGoogle ScholarPubMed
Wolfson, LJ et al. (2009). Estimates of measles case fatality ratios: a comprehensive review of community-based studies. Int J Epidemiol; 38(1): 192205.10.1093/ije/dyn224CrossRefGoogle ScholarPubMed
WHO (2013). Pocket Book of Hospital Care for Children: Guidelines for the Management of Common Childhood Illnesses.Google Scholar
WHO (2019). Recommendation for routine immunization.Google Scholar
WHO (2020). Guide for clinical case management and infection prevention and control during a measles outbreak. Geneva. Licence: CC BY-NC-SA 3.0 IGO.Google Scholar

References

Aaby, P. (1992). Overcrowding and intensive exposure. Major determinants of variation in measles mortality in Africa. In Mortality and Society in Sub-Saharan Africa. Oxford: Clarendon Press, 319–48.Google Scholar
Altunaiji, S., Kukuruzovic, R., Curtis, N. & Massie, J. 2007. Antibiotics for whooping cough (pertussis). Cochrane Database Syst Rev, Cd004404.Google Scholar
Carbonetti, N. H. 2016. Pertussis leukocytosis: mechanisms, clinical relevance and treatment. Pathog Dis, 74.10.1093/femspd/ftw087CrossRefGoogle ScholarPubMed
Cherry, J. D., Tan, T., Wirsing Von Konig, C. H. et al. 2012. Clinical definitions of pertussis: Summary of a Global Pertussis Initiative roundtable meeting, February 2011. Clin Infect Dis, 54, 1756–64.10.1093/cid/cis302CrossRefGoogle ScholarPubMed
Cody, C. L., Baraff, L. J., Cherry, J. D., Marcy, S. M. & Manclark, C. R. 1981. Nature and rates of adverse reactions associated with DTP and DT immunizations in infants and children. Pediatrics, 68, 650–60.10.1542/peds.68.5.650CrossRefGoogle ScholarPubMed
Fulton, T. R., Phadke, V. K., Orenstein, W. A., Hinman, A. R., Johnson, W. D. & Omer, S. B. 2016. Protective effect of contemporary pertussis vaccines: a systematic review and meta-analysis. Clin Infect Dis, 62, 1100–10.10.1093/cid/ciw051CrossRefGoogle ScholarPubMed
Heininger, U., Weibel, D. & Richard, J. L. 2014. Prospective nationwide surveillance of hospitalizations due to pertussis in children, 2006–2010. Pediatr Infect Dis J, 33, 147–51.10.1097/01.inf.0000435503.44620.74CrossRefGoogle ScholarPubMed
Jardine, A., Conaty, S. J., Lowbridge, C., Staff, M. & Vally, H. 2010. Who gives pertussis to infants? Source of infection for laboratory confirmed cases less than 12 months of age during an epidemic, Sydney, 2009. Commun Dis Intell Q Rep, 34, 116–21.Google ScholarPubMed
Macina, D. & Evans, K. E. 2021. Bordetella pertussis in school-age children, adolescents, and adults: a systematic review of epidemiology, burden, and mortality in Africa. Infect Dis Ther, 10, 1097–113.Google ScholarPubMed
Madsen, T. 1925. Whooping cough: its bacteriology, diagnosis, prevention and treatment. Boston Med Surg J, 192m 5060.10.1056/NEJM192501081920202CrossRefGoogle Scholar
Mulholland, K. 1995. Measles and pertussis in developing countries with good vaccine coverage. Lancet, 345, 305–7.10.1016/S0140-6736(95)90282-1CrossRefGoogle ScholarPubMed
Muloiwa, R., Wolter, N., Mupere, E. et al. 2018. Pertussis in Africa: findings and recommendations of the Global Pertussis Initiative (GPI). Vaccine, 36: 2385–93.10.1016/j.vaccine.2018.03.025CrossRefGoogle ScholarPubMed
Muloiwa, R., Dube, F. S., Nicol, M. P., Hussey, G. D. & Zar, H. J. 2020a. Risk factors for Bordetella pertussis disease in hospitalized children. PLoS ONE, 15, e0240717.10.1371/journal.pone.0240717CrossRefGoogle ScholarPubMed
Muloiwa, R., Kagina, B. M., Engel, M. E. & Hussey, G. D. 2020b. The burden of laboratory-confirmed pertussis in low- and middle-income countries since the inception of the Expanded Programme on Immunisation (EPI) in 1974: a systematic review and meta-analysis. BMC Med, 18, 233.10.1186/s12916-020-01699-3CrossRefGoogle ScholarPubMed
Patterson, J., Kagina, B. M., Gold, M., Hussey, G. D. & Muloiwa, R. 2018. Comparison of adverse events following immunisation with acellular and whole-cell pertussis vaccines: a systematic review. Vaccine, 36, 600716.10.1016/j.vaccine.2018.08.022CrossRefGoogle ScholarPubMed
Pierce, C., Klein, N. & Peters, M. 2000. Is leukocytosis a predictor of mortality in severe pertussis infection? Intensive Care Med, 26, 1512–14.Google ScholarPubMed
Pollard, R. 1980. Relation between vaccination and notification rates for whooping cough in England and Wales. Lancet, 1, 1180–2.Google ScholarPubMed
Tatti, K. M., Sparks, K. N., Boney, K. O. & Tondella, M. L. 2011. Novel multitarget real-time PCR assay for rapid detection of Bordetella species in clinical specimens. J Clin Microbiol, 49, 4059–66.10.1128/JCM.00601-11CrossRefGoogle ScholarPubMed
Wendelboe, A. M., Van Rie, A., Salmaso, S. & Englund, J. A. 2005. Duration of immunity against pertussis after natural infection or vaccination. Pediatr Infect Dis J, 24, S5861.10.1097/01.inf.0000160914.59160.41CrossRefGoogle ScholarPubMed
World Health Organization 2015. Pertussis vaccines: WHO position paper – August 2015. 35, 43360.Google Scholar
World Health Organization 2020. Progress and Challenges with Achieving Universal Immunization Coverage. WHO/UNICEF Estimates of National Immunization Coverage.Google Scholar
Yeung, K. H. T., Duclos, P., Nelson, E. a. S. & Hutubessy, R. C. W. 2017. An update of the global burden of pertussis in children younger than 5 years: a modelling study. Lancet Infect Dis, 17, 97480.10.1016/S1473-3099(17)30390-0CrossRefGoogle Scholar
Zerbo, O., Bartlett, J., Goddard, K., Fireman, B., Lewis, E. & Klein, N. P. 2019. Acellular pertussis vaccine effectiveness over time. Pediatrics, 144.10.1542/peds.2018-3466CrossRefGoogle ScholarPubMed

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×