Skip to main content Accessibility help
×
Hostname: page-component-6bb9c88b65-lm65w Total loading time: 0.006 Render date: 2025-07-24T09:27:25.007Z Has data issue: false hasContentIssue false

Section 4 - Major Common Infections

Published online by Cambridge University Press:  18 June 2025

David Mabey
Affiliation:
London School of Hygiene and Tropical Medicine
Martin W. Weber
Affiliation:
World Health Organization
Moffat Nyirenda
Affiliation:
London School of Hygiene and Tropical Medicine
Dorothy Yeboah-Manu
Affiliation:
Noguchi Memorial Institute for Medical Research, University of Ghana
Jackson Orem
Affiliation:
Uganda Cancer Institute, Kampala
Laura Benjamin
Affiliation:
University College London
Michael Marks
Affiliation:
London School of Hygiene and Tropical Medicine
Nicholas A. Feasey
Affiliation:
Liverpool School of Tropical Medicine
Get access

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

References

ACCESS-SMC Partnership (2020). Effectiveness of seasonal malaria chemoprevention at scale in west and central Africa: an observational study. Lancet, 396, 1829–40.Google Scholar
Andolina, C., Rek, J. C., Briggs, J. et al. (2021). Sources of persistent malaria transmission in a setting with effective malaria control in eastern Uganda: a longitudinal, observational cohort study. Lancet Infect Dis, 21, 1568–78.CrossRefGoogle Scholar
Ashley, E. A., Dhorda, M., Fairhurst, R. M. et al. (2014). Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med, 371, 411–23.CrossRefGoogle ScholarPubMed
Ashley, E. A. & Phyo, A. P. (2018). Drugs in development for malaria. Drugs, 78, 861879.CrossRefGoogle ScholarPubMed
Ashley, E. A., Pyae Phyo, A. & Woodrow, C. J. (2018). Malaria. Lancet, 391, 16081621.CrossRefGoogle ScholarPubMed
Beare, N. A., Taylor, T. E., Harding, S. P., Lewallen, S. & Molyneux, M. E. (2006). Malarial retinopathy: a newly established diagnostic sign in severe malaria. Am J Trop Med Hyg, 75, 790–7.10.4269/ajtmh.2006.75.790CrossRefGoogle ScholarPubMed
Berkley, J., Mwarumba, S., Bramham, K., Lowe, B. & Marsh, K. (1999). Bacteraemia complicating severe malaria in children. Trans R Soc Trop Med Hyg, 93, 283–6.CrossRefGoogle ScholarPubMed
Bhatt, S., Weiss, D. J., Cameron, E., et al. (2015). The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature, 526, 207–11.10.1038/nature15535CrossRefGoogle ScholarPubMed
Billingsley, P., Binka, F., Chaccour, C., et al. (2020). A roadmap for the development of ivermectin as a complementary malaria vector control tool. Am J Trop Med Hyg, 102, 324.Google ScholarPubMed
Brejt, J. A. & Golightly, L. M. (2019). Severe malaria: update on pathophysiology and treatment. Curr Opin Infect Dis, 32, 413–18.10.1097/QCO.0000000000000584CrossRefGoogle Scholar
Cohee, L. M., Opondo, C., Clarke, S. E. et al. (2020). Preventive malaria treatment among school-aged children in sub-Saharan Africa: a systematic review and meta-analyses. Lancet Glob Health, 8, e1499–511.CrossRefGoogle ScholarPubMed
Conrad, M. D. & Rosenthal, P. J. (2019). Antimalarial drug resistance in Africa: the calm before the storm? Lancet Infect Dis, 19, e338–51.10.1016/S1473-3099(19)30261-0CrossRefGoogle ScholarPubMed
Cowman, A. F., Healer, J., Marapana, D. & Marsh, K. (2016). Malaria: biology and disease. Cell, 167, 610–24.CrossRefGoogle ScholarPubMed
Datoo, M. S., Natama, M. H., Somé, A. et al. (2021). Efficacy of a low-dose candidate malaria vaccine, R21 in adjuvant Matrix-M, with seasonal administration to children in Burkina Faso: a randomised controlled trial. Lancet, 397, 1809–18.CrossRefGoogle Scholar
Dellicour, S., Sevene, E., Mcgready, R. et al. (2017). First-trimester artemisinin derivatives and quinine treatments and the risk of adverse pregnancy outcomes in Africa and Asia: a meta-analysis of observational studies. PLoS Med, 14, e1002290.CrossRefGoogle Scholar
Dondorp, A., Nosten, F., Stepniewska, K., Day, N. & White, N. (2005). Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet, 366, 717–25.Google ScholarPubMed
Dondorp, A. M., Fanello, C. I., Hendriksen, I. C. et al. (2010). Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): an open-label, randomised trial. Lancet, 376, 1647–57.CrossRefGoogle ScholarPubMed
Hawley, W. A., Phillips-Howard, P. A., Ter Kuile, F. O. et al. (2003). Community-wide effects of permethrin-treated bed nets on child mortality and malaria morbidity in western Kenya. Am J Trop Med Hyg, 68, 121–7.10.4269/ajtmh.2003.68.121CrossRefGoogle ScholarPubMed
Hemingway, J., Ranson, H., Magill, A. et al. (2016). Averting a malaria disaster: will insecticide resistance derail malaria control? Lancet, 387, 1785–8.10.1016/S0140-6736(15)00417-1CrossRefGoogle ScholarPubMed
Lindsay, S. W., Thomas, M. B. & Kleinschmidt, I. (2021). Threats to the effectiveness of insecticide-treated bednets for malaria control: thinking beyond insecticide resistance. Lancet Glob Health. doi.org/10.1016/S2214-109X(21)00216-3.CrossRefGoogle Scholar
Maitland, K. (2015). Management of severe paediatric malaria in resource-limited settings. BMC Med, 13, 42.10.1186/s12916-014-0263-6CrossRefGoogle ScholarPubMed
Maitland, K., Kiguli, S., Opoka, R. O. et al. (2011). Mortality after fluid bolus in African children with severe infection. N Engl J Med, 364, 2483–95.CrossRefGoogle ScholarPubMed
Marsh, K., Forster, D., Waruiru, C. et al. (1995). Indicators of life-threatening malaria in African children. N Engl J Med, 332, 1399–404.10.1056/NEJM199505253322102CrossRefGoogle ScholarPubMed
Marsh, K. & Snow, R. W. (1997). Host-parasite interaction and morbidity in malaria endemic areas. Philos Trans R Soc Lond B Biol Sci, 352, 1385–94.10.1098/rstb.1997.0124CrossRefGoogle ScholarPubMed
O’Boyle, S., Bruxvoort, K. J., Ansah, E. K., et al. (2020). Patients with positive malaria tests not given artemisinin-based combination therapies: a research synthesis describing under-prescription of antimalarial medicines in Africa. BMC Med, 18, 17.10.1186/s12916-019-1483-6CrossRefGoogle Scholar
Opoka, R. O., Waiswa, A., Harriet, N. et al. (2020). Blackwater Fever in Ugandan children with severe anemia is associated with poor postdischarge outcomes: a prospective cohort study. Clin Infect Dis, 70, 2247–54.10.1093/cid/ciz648CrossRefGoogle ScholarPubMed
Pryce, J., Richardson, M. & Lengeler, C. (2018). Insecticide-treated nets for preventing malaria. Cochrane Database Syst Rev, 11, CD000363.Google ScholarPubMed
Rodriguez-Barraquer, I., Arinaitwe, E., Jagannathan, P. et al. (2018). Quantification of anti-parasite and anti-disease immunity to malaria as a function of age and exposure. Elife, 7.CrossRefGoogle ScholarPubMed
