Skip to main content Accessibility help
×
Hostname: page-component-6bb9c88b65-g7ldn Total loading time: 0 Render date: 2025-07-23T23:39:56.929Z Has data issue: false hasContentIssue false

Chapter 20 - Malaria

from Section 4 - Major Common Infections

Published online by Cambridge University Press:  18 June 2025

David Mabey
Affiliation:
London School of Hygiene and Tropical Medicine
Martin W. Weber
Affiliation:
World Health Organization
Moffat Nyirenda
Affiliation:
London School of Hygiene and Tropical Medicine
Dorothy Yeboah-Manu
Affiliation:
Noguchi Memorial Institute for Medical Research, University of Ghana
Jackson Orem
Affiliation:
Uganda Cancer Institute, Kampala
Laura Benjamin
Affiliation:
University College London
Michael Marks
Affiliation:
London School of Hygiene and Tropical Medicine
Nicholas A. Feasey
Affiliation:
Liverpool School of Tropical Medicine
Get access

Summary

Malaria is a protozoan infection caused by Plasmodium parasites, which are transmitted by Anopheles mosquitoes. The burden of malaria is highest in sub-Saharan Africa. The dominant Anopheles vectors in Africa are highly efficient at transmitting malaria and Plasmodium falciparum, the most dangerous of the malaria parasites, is responsible for over 90% of malaria cases in Africa. Since 2000, remarkable progress on malaria control has been achieved alongside substantial investment in insecticide-treated nets (ITNs), indoor residual spraying of insecticides (IRS) and artemisinin-based combination therapies (ACTs) (Bhatt et al. 2015). Between 2000 and 2019, the World Health Organization (WHO) estimates that 1.5 billion malaria cases and 7.6 million malaria deaths were averted, mostly in Africa, and Morocco and Algeria were recently certified as malaria-free (WHO 2020). Since 2015, however, progress on malaria control has slowed, particularly in high burden countries. Globally, malaria control efforts are challenged by insufficient funding, and the emerging threats of drug and insecticide resistance (Ashley et al. 2014; Hemingway et al. 2016).