RTS,S Clinical Trials Partnership (2015). Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet, 386, 3145.CrossRefGoogle Scholar
Sinden, R. E. & Gilles, H. M. (2002). The malaria parasites. In Warrell, D. A. & Gilles, H. M. (eds) Essential Malariology. 4th ed. London: Arnold.Google Scholar
Staedke, S. G., Maiteki-Sebuguzi, C., Rehman, A. M. et al. (2018). Assessment of community-level effects of intermittent preventive treatment for malaria in schoolchildren in Jinja, Uganda (START-IPT trial): a cluster-randomised trial. Lancet Glob Health, 6, e668e679.10.1016/S2214-109X(18)30126-8CrossRefGoogle Scholar
Taylor, W. R. J., Hanson, J., Turner, G. D. H., White, N. J. & Dondorp, A. M. (2012). Respiratory manifestations of malaria. Chest, 142, 492505.CrossRefGoogle ScholarPubMed
Thizy, D., Pare Toe, L., Mbogo, C. et al. (2021). Proceedings of an expert workshop on community agreement for gene drive research in Africa – co-organised by KEMRI, PAMCA and Target Malaria. Gates Open Res, 5, 19.10.12688/gatesopenres.13221.1CrossRefGoogle ScholarPubMed
Tona Lutete, G., Mombo-Ngoma, G., Assi, S. B. et al. (2021). Pyronaridine-artesunate real-world safety, tolerability, and effectiveness in malaria patients in 5 African countries: a single-arm, open-label, cohort event monitoring study. PLoS Med, 18, e1003669.10.1371/journal.pmed.1003669CrossRefGoogle ScholarPubMed
Uwimana, A., Legrand, E., Stokes, B. H. et al. (2020). Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda. Nature Medicine, 26, 16021608.CrossRefGoogle ScholarPubMed
Van Der Pluijm, R. W., Tripura, R., Hoglund, R. M. et al. (2020). Triple artemisinin-based combination therapies versus artemisinin-based combination therapies for uncomplicated Plasmodium falciparum malaria: a multicentre, open-label, randomised clinical trial. Lancet, 395, 13451360.CrossRefGoogle ScholarPubMed
Varo, R., Crowley, V. M., Sitoe, A. et al. (2018). Adjunctive therapy for severe malaria: a review and critical appraisal. Malar J, 17, 47.CrossRefGoogle ScholarPubMed
Von Seidlein, L., Olaosebikan, R., Hendriksen, I. C. et al. (2012). Predicting the clinical outcome of severe falciparum malaria in African children: findings from a large randomized trial. Clin Infect Dis, 54, 1080–90.CrossRefGoogle ScholarPubMed
White, N. J., Pukrittayakamee, S., Hien, T. T. et al. (2014). Malaria. Lancet, 383, 723–35.Google ScholarPubMed
WHO (2014). Severe Malaria. Tropical Medicine and International Health, 19, 7131.10.1111/tmi.12313_2CrossRefGoogle Scholar
WHO (2015). Global Technical Strategy for Malaria 2016–2030. Geneva: WHO.Google Scholar
WHO (2020). World Malaria Report 2020: 20 years of global progress and challenges. Geneva: WHO.Google Scholar
WHO (2021). WHO Guidelines for Malaria. Geneva: WHO.Google Scholar

Further Reading

HIV medicine is a fast-moving field, and the internet is often the best source of up-to-date information. The WHO website has a wealth of guidelines which include supporting references, and national guidelines such as those from the USA and UK often include useful detail on the evidence base supporting the recommendations.Google Scholar
British HIV Association website: www.bhiva.org. This website includes a range of guidelines aimed at UK physicians but which may be more widely useful, for example guidelines on the management of HIV-2 infection. It also has a range of links relevant to clinical HIV care, for example to detailed information about drugs, and to websites about HIV drug interactions and the interpretation of resistance mutations.Google Scholar
AIDS Info Clinical Guidelines Portal: http://aidsinfo.nih.gov/guidelines/ (links to US guidelines on HIV treatment and management of opportunistic infections).Google Scholar
HIV Insite: http://hivinsite.ucsf.edu/InSite?page=cr- 00–04 (lists links to many international guidelines on HIV treatment and care).Google Scholar
HIV medicine: an online textbook. hivmedicine. com/index.htm.Google Scholar
Abdool Karim, SS, Naidoo, K, Grobler, A et al. (2010). Timing of initiation of antiretroviral drugs during tuberculosis therapy. N Engl J Med; 362: 697706.CrossRefGoogle ScholarPubMed
Anglaret, X, Chêne, G, Attia, A et al. (1999). Early chemoprophylaxis with trimethoprim-sulphamethoxazole for HIV-1-infected adults in Abidjan, Côte d’Ivoire: a randomised trial. Lancet; 353: 1463–8.10.1016/S0140-6736(98)07399-1CrossRefGoogle ScholarPubMed
Attia, S, Egger, M, Muller, M et al. (2009). Sexual transmission of HIV according to viral load and antiretroviral therapy: systematic review and meta-analysis. AIDS; 23: 1397–404.10.1097/QAD.0b013e32832b7dcaCrossRefGoogle ScholarPubMed
Baeten, JM, Chohan, B, Lavreys, L et al. (2007). HIV-1 subtype D infection is associated with faster disease progression than subtype A in spite of similar plasma HIV-1 loads. J Infect Dis; 195: 1177–80.CrossRefGoogle ScholarPubMed
Blanc, FX, Sok, T, Laureillard, D et al. (2011). Earlier versus later start of antiretroviral therapy in HIV-infected adults with tuberculosis. N Engl J Med; 365(16): 1471–81.10.1056/NEJMoa1013911CrossRefGoogle ScholarPubMed
Boulware, DR, Meya, DB, Muzoora, C et al. (2014). Timing of antiretroviral therapy after diagnosis of cryptococcal meningitis. N Engl J Med; 370(26): 2487–98.CrossRefGoogle ScholarPubMed
Buvé, A, Caraël, M, Hayes, RJ et al. (2001). Multicentre study on factors determining differences in rate of spread of HIV in sub-Saharan Africa: methods and prevalence of HIV infection. AIDS; 15 Suppl 4: S514.10.1097/00002030-200108004-00002CrossRefGoogle ScholarPubMed
Choko, AT, Desmond, N, Webb, EL et al (2011). The uptake and accuracy of oral kits for HIV self-testing in high HIV prevalence setting: a cross-sectional feasibility study in Blantyre, Malawi. PLoS Med; 8(10): e1001102.CrossRefGoogle ScholarPubMed
Cohen, DB, Zijlstra, EE, Mukaka, M et al. (2010). Diagnosis of cryptococcal and tuberculous meningitis in a resource-limited African setting. Trop Med Int Health; 15: 910–17.10.1111/j.1365-3156.2010.02565.xCrossRefGoogle Scholar
Cohen, MS, Chen, YQ, McCauley, M et al. (2011). Prevention of HIV-1 infection with early antiretroviral therapy. N Engl J Med; 365: 493505.10.1056/NEJMoa1105243CrossRefGoogle ScholarPubMed
Decroo, T, Telfer, B, Dores, CD et al. (2017). Effect of Community ART Groups on retention-in-care among patients on ART in Tete Province, Mozambique: a cohort study. BMJ Open; 7(8): e016800.10.1136/bmjopen-2017-016800CrossRefGoogle ScholarPubMed
Deeks, SG, Walker, BD (2007). Human immunodeficiency virus controllers: mechanisms of durable virus control in the absence of antiretroviral therapy. Immunity; 27: 406–16.10.1016/j.immuni.2007.08.010CrossRefGoogle ScholarPubMed
Dlamini, SK, Madhi, SA, Muloiwa, R et al. (2018). Guidelines for the vaccination of HIV-infected adolescents and adults in South Africa. S Afr J HIV Med; 19(1): a839.10.4102/sajhivmed.v19i1.839CrossRefGoogle ScholarPubMed
Dow, DE, Bartlett, JA (2014). Dolutegravir, the second-generation of Integrase Strand Transfer Inhibitors (INSTIs) for the treatment of HIV. Infect Dis Ther; 3: 83102.10.1007/s40121-014-0029-7CrossRefGoogle ScholarPubMed
El-Sadr, WM, Lundgren, JD, Neaton, JD et al. (2006). CD4 count-guided interruption of antiretroviral treatment. N Engl J Med; 355: 2283–96.Google ScholarPubMed
Fatti, G, Ngorima-Mabhena, N, Mothibi, E, Muzenda, T et al. (2020). Outcomes of three- versus six-monthly dispensing of antiretroviral treatment (ART) for stable HIV patients in Community ART Refill Groups: a cluster-randomized trial in Zimbabwe. J Acquir Immune Defic Syndr; 84: 162–72.10.1097/QAI.0000000000002333CrossRefGoogle ScholarPubMed
Frigati, L, Ameyan, W, Cotton, MF et al. (2020). Chronic comorbidities in children and adolescents with perinatally acquired HIV infection in sub-Saharan Africa in the era of antiretroviral therapy. Lancet Child Adolesc Health; 4(9): 688–98.10.1016/S2352-4642(20)30037-7CrossRefGoogle ScholarPubMed
Gordon, MA, Graham, SM (2008). Invasive salmonellosis in Malawi. J Infect Dev Ctries; 2: 438–42.10.3855/jidc.158CrossRefGoogle ScholarPubMed
Hakim, J, Musiime, V, Szubert AJ et al. (2017). Enhanced prophylaxis plus antiretroviral therapy for advanced HIV infection in Africa. N Engl J Med; 17 (377): 233–45.Google Scholar
Hayes, RJ, Schulz, KF, Plummer, FA (1995). The cofactor effect of genital ulcers on the per-exposure risk of HIV transmission in sub-Saharan Africa. J Trop Med Hyg; 98: 18.Google ScholarPubMed
Hollingsworth, TD, Laeyendecker, O, Shirreff, G et al. (2010). HIV-1 transmitting couples have similar viral load set-points in Rakai, Uganda. PLoS Pathog; 6: p e1000876.10.1371/journal.ppat.1000876CrossRefGoogle ScholarPubMed
Katwere, M, Kambugu, A, Piloya, T et al. (2009). Clinical presentation and aetiologies of acute or complicated headache among HIV-seropositive patients in a Ugandan clinic. J Int AIDS Soc; 12: 21.CrossRefGoogle ScholarPubMed
Kiwanuka, N, Laeyendecker, O, Robb, M et al. (2008). Effect of human immunodeficiency virus Type 1 (HIV-1) subtype on disease progression in persons from Rakai, Uganda, with incident HIV-1 infection. J Infect Dis; 197: 707–13.10.1086/527416CrossRefGoogle ScholarPubMed
Lucas, SB, Hounnou, A, Peacock, C et al. (1993). The mortality and pathology of HIV infection in a West African city. AIDS; 7: 1569–79.CrossRefGoogle Scholar
Lundgren JD, Babiker AG et al.; INSIGHT START Study Group, (2015). Initiation of antiretroviral therapy in early asymptomatic HIV infection. N Engl J Med; 373(9): 795807.10.1056/NEJMoa1506816CrossRefGoogle Scholar
Lynen, L, Zolfo, M, Huyst, V et al. (2005). Management of Kaposi’s sarcoma in resource-limited settings in the era of HAART. AIDS Rev; 7: 1321.Google ScholarPubMed
Marlink, R, Kanki, P, Thior, I et al. (1994). Reduced rate of disease development after HIV-2 infection as compared to HIV-1. Science; 265: 1587–90.10.1126/science.7915856CrossRefGoogle ScholarPubMed
Martinez-Steele, E, Awasana, AA, Corrah, T et al. (2007). Is HIV-2-induced AIDS different from HIV-1-associated AIDS? Data from a West African clinic. AIDS; 21: 317–24.10.1097/QAD.0b013e328011d7abCrossRefGoogle Scholar
Meintjes, G, Wilkinson, RJ, Morroni, C et al. (2010). Randomized placebo-controlled trial of prednisone for paradoxical tuberculosis-associated immune reconstitution inflammatory syndrome. AIDS; 24: 2381–90.10.1097/QAD.0b013e32833dfc68CrossRefGoogle ScholarPubMed
Morgan, D, Ross, A, Mayanja, B et al. (1998). Early manifestations (pre-AIDS) of HIV-1 infection in Uganda. AIDS; 12: 591–6.10.1097/00002030-199806000-00007CrossRefGoogle ScholarPubMed
Muller, M, Wandel, S, Colebunders, R et al. (2010). Immune reconstitution inflammatory syndrome in patients starting antiretroviral therapy for HIV infection: a systematic review and meta-analysis. Lancet Infect Dis; 10: 251–61.10.1016/S1473-3099(10)70026-8CrossRefGoogle ScholarPubMed
Payne, C, Kohler, H-P (2017). The population-level impact of public-sector antiretroviral therapy rollout on adult mortality in rural Malawi. Demogr Res; 36: 1081–108.10.4054/DemRes.2017.36.37CrossRefGoogle ScholarPubMed
Phipps, W, Ssewankambo, F, Nguyen, H et al. (2010). Gender differences in clinical presentation and outcomes of epidemic Kaposi sarcoma in Uganda. PLoS ONE; 5: e13936.Google Scholar
Reddy, EA, Shaw, AV, Crump, JA (2010). Community-acquired bloodstream infections in Africa: a systematic review and meta-analysis. Lancet Infect Dis; 10: 417–32.CrossRefGoogle Scholar
Robbins, R. N., Gouse, H., Brown, H. G. et al. (2018). A mobile app to screen for neurocognitive impairment: preliminary validation of NeuroScreen among HIV-infected South African adults. JMIR mHealth and uHealth; 6(1): e5.10.2196/mhealth.9148CrossRefGoogle ScholarPubMed
Sacktor, NC, Wong, M, Makasujja, N et al. (2005). The International HIV Dementia Scale: a new rapid screening test for HIV dementia. AIDS; 19: 1367–74.Google Scholar
Sharp, PM, Hahn, BH (2010). The evolution of HIV-1 and the origin of AIDS. Phil Trans R Soc Lond B Biol Sci; 365: 2487–94.10.1098/rstb.2010.0031CrossRefGoogle Scholar
Slogrove, AL, Schomaker, M, Davies, MA et al.; Collaborative Initiative for Paediatric HIV Education and Research (CIPHER) Global Cohort Collaboration (2018). The epidemiology of adolescents living with perinatally acquired HIV: a cross-region global cohort analysis. PLoS Med; 15(3): e1002514.Google Scholar
Taegtmeyer, M, Suckling, RM, Nguku, PM et al. (2008). Working with risk: occupational safety issues among healthcare workers in Kenya. AIDS Care; 20: 304–10.10.1080/09540120701583787CrossRefGoogle ScholarPubMed
Templeton, DJ (2010). Male circumcision to reduce sexual transmission of HIV. Curr Opin HIV AIDS; 5: 344–9.10.1097/COH.0b013e32833a46d3CrossRefGoogle ScholarPubMed
Todd, J, Glynn, JR, Marston, M et al. (2007) Time from HIV seroconversion to death: a collaborative analysis of eight studies in six low and middle- income countries before highly active antiretroviral therapy. AIDS; 21 Suppl. 6: S5563.10.1097/01.aids.0000299411.75269.e8CrossRefGoogle Scholar
Turkova, A et al. (2021). Dolutegravir-based ART is superior to NNRTI-PI-based ART in children and adolescents. Abstract 174. 29th Conference of Retroviruses and Opportunistic Infections, USA.Google Scholar