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

ACCESS-SMC Partnership (2020). Effectiveness of seasonal malaria chemoprevention at scale in west and central Africa: an observational study. Lancet, 396, 1829–40.Google Scholar
Andolina, C., Rek, J. C., Briggs, J. et al. (2021). Sources of persistent malaria transmission in a setting with effective malaria control in eastern Uganda: a longitudinal, observational cohort study. Lancet Infect Dis, 21, 1568–78.10.1016/S1473-3099(21)00072-4CrossRefGoogle Scholar
Ashley, E. A., Dhorda, M., Fairhurst, R. M. et al. (2014). Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med, 371, 411–23.10.1056/NEJMoa1314981CrossRefGoogle ScholarPubMed
Ashley, E. A. & Phyo, A. P. (2018). Drugs in development for malaria. Drugs, 78, 861879.10.1007/s40265-018-0911-9CrossRefGoogle ScholarPubMed
Ashley, E. A., Pyae Phyo, A. & Woodrow, C. J. (2018). Malaria. Lancet, 391, 16081621.10.1016/S0140-6736(18)30324-6CrossRefGoogle ScholarPubMed
Beare, N. A., Taylor, T. E., Harding, S. P., Lewallen, S. & Molyneux, M. E. (2006). Malarial retinopathy: a newly established diagnostic sign in severe malaria. Am J Trop Med Hyg, 75, 790–7.10.4269/ajtmh.2006.75.790CrossRefGoogle ScholarPubMed
Berkley, J., Mwarumba, S., Bramham, K., Lowe, B. & Marsh, K. (1999). Bacteraemia complicating severe malaria in children. Trans R Soc Trop Med Hyg, 93, 283–6.10.1016/S0035-9203(99)90024-XCrossRefGoogle ScholarPubMed
Bhatt, S., Weiss, D. J., Cameron, E., et al. (2015). The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature, 526, 207–11.10.1038/nature15535CrossRefGoogle ScholarPubMed
Billingsley, P., Binka, F., Chaccour, C., et al. (2020). A roadmap for the development of ivermectin as a complementary malaria vector control tool. Am J Trop Med Hyg, 102, 324.Google ScholarPubMed
Brejt, J. A. & Golightly, L. M. (2019). Severe malaria: update on pathophysiology and treatment. Curr Opin Infect Dis, 32, 413–18.10.1097/QCO.0000000000000584CrossRefGoogle Scholar
Cohee, L. M., Opondo, C., Clarke, S. E. et al. (2020). Preventive malaria treatment among school-aged children in sub-Saharan Africa: a systematic review and meta-analyses. Lancet Glob Health, 8, e1499–511.10.1016/S2214-109X(20)30325-9CrossRefGoogle ScholarPubMed
Conrad, M. D. & Rosenthal, P. J. (2019). Antimalarial drug resistance in Africa: the calm before the storm? Lancet Infect Dis, 19, e338–51.10.1016/S1473-3099(19)30261-0CrossRefGoogle ScholarPubMed
Cowman, A. F., Healer, J., Marapana, D. & Marsh, K. (2016). Malaria: biology and disease. Cell, 167, 610–24.10.1016/j.cell.2016.07.055CrossRefGoogle ScholarPubMed
Datoo, M. S., Natama, M. H., Somé, A. et al. (2021). Efficacy of a low-dose candidate malaria vaccine, R21 in adjuvant Matrix-M, with seasonal administration to children in Burkina Faso: a randomised controlled trial. Lancet, 397, 1809–18.10.1016/S0140-6736(21)00943-0CrossRefGoogle Scholar
Dellicour, S., Sevene, E., Mcgready, R. et al. (2017). First-trimester artemisinin derivatives and quinine treatments and the risk of adverse pregnancy outcomes in Africa and Asia: a meta-analysis of observational studies. PLoS Med, 14, e1002290.10.1371/journal.pmed.1002290CrossRefGoogle Scholar
Dondorp, A., Nosten, F., Stepniewska, K., Day, N. & White, N. (2005). Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet, 366, 717–25.Google ScholarPubMed
Dondorp, A. M., Fanello, C. I., Hendriksen, I. C. et al. (2010). Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): an open-label, randomised trial. Lancet, 376, 1647–57.10.1016/S0140-6736(10)61924-1CrossRefGoogle ScholarPubMed
Hawley, W. A., Phillips-Howard, P. A., Ter Kuile, F. O. et al. (2003). Community-wide effects of permethrin-treated bed nets on child mortality and malaria morbidity in western Kenya. Am J Trop Med Hyg, 68, 121–7.CrossRefGoogle ScholarPubMed
Hemingway, J., Ranson, H., Magill, A. et al. (2016). Averting a malaria disaster: will insecticide resistance derail malaria control? Lancet, 387, 1785–8.10.1016/S0140-6736(15)00417-1CrossRefGoogle ScholarPubMed
Lindsay, S. W., Thomas, M. B. & Kleinschmidt, I. (2021). Threats to the effectiveness of insecticide-treated bednets for malaria control: thinking beyond insecticide resistance. Lancet Glob Health. doi.org/10.1016/S2214-109X(21)00216-3.CrossRefGoogle Scholar
Maitland, K. (2015). Management of severe paediatric malaria in resource-limited settings. BMC Med, 13, 42.10.1186/s12916-014-0263-6CrossRefGoogle ScholarPubMed