Vallari, A, Holzmayer, V, Harris, B et al. (2011). Confirmation of putative HIV-1 group P in Cameroon. J Virology; 85(3): 1403–7.10.1128/JVI.02005-10CrossRefGoogle Scholar
Violari, A, Cotton, MF, Gibb, DM et al. (2008). Early antiretroviral therapy and mortality among HIV-infected infants. N Engl J Med; 359: 2233–44.10.1056/NEJMoa0800971CrossRefGoogle ScholarPubMed
WHO (2007). WHO case definitions of HIV for surveillance and revised clinical staging and immunological classification of HIV-related disease in adults and children. Geneva: WHO. https://apps.who.int/iris/bitstream/handle/10665/43699/9789241595629_eng.pdf?sequence=1&isAllowed=y.Google Scholar
WHO (2009). Guidelines for using HIV testing technologies in surveillance: selection, evaluation and implementation. 2009 update. Geneva: WHO. www.who.int/hiv/pub/surveillance/hiv_testing_technologies_surveillance.pdf.Google Scholar
WHO (2010). Priority interventions: HIV/AIDS prevention, treatment and care in the health sector 2010. Geneva: WHO. https://www.who.int/hiv/pub/priority_interventions_web.pdf.Google Scholar
WHO (2011). Guidelines for intensified tuberculosis case-finding and isoniazid preventive therapy for people living with HIV in resource-constrained settings. Geneva: WHO. http://whqlibdoc.who.int/publications/2011/9789241500708_eng.pdf.Google Scholar
WHO (2014). Guidelines on post-exposure prophylaxis for HIV and the use of co-trimoxazole prophylaxis for HIV-related infections among adults, adolescents and children: recommendations for a public health approach. December 2014 supplement to the 2013 consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection. Geneva: WHO. https://apps.who.int/iris/bitstream/handle/10665/145719/9789241508193_eng.pdf?sequence=1&isAllowed=y.Google Scholar
WHO (2017a). Human papillomavirus vaccines: WHO position paper, May 2017 – Recommendations. Vaccine; 35(43): 5753–5.Google Scholar
WHO (2018). Guidelines on the diagnosis, prevention and management of cryptococcal disease in HIV-infected adults, adolescents and children: supplement to the 2016 consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection. Geneva: WHO. www.who.int/publications/i/item/9789241550277.Google Scholar
WHO (2019a). Consolidated guidelines on HIV testing services. Geneva: WHO. www.who.int/publications/i/item/978-92-4-155058–1.Google Scholar
WHO (2019b). Lateral flow urine lipoarabinomannan assay (LF-LAM) for the diagnosis of active tuberculosis in people living with HIV. Policy update. Geneva: WHO. https://apps.who.int/iris/bitstream/handle/10665/329479/9789241550604-eng.pdf?sequence=1&isAllowed=y.Google Scholar
WHO (2020). WHO operational handbook on tuberculosis (Module 1 – Prevention): Tuberculosis preventive treatment. Geneva: WHO. https://apps.who.int/iris/bitstream/handle/10665/331525/9789240002906-eng.pdf.Google Scholar
WHO (2021a). Consolidated guidelines on HIV prevention, testing, treatment, service delivery and monitoring recommendations for a public health approach 2021. Geneva: WHO. www.who.int/publications/i/item/9789240031593.Google Scholar
WHO (2021b). Updated recommendations on HIV prevention, infant diagnosis, antiretroviral initiation and monitoring: March 2021. Geneva: WHO. www.who.int/publications/i/item/9789240022232.Google Scholar
Wiktor, SZ, Sassan-Morokro, M, Grant, AD et al. (1999). Efficacy of trimethoprim- sulphamethoxazole prophylaxis to decrease morbidity and mortality in HIV-1-infected patients with tuberculosis in Abidjan, Côte d’Ivoire: a randomised controlled trial. Lancet; 353: 1469–75.10.1016/S0140-6736(99)03465-0CrossRefGoogle ScholarPubMed
Zash, R, Holmes, LB, Diseko, M et al. (2021). Update on neural tube defects with antiretroviral exposure in the Tsepamo study, Botswana. Abstract PEBLB14. 11th IAS Conference on HIV Science.Google ScholarPubMed
Abdool Karim, SS, Naidoo, K, Grobler, A et al. (2010). Timing of initiation of antiretroviral drugs during tuberculosis therapy. N Engl J Med; 362: 697706.CrossRefGoogle ScholarPubMed
Anglaret, X, Chêne, G, Attia, A et al. (1999). Early chemoprophylaxis with trimethoprim-sulphamethoxazole for HIV-1-infected adults in Abidjan, Côte d’Ivoire: a randomised trial. Lancet; 353: 1463–8.10.1016/S0140-6736(98)07399-1CrossRefGoogle ScholarPubMed
Attia, S, Egger, M, Muller, M et al. (2009). Sexual transmission of HIV according to viral load and antiretroviral therapy: systematic review and meta-analysis. AIDS; 23: 1397–404.10.1097/QAD.0b013e32832b7dcaCrossRefGoogle ScholarPubMed
Baeten, JM, Chohan, B, Lavreys, L et al. (2007). HIV-1 subtype D infection is associated with faster disease progression than subtype A in spite of similar plasma HIV-1 loads. J Infect Dis; 195: 1177–80.CrossRefGoogle ScholarPubMed
Blanc, FX, Sok, T, Laureillard, D et al. (2011). Earlier versus later start of antiretroviral therapy in HIV-infected adults with tuberculosis. N Engl J Med; 365(16): 1471–81.10.1056/NEJMoa1013911CrossRefGoogle ScholarPubMed
Boulware, DR, Meya, DB, Muzoora, C et al. (2014). Timing of antiretroviral therapy after diagnosis of cryptococcal meningitis. N Engl J Med; 370(26): 2487–98.CrossRefGoogle ScholarPubMed
Buvé, A, Caraël, M, Hayes, RJ et al. (2001). Multicentre study on factors determining differences in rate of spread of HIV in sub-Saharan Africa: methods and prevalence of HIV infection. AIDS; 15 Suppl 4: S514.10.1097/00002030-200108004-00002CrossRefGoogle ScholarPubMed
Choko, AT, Desmond, N, Webb, EL et al (2011). The uptake and accuracy of oral kits for HIV self-testing in high HIV prevalence setting: a cross-sectional feasibility study in Blantyre, Malawi. PLoS Med; 8(10): e1001102.CrossRefGoogle ScholarPubMed
Cohen, DB, Zijlstra, EE, Mukaka, M et al. (2010). Diagnosis of cryptococcal and tuberculous meningitis in a resource-limited African setting. Trop Med Int Health; 15: 910–17.10.1111/j.1365-3156.2010.02565.xCrossRefGoogle Scholar
Cohen, MS, Chen, YQ, McCauley, M et al. (2011). Prevention of HIV-1 infection with early antiretroviral therapy. N Engl J Med; 365: 493505.10.1056/NEJMoa1105243CrossRefGoogle ScholarPubMed
Decroo, T, Telfer, B, Dores, CD et al. (2017). Effect of Community ART Groups on retention-in-care among patients on ART in Tete Province, Mozambique: a cohort study. BMJ Open; 7(8): e016800.10.1136/bmjopen-2017-016800CrossRefGoogle ScholarPubMed
Deeks, SG, Walker, BD (2007). Human immunodeficiency virus controllers: mechanisms of durable virus control in the absence of antiretroviral therapy. Immunity; 27: 406–16.10.1016/j.immuni.2007.08.010CrossRefGoogle ScholarPubMed
Dlamini, SK, Madhi, SA, Muloiwa, R et al. (2018). Guidelines for the vaccination of HIV-infected adolescents and adults in South Africa. S Afr J HIV Med; 19(1): a839.10.4102/sajhivmed.v19i1.839CrossRefGoogle ScholarPubMed
Dow, DE, Bartlett, JA (2014). Dolutegravir, the second-generation of Integrase Strand Transfer Inhibitors (INSTIs) for the treatment of HIV. Infect Dis Ther; 3: 83102.10.1007/s40121-014-0029-7CrossRefGoogle ScholarPubMed
El-Sadr, WM, Lundgren, JD, Neaton, JD et al. (2006). CD4 count-guided interruption of antiretroviral treatment. N Engl J Med; 355: 2283–96.Google ScholarPubMed
Fatti, G, Ngorima-Mabhena, N, Mothibi, E, Muzenda, T et al. (2020). Outcomes of three- versus six-monthly dispensing of antiretroviral treatment (ART) for stable HIV patients in Community ART Refill Groups: a cluster-randomized trial in Zimbabwe. J Acquir Immune Defic Syndr; 84: 162–72.10.1097/QAI.0000000000002333CrossRefGoogle ScholarPubMed
Frigati, L, Ameyan, W, Cotton, MF et al. (2020). Chronic comorbidities in children and adolescents with perinatally acquired HIV infection in sub-Saharan Africa in the era of antiretroviral therapy. Lancet Child Adolesc Health; 4(9): 688–98.10.1016/S2352-4642(20)30037-7CrossRefGoogle ScholarPubMed
Gordon, MA, Graham, SM (2008). Invasive salmonellosis in Malawi. J Infect Dev Ctries; 2: 438–42.10.3855/jidc.158CrossRefGoogle ScholarPubMed
Hakim, J, Musiime, V, Szubert AJ et al. (2017). Enhanced prophylaxis plus antiretroviral therapy for advanced HIV infection in Africa. N Engl J Med; 17 (377): 233–45.Google Scholar
Hayes, RJ, Schulz, KF, Plummer, FA (1995). The cofactor effect of genital ulcers on the per-exposure risk of HIV transmission in sub-Saharan Africa. J Trop Med Hyg; 98: 18.Google ScholarPubMed
Hollingsworth, TD, Laeyendecker, O, Shirreff, G et al. (2010). HIV-1 transmitting couples have similar viral load set-points in Rakai, Uganda. PLoS Pathog; 6: p e1000876.10.1371/journal.ppat.1000876CrossRefGoogle ScholarPubMed
Katwere, M, Kambugu, A, Piloya, T et al. (2009). Clinical presentation and aetiologies of acute or complicated headache among HIV-seropositive patients in a Ugandan clinic. J Int AIDS Soc; 12: 21.CrossRefGoogle ScholarPubMed
Kiwanuka, N, Laeyendecker, O, Robb, M et al. (2008). Effect of human immunodeficiency virus Type 1 (HIV-1) subtype on disease progression in persons from Rakai, Uganda, with incident HIV-1 infection. J Infect Dis; 197: 707–13.10.1086/527416CrossRefGoogle ScholarPubMed
Lucas, SB, Hounnou, A, Peacock, C et al. (1993). The mortality and pathology of HIV infection in a West African city. AIDS; 7: 1569–79.CrossRefGoogle Scholar
Lundgren JD, Babiker AG et al.; INSIGHT START Study Group, (2015). Initiation of antiretroviral therapy in early asymptomatic HIV infection. N Engl J Med; 373(9): 795807.10.1056/NEJMoa1506816CrossRefGoogle Scholar
Lynen, L, Zolfo, M, Huyst, V et al. (2005). Management of Kaposi’s sarcoma in resource-limited settings in the era of HAART. AIDS Rev; 7: 1321.Google ScholarPubMed
Marlink, R, Kanki, P, Thior, I et al. (1994). Reduced rate of disease development after HIV-2 infection as compared to HIV-1. Science; 265: 1587–90.10.1126/science.7915856CrossRefGoogle ScholarPubMed
Martinez-Steele, E, Awasana, AA, Corrah, T et al. (2007). Is HIV-2-induced AIDS different from HIV-1-associated AIDS? Data from a West African clinic. AIDS; 21: 317–24.10.1097/QAD.0b013e328011d7abCrossRefGoogle Scholar
Meintjes, G, Wilkinson, RJ, Morroni, C et al. (2010). Randomized placebo-controlled trial of prednisone for paradoxical tuberculosis-associated immune reconstitution inflammatory syndrome. AIDS; 24: 2381–90.10.1097/QAD.0b013e32833dfc68CrossRefGoogle ScholarPubMed
Morgan, D, Ross, A, Mayanja, B et al. (1998). Early manifestations (pre-AIDS) of HIV-1 infection in Uganda. AIDS; 12: 591–6.10.1097/00002030-199806000-00007CrossRefGoogle ScholarPubMed
Muller, M, Wandel, S, Colebunders, R et al. (2010). Immune reconstitution inflammatory syndrome in patients starting antiretroviral therapy for HIV infection: a systematic review and meta-analysis. Lancet Infect Dis; 10: 251–61.10.1016/S1473-3099(10)70026-8CrossRefGoogle ScholarPubMed
Payne, C, Kohler, H-P (2017). The population-level impact of public-sector antiretroviral therapy rollout on adult mortality in rural Malawi. Demogr Res; 36: 1081–108.10.4054/DemRes.2017.36.37CrossRefGoogle ScholarPubMed
Phipps, W, Ssewankambo, F, Nguyen, H et al. (2010). Gender differences in clinical presentation and outcomes of epidemic Kaposi sarcoma in Uganda. PLoS ONE; 5: e13936.Google Scholar
Reddy, EA, Shaw, AV, Crump, JA (2010). Community-acquired bloodstream infections in Africa: a systematic review and meta-analysis. Lancet Infect Dis; 10: 417–32.CrossRefGoogle Scholar
Robbins, R. N., Gouse, H., Brown, H. G. et al. (2018). A mobile app to screen for neurocognitive impairment: preliminary validation of NeuroScreen among HIV-infected South African adults. JMIR mHealth and uHealth; 6(1): e5.10.2196/mhealth.9148CrossRefGoogle ScholarPubMed
Sacktor, NC, Wong, M, Makasujja, N et al. (2005). The International HIV Dementia Scale: a new rapid screening test for HIV dementia. AIDS; 19: 1367–74.Google Scholar
Sharp, PM, Hahn, BH (2010). The evolution of HIV-1 and the origin of AIDS. Phil Trans R Soc Lond B Biol Sci; 365: 2487–94.10.1098/rstb.2010.0031CrossRefGoogle Scholar
Slogrove, AL, Schomaker, M, Davies, MA et al.; Collaborative Initiative for Paediatric HIV Education and Research (CIPHER) Global Cohort Collaboration (2018). The epidemiology of adolescents living with perinatally acquired HIV: a cross-region global cohort analysis. PLoS Med; 15(3): e1002514.Google Scholar
Taegtmeyer, M, Suckling, RM, Nguku, PM et al. (2008). Working with risk: occupational safety issues among healthcare workers in Kenya. AIDS Care; 20: 304–10.10.1080/09540120701583787CrossRefGoogle ScholarPubMed
Templeton, DJ (2010). Male circumcision to reduce sexual transmission of HIV. Curr Opin HIV AIDS; 5: 344–9.10.1097/COH.0b013e32833a46d3CrossRefGoogle ScholarPubMed
Todd, J, Glynn, JR, Marston, M et al. (2007) Time from HIV seroconversion to death: a collaborative analysis of eight studies in six low and middle- income countries before highly active antiretroviral therapy. AIDS; 21 Suppl. 6: S5563.10.1097/01.aids.0000299411.75269.e8CrossRefGoogle Scholar
Turkova, A et al. (2021). Dolutegravir-based ART is superior to NNRTI-PI-based ART in children and adolescents. Abstract 174. 29th Conference of Retroviruses and Opportunistic Infections, USA.Google Scholar