Maitland, K., Kiguli, S., Opoka, R. O. et al. (2011). Mortality after fluid bolus in African children with severe infection. N Engl J Med, 364, 2483–95.CrossRefGoogle ScholarPubMed
Marsh, K., Forster, D., Waruiru, C. et al. (1995). Indicators of life-threatening malaria in African children. N Engl J Med, 332, 1399–404.10.1056/NEJM199505253322102CrossRefGoogle ScholarPubMed
Marsh, K. & Snow, R. W. (1997). Host-parasite interaction and morbidity in malaria endemic areas. Philos Trans R Soc Lond B Biol Sci, 352, 1385–94.10.1098/rstb.1997.0124CrossRefGoogle ScholarPubMed
O’Boyle, S., Bruxvoort, K. J., Ansah, E. K., et al. (2020). Patients with positive malaria tests not given artemisinin-based combination therapies: a research synthesis describing under-prescription of antimalarial medicines in Africa. BMC Med, 18, 17.10.1186/s12916-019-1483-6CrossRefGoogle Scholar
Opoka, R. O., Waiswa, A., Harriet, N. et al. (2020). Blackwater Fever in Ugandan children with severe anemia is associated with poor postdischarge outcomes: a prospective cohort study. Clin Infect Dis, 70, 2247–54.10.1093/cid/ciz648CrossRefGoogle ScholarPubMed
Pryce, J., Richardson, M. & Lengeler, C. (2018). Insecticide-treated nets for preventing malaria. Cochrane Database Syst Rev, 11, CD000363.Google ScholarPubMed
Rodriguez-Barraquer, I., Arinaitwe, E., Jagannathan, P. et al. (2018). Quantification of anti-parasite and anti-disease immunity to malaria as a function of age and exposure. Elife, 7.10.7554/eLife.35832CrossRefGoogle ScholarPubMed
RTS,S Clinical Trials Partnership (2015). Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet, 386, 3145.10.1016/S0140-6736(15)60721-8CrossRefGoogle Scholar
Sinden, R. E. & Gilles, H. M. (2002). The malaria parasites. In Warrell, D. A. & Gilles, H. M. (eds) Essential Malariology. 4th ed. London: Arnold.Google Scholar
Staedke, S. G., Maiteki-Sebuguzi, C., Rehman, A. M. et al. (2018). Assessment of community-level effects of intermittent preventive treatment for malaria in schoolchildren in Jinja, Uganda (START-IPT trial): a cluster-randomised trial. Lancet Glob Health, 6, e668e679.10.1016/S2214-109X(18)30126-8CrossRefGoogle Scholar
Taylor, W. R. J., Hanson, J., Turner, G. D. H., White, N. J. & Dondorp, A. M. (2012). Respiratory manifestations of malaria. Chest, 142, 492505.10.1378/chest.11-2655CrossRefGoogle ScholarPubMed
Thizy, D., Pare Toe, L., Mbogo, C. et al. (2021). Proceedings of an expert workshop on community agreement for gene drive research in Africa – co-organised by KEMRI, PAMCA and Target Malaria. Gates Open Res, 5, 19.10.12688/gatesopenres.13221.1CrossRefGoogle ScholarPubMed
Tona Lutete, G., Mombo-Ngoma, G., Assi, S. B. et al. (2021). Pyronaridine-artesunate real-world safety, tolerability, and effectiveness in malaria patients in 5 African countries: a single-arm, open-label, cohort event monitoring study. PLoS Med, 18, e1003669.10.1371/journal.pmed.1003669CrossRefGoogle ScholarPubMed
Uwimana, A., Legrand, E., Stokes, B. H. et al. (2020). Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda. Nature Medicine, 26, 16021608.10.1038/s41591-020-1005-2CrossRefGoogle ScholarPubMed
Van Der Pluijm, R. W., Tripura, R., Hoglund, R. M. et al. (2020). Triple artemisinin-based combination therapies versus artemisinin-based combination therapies for uncomplicated Plasmodium falciparum malaria: a multicentre, open-label, randomised clinical trial. Lancet, 395, 13451360.10.1016/S0140-6736(20)30552-3CrossRefGoogle ScholarPubMed
Varo, R., Crowley, V. M., Sitoe, A. et al. (2018). Adjunctive therapy for severe malaria: a review and critical appraisal. Malar J, 17, 47.10.1186/s12936-018-2195-7CrossRefGoogle ScholarPubMed
Von Seidlein, L., Olaosebikan, R., Hendriksen, I. C. et al. (2012). Predicting the clinical outcome of severe falciparum malaria in African children: findings from a large randomized trial. Clin Infect Dis, 54, 1080–90.10.1093/cid/cis034CrossRefGoogle ScholarPubMed
White, N. J., Pukrittayakamee, S., Hien, T. T. et al. (2014). Malaria. Lancet, 383, 723–35.Google ScholarPubMed
WHO (2014). Severe Malaria. Tropical Medicine and International Health, 19, 7131.10.1111/tmi.12313_2CrossRefGoogle Scholar
WHO (2015). Global Technical Strategy for Malaria 2016–2030. Geneva: WHO.Google Scholar
WHO (2020). World Malaria Report 2020: 20 years of global progress and challenges. Geneva: WHO.Google Scholar
WHO (2021). WHO Guidelines for Malaria. Geneva: WHO.Google Scholar

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×