Vallari, A, Holzmayer, V, Harris, B et al. (2011). Confirmation of putative HIV-1 group P in Cameroon. J Virology; 85(3): 1403–7.10.1128/JVI.02005-10CrossRefGoogle Scholar
Violari, A, Cotton, MF, Gibb, DM et al. (2008). Early antiretroviral therapy and mortality among HIV-infected infants. N Engl J Med; 359: 2233–44.10.1056/NEJMoa0800971CrossRefGoogle ScholarPubMed
WHO (2007). WHO case definitions of HIV for surveillance and revised clinical staging and immunological classification of HIV-related disease in adults and children. Geneva: WHO. https://apps.who.int/iris/bitstream/handle/10665/43699/9789241595629_eng.pdf?sequence=1&isAllowed=y.Google Scholar
WHO (2009). Guidelines for using HIV testing technologies in surveillance: selection, evaluation and implementation. 2009 update. Geneva: WHO. www.who.int/hiv/pub/surveillance/hiv_testing_technologies_surveillance.pdf.Google Scholar
WHO (2010). Priority interventions: HIV/AIDS prevention, treatment and care in the health sector 2010. Geneva: WHO. https://www.who.int/hiv/pub/priority_interventions_web.pdf.Google Scholar
WHO (2011). Guidelines for intensified tuberculosis case-finding and isoniazid preventive therapy for people living with HIV in resource-constrained settings. Geneva: WHO. http://whqlibdoc.who.int/publications/2011/9789241500708_eng.pdf.Google Scholar
WHO (2014). Guidelines on post-exposure prophylaxis for HIV and the use of co-trimoxazole prophylaxis for HIV-related infections among adults, adolescents and children: recommendations for a public health approach. December 2014 supplement to the 2013 consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection. Geneva: WHO. https://apps.who.int/iris/bitstream/handle/10665/145719/9789241508193_eng.pdf?sequence=1&isAllowed=y.Google Scholar
WHO (2017a). Human papillomavirus vaccines: WHO position paper, May 2017 – Recommendations. Vaccine; 35(43): 5753–5.Google Scholar
WHO (2018). Guidelines on the diagnosis, prevention and management of cryptococcal disease in HIV-infected adults, adolescents and children: supplement to the 2016 consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection. Geneva: WHO. www.who.int/publications/i/item/9789241550277.Google Scholar
WHO (2019a). Consolidated guidelines on HIV testing services. Geneva: WHO. www.who.int/publications/i/item/978-92-4-155058–1.Google Scholar
WHO (2019b). Lateral flow urine lipoarabinomannan assay (LF-LAM) for the diagnosis of active tuberculosis in people living with HIV. Policy update. Geneva: WHO. https://apps.who.int/iris/bitstream/handle/10665/329479/9789241550604-eng.pdf?sequence=1&isAllowed=y.Google Scholar
WHO (2020). WHO operational handbook on tuberculosis (Module 1 – Prevention): Tuberculosis preventive treatment. Geneva: WHO. https://apps.who.int/iris/bitstream/handle/10665/331525/9789240002906-eng.pdf.Google Scholar
WHO (2021a). Consolidated guidelines on HIV prevention, testing, treatment, service delivery and monitoring recommendations for a public health approach 2021. Geneva: WHO. www.who.int/publications/i/item/9789240031593.Google Scholar
WHO (2021b). Updated recommendations on HIV prevention, infant diagnosis, antiretroviral initiation and monitoring: March 2021. Geneva: WHO. www.who.int/publications/i/item/9789240022232.Google Scholar
Wiktor, SZ, Sassan-Morokro, M, Grant, AD et al. (1999). Efficacy of trimethoprim- sulphamethoxazole prophylaxis to decrease morbidity and mortality in HIV-1-infected patients with tuberculosis in Abidjan, Côte d’Ivoire: a randomised controlled trial. Lancet; 353: 1469–75.10.1016/S0140-6736(99)03465-0CrossRefGoogle ScholarPubMed
Zash, R, Holmes, LB, Diseko, M et al. (2021). Update on neural tube defects with antiretroviral exposure in the Tsepamo study, Botswana. Abstract PEBLB14. 11th IAS Conference on HIV Science.Google ScholarPubMed

References

Abdool Karim, SS, Naidoo, K, Grobler, A et al. (2010). Timing of initiation of antiretroviral drugs during tuberculosis therapy. N Engl J Med; 362: 697706.CrossRefGoogle ScholarPubMed
Anglaret, X, Chêne, G, Attia, A et al. (1999). Early chemoprophylaxis with trimethoprim-sulphamethoxazole for HIV-1-infected adults in Abidjan, Côte d’Ivoire: a randomised trial. Lancet; 353: 1463–8.10.1016/S0140-6736(98)07399-1CrossRefGoogle ScholarPubMed
Attia, S, Egger, M, Muller, M et al. (2009). Sexual transmission of HIV according to viral load and antiretroviral therapy: systematic review and meta-analysis. AIDS; 23: 1397–404.10.1097/QAD.0b013e32832b7dcaCrossRefGoogle ScholarPubMed
Baeten, JM, Chohan, B, Lavreys, L et al. (2007). HIV-1 subtype D infection is associated with faster disease progression than subtype A in spite of similar plasma HIV-1 loads. J Infect Dis; 195: 1177–80.CrossRefGoogle ScholarPubMed
Blanc, FX, Sok, T, Laureillard, D et al. (2011). Earlier versus later start of antiretroviral therapy in HIV-infected adults with tuberculosis. N Engl J Med; 365(16): 1471–81.10.1056/NEJMoa1013911CrossRefGoogle ScholarPubMed
Boulware, DR, Meya, DB, Muzoora, C et al. (2014). Timing of antiretroviral therapy after diagnosis of cryptococcal meningitis. N Engl J Med; 370(26): 2487–98.CrossRefGoogle ScholarPubMed
Buvé, A, Caraël, M, Hayes, RJ et al. (2001). Multicentre study on factors determining differences in rate of spread of HIV in sub-Saharan Africa: methods and prevalence of HIV infection. AIDS; 15 Suppl 4: S514.10.1097/00002030-200108004-00002CrossRefGoogle ScholarPubMed
Choko, AT, Desmond, N, Webb, EL et al (2011). The uptake and accuracy of oral kits for HIV self-testing in high HIV prevalence setting: a cross-sectional feasibility study in Blantyre, Malawi. PLoS Med; 8(10): e1001102.CrossRefGoogle ScholarPubMed
Cohen, DB, Zijlstra, EE, Mukaka, M et al. (2010). Diagnosis of cryptococcal and tuberculous meningitis in a resource-limited African setting. Trop Med Int Health; 15: 910–17.10.1111/j.1365-3156.2010.02565.xCrossRefGoogle Scholar
Cohen, MS, Chen, YQ, McCauley, M et al. (2011). Prevention of HIV-1 infection with early antiretroviral therapy. N Engl J Med; 365: 493505.10.1056/NEJMoa1105243CrossRefGoogle ScholarPubMed
Decroo, T, Telfer, B, Dores, CD et al. (2017). Effect of Community ART Groups on retention-in-care among patients on ART in Tete Province, Mozambique: a cohort study. BMJ Open; 7(8): e016800.10.1136/bmjopen-2017-016800CrossRefGoogle ScholarPubMed
Deeks, SG, Walker, BD (2007). Human immunodeficiency virus controllers: mechanisms of durable virus control in the absence of antiretroviral therapy. Immunity; 27: 406–16.10.1016/j.immuni.2007.08.010CrossRefGoogle ScholarPubMed
Dlamini, SK, Madhi, SA, Muloiwa, R et al. (2018). Guidelines for the vaccination of HIV-infected adolescents and adults in South Africa. S Afr J HIV Med; 19(1): a839.10.4102/sajhivmed.v19i1.839CrossRefGoogle ScholarPubMed
Dow, DE, Bartlett, JA (2014). Dolutegravir, the second-generation of Integrase Strand Transfer Inhibitors (INSTIs) for the treatment of HIV. Infect Dis Ther; 3: 83102.10.1007/s40121-014-0029-7CrossRefGoogle ScholarPubMed
El-Sadr, WM, Lundgren, JD, Neaton, JD et al. (2006). CD4 count-guided interruption of antiretroviral treatment. N Engl J Med; 355: 2283–96.Google ScholarPubMed
Fatti, G, Ngorima-Mabhena, N, Mothibi, E, Muzenda, T et al. (2020). Outcomes of three- versus six-monthly dispensing of antiretroviral treatment (ART) for stable HIV patients in Community ART Refill Groups: a cluster-randomized trial in Zimbabwe. J Acquir Immune Defic Syndr; 84: 162–72.10.1097/QAI.0000000000002333CrossRefGoogle ScholarPubMed
Frigati, L, Ameyan, W, Cotton, MF et al. (2020). Chronic comorbidities in children and adolescents with perinatally acquired HIV infection in sub-Saharan Africa in the era of antiretroviral therapy. Lancet Child Adolesc Health; 4(9): 688–98.10.1016/S2352-4642(20)30037-7CrossRefGoogle ScholarPubMed
Gordon, MA, Graham, SM (2008). Invasive salmonellosis in Malawi. J Infect Dev Ctries; 2: 438–42.10.3855/jidc.158CrossRefGoogle ScholarPubMed
Hakim, J, Musiime, V, Szubert AJ et al. (2017). Enhanced prophylaxis plus antiretroviral therapy for advanced HIV infection in Africa. N Engl J Med; 17 (377): 233–45.Google Scholar
Hayes, RJ, Schulz, KF, Plummer, FA (1995). The cofactor effect of genital ulcers on the per-exposure risk of HIV transmission in sub-Saharan Africa. J Trop Med Hyg; 98: 18.Google ScholarPubMed
Hollingsworth, TD, Laeyendecker, O, Shirreff, G et al. (2010). HIV-1 transmitting couples have similar viral load set-points in Rakai, Uganda. PLoS Pathog; 6: p e1000876.10.1371/journal.ppat.1000876CrossRefGoogle ScholarPubMed
Katwere, M, Kambugu, A, Piloya, T et al. (2009). Clinical presentation and aetiologies of acute or complicated headache among HIV-seropositive patients in a Ugandan clinic. J Int AIDS Soc; 12: 21.CrossRefGoogle ScholarPubMed
Kiwanuka, N, Laeyendecker, O, Robb, M et al. (2008). Effect of human immunodeficiency virus Type 1 (HIV-1) subtype on disease progression in persons from Rakai, Uganda, with incident HIV-1 infection. J Infect Dis; 197: 707–13.10.1086/527416CrossRefGoogle ScholarPubMed
Lucas, SB, Hounnou, A, Peacock, C et al. (1993). The mortality and pathology of HIV infection in a West African city. AIDS; 7: 1569–79.CrossRefGoogle Scholar
Lundgren JD, Babiker AG et al.; INSIGHT START Study Group, (2015). Initiation of antiretroviral therapy in early asymptomatic HIV infection. N Engl J Med; 373(9): 795807.10.1056/NEJMoa1506816CrossRefGoogle Scholar
Lynen, L, Zolfo, M, Huyst, V et al. (2005). Management of Kaposi’s sarcoma in resource-limited settings in the era of HAART. AIDS Rev; 7: 1321.Google ScholarPubMed
Marlink, R, Kanki, P, Thior, I et al. (1994). Reduced rate of disease development after HIV-2 infection as compared to HIV-1. Science; 265: 1587–90.10.1126/science.7915856CrossRefGoogle ScholarPubMed
Martinez-Steele, E, Awasana, AA, Corrah, T et al. (2007). Is HIV-2-induced AIDS different from HIV-1-associated AIDS? Data from a West African clinic. AIDS; 21: 317–24.10.1097/QAD.0b013e328011d7abCrossRefGoogle Scholar
Meintjes, G, Wilkinson, RJ, Morroni, C et al. (2010). Randomized placebo-controlled trial of prednisone for paradoxical tuberculosis-associated immune reconstitution inflammatory syndrome. AIDS; 24: 2381–90.10.1097/QAD.0b013e32833dfc68CrossRefGoogle ScholarPubMed
Morgan, D, Ross, A, Mayanja, B et al. (1998). Early manifestations (pre-AIDS) of HIV-1 infection in Uganda. AIDS; 12: 591–6.10.1097/00002030-199806000-00007CrossRefGoogle ScholarPubMed
Muller, M, Wandel, S, Colebunders, R et al. (2010). Immune reconstitution inflammatory syndrome in patients starting antiretroviral therapy for HIV infection: a systematic review and meta-analysis. Lancet Infect Dis; 10: 251–61.10.1016/S1473-3099(10)70026-8CrossRefGoogle ScholarPubMed
Payne, C, Kohler, H-P (2017). The population-level impact of public-sector antiretroviral therapy rollout on adult mortality in rural Malawi. Demogr Res; 36: 1081–108.10.4054/DemRes.2017.36.37CrossRefGoogle ScholarPubMed
Phipps, W, Ssewankambo, F, Nguyen, H et al. (2010). Gender differences in clinical presentation and outcomes of epidemic Kaposi sarcoma in Uganda. PLoS ONE; 5: e13936.Google Scholar
Reddy, EA, Shaw, AV, Crump, JA (2010). Community-acquired bloodstream infections in Africa: a systematic review and meta-analysis. Lancet Infect Dis; 10: 417–32.CrossRefGoogle Scholar
Robbins, R. N., Gouse, H., Brown, H. G. et al. (2018). A mobile app to screen for neurocognitive impairment: preliminary validation of NeuroScreen among HIV-infected South African adults. JMIR mHealth and uHealth; 6(1): e5.10.2196/mhealth.9148CrossRefGoogle ScholarPubMed
Sacktor, NC, Wong, M, Makasujja, N et al. (2005). The International HIV Dementia Scale: a new rapid screening test for HIV dementia. AIDS; 19: 1367–74.Google Scholar
Sharp, PM, Hahn, BH (2010). The evolution of HIV-1 and the origin of AIDS. Phil Trans R Soc Lond B Biol Sci; 365: 2487–94.10.1098/rstb.2010.0031CrossRefGoogle Scholar
Slogrove, AL, Schomaker, M, Davies, MA et al.; Collaborative Initiative for Paediatric HIV Education and Research (CIPHER) Global Cohort Collaboration (2018). The epidemiology of adolescents living with perinatally acquired HIV: a cross-region global cohort analysis. PLoS Med; 15(3): e1002514.Google Scholar
Taegtmeyer, M, Suckling, RM, Nguku, PM et al. (2008). Working with risk: occupational safety issues among healthcare workers in Kenya. AIDS Care; 20: 304–10.10.1080/09540120701583787CrossRefGoogle ScholarPubMed
Templeton, DJ (2010). Male circumcision to reduce sexual transmission of HIV. Curr Opin HIV AIDS; 5: 344–9.10.1097/COH.0b013e32833a46d3CrossRefGoogle ScholarPubMed
Todd, J, Glynn, JR, Marston, M et al. (2007) Time from HIV seroconversion to death: a collaborative analysis of eight studies in six low and middle- income countries before highly active antiretroviral therapy. AIDS; 21 Suppl. 6: S5563.10.1097/01.aids.0000299411.75269.e8CrossRefGoogle Scholar
Turkova, A et al. (2021). Dolutegravir-based ART is superior to NNRTI-PI-based ART in children and adolescents. Abstract 174. 29th Conference of Retroviruses and Opportunistic Infections, USA.Google Scholar
Vallari, A, Holzmayer, V, Harris, B et al. (2011). Confirmation of putative HIV-1 group P in Cameroon. J Virology; 85(3): 1403–7.10.1128/JVI.02005-10CrossRefGoogle Scholar
Violari, A, Cotton, MF, Gibb, DM et al. (2008). Early antiretroviral therapy and mortality among HIV-infected infants. N Engl J Med; 359: 2233–44.10.1056/NEJMoa0800971CrossRefGoogle ScholarPubMed
WHO (2007). WHO case definitions of HIV for surveillance and revised clinical staging and immunological classification of HIV-related disease in adults and children. Geneva: WHO. https://apps.who.int/iris/bitstream/handle/10665/43699/9789241595629_eng.pdf?sequence=1&isAllowed=y.Google Scholar
WHO (2009). Guidelines for using HIV testing technologies in surveillance: selection, evaluation and implementation. 2009 update. Geneva: WHO. www.who.int/hiv/pub/surveillance/hiv_testing_technologies_surveillance.pdf.Google Scholar
WHO (2010). Priority interventions: HIV/AIDS prevention, treatment and care in the health sector 2010. Geneva: WHO. https://www.who.int/hiv/pub/priority_interventions_web.pdf.Google Scholar
WHO (2011). Guidelines for intensified tuberculosis case-finding and isoniazid preventive therapy for people living with HIV in resource-constrained settings. Geneva: WHO. http://whqlibdoc.who.int/publications/2011/9789241500708_eng.pdf.Google Scholar
WHO (2014). Guidelines on post-exposure prophylaxis for HIV and the use of co-trimoxazole prophylaxis for HIV-related infections among adults, adolescents and children: recommendations for a public health approach. December 2014 supplement to the 2013 consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection. Geneva: WHO. https://apps.who.int/iris/bitstream/handle/10665/145719/9789241508193_eng.pdf?sequence=1&isAllowed=y.Google Scholar
WHO (2017a). Human papillomavirus vaccines: WHO position paper, May 2017 – Recommendations. Vaccine; 35(43): 5753–5.Google Scholar
WHO (2018). Guidelines on the diagnosis, prevention and management of cryptococcal disease in HIV-infected adults, adolescents and children: supplement to the 2016 consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection. Geneva: WHO. www.who.int/publications/i/item/9789241550277.Google Scholar
WHO (2019a). Consolidated guidelines on HIV testing services. Geneva: WHO. www.who.int/publications/i/item/978-92-4-155058–1.Google Scholar
WHO (2019b). Lateral flow urine lipoarabinomannan assay (LF-LAM) for the diagnosis of active tuberculosis in people living with HIV. Policy update. Geneva: WHO. https://apps.who.int/iris/bitstream/handle/10665/329479/9789241550604-eng.pdf?sequence=1&isAllowed=y.Google Scholar
WHO (2020). WHO operational handbook on tuberculosis (Module 1 – Prevention): Tuberculosis preventive treatment. Geneva: WHO. https://apps.who.int/iris/bitstream/handle/10665/331525/9789240002906-eng.pdf.Google Scholar
WHO (2021a). Consolidated guidelines on HIV prevention, testing, treatment, service delivery and monitoring recommendations for a public health approach 2021. Geneva: WHO. www.who.int/publications/i/item/9789240031593.Google Scholar
WHO (2021b). Updated recommendations on HIV prevention, infant diagnosis, antiretroviral initiation and monitoring: March 2021. Geneva: WHO. www.who.int/publications/i/item/9789240022232.Google Scholar
Wiktor, SZ, Sassan-Morokro, M, Grant, AD et al. (1999). Efficacy of trimethoprim- sulphamethoxazole prophylaxis to decrease morbidity and mortality in HIV-1-infected patients with tuberculosis in Abidjan, Côte d’Ivoire: a randomised controlled trial. Lancet; 353: 1469–75.10.1016/S0140-6736(99)03465-0CrossRefGoogle ScholarPubMed
Zash, R, Holmes, LB, Diseko, M et al. (2021). Update on neural tube defects with antiretroviral exposure in the Tsepamo study, Botswana. Abstract PEBLB14. 11th IAS Conference on HIV Science.Google ScholarPubMed

References

Bahr, N. C., Meintjes, G., & Boulware, D. R. (2019). Inadequate diagnostic: the case to move beyond the bacilli for detection of meningitis due to Mycobacterium tuberculosis. J Med Microbiol, 68(5), 755–60.10.1099/jmm.0.000975CrossRefGoogle ScholarPubMed
Barr, D. A. et al. (2020). Mycobacterium tuberculosis bloodstream infection prevalence, diagnosis, and mortality risk in seriously ill adults with HIV: a systematic review and meta-analysis of individual patient data. Lancet Infect Dis, 20, 742–52.10.1016/S1473-3099(19)30695-4CrossRefGoogle ScholarPubMed
Barry, C.E., 3rd et al. (2009). The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol, 7(12), 845–55.10.1038/nrmicro2236CrossRefGoogle ScholarPubMed
Dorman, S. E. et al. (2021). Four-month rifapentine regimens with or without moxifloxacin for tuberculosis. N Engl J Med, 384(18), 1705–18.10.1056/NEJMoa2033400CrossRefGoogle ScholarPubMed
Drain, P.K. et al. (2018). Incipient and subclinical tuberculosis: a clinical review of early stages and progression of infection. Clin Microbiol Rev, 31(4).10.1128/CMR.00021-18CrossRefGoogle ScholarPubMed
Gupta, R.K. et al. (2015). Prevalence of tuberculosis in post-mortem studies of HIV-infected adults and children in resource-limited settings: a systematic review and meta-analysis. AIDS, 29(15), 19872002.CrossRefGoogle ScholarPubMed
Gupta, R. et al. (2015). Spinal cord and spinal nerve root involvement (myeloradiculopathy) in tuberculous meningitis. Medicine (Baltimore), 94(3), e404.10.1097/MD.0000000000000404CrossRefGoogle ScholarPubMed
Gupta-Wright, A. et al. (2018). Rapid urine-based screening for tuberculosis in HIV-positive patients admitted to hospital in Africa (STAMP): a pragmatic, multicentre, parallel-group, double-blind, randomised controlled trial. Lancet, 392, 292301.10.1016/S0140-6736(18)31267-4CrossRefGoogle Scholar
Horne, D. J. et al. (2019). Xpert MTB/RIF and Xpert MTB/RIF Ultra for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database of Systematic Reviews, CD009593.10.1002/14651858.CD009593.pub4CrossRefGoogle Scholar
Karstaedt, A. S. et al. (1998). The bacteriology of pulmonary tuberculosis in a population with high human immunodeficiency virus seroprevalence. Int J Tuberc Lung Dis, 2(4), 312–6.Google Scholar
Lewis, J. M., Feasey, N.A. & Rylance, J. (2019). Aetiology and outcomes of sepsis in adults in sub-Saharan Africa: a systematic review and meta-analysis. Crit Care, 23, 212.10.1186/s13054-019-2501-yCrossRefGoogle ScholarPubMed
Mayosi, B. et al. (2014). Prednisolone and Mycobacterium indicus pranii in tuberculous pericarditis. N Engl J Med, 371, 1121–30.10.1056/NEJMoa1407380CrossRefGoogle ScholarPubMed
Meintjes, G. et al. (2010). Randomised placebo-controlled trial of prednisone for paradoxical tuberculosis-associated immune reconstitution inflammatory syndrome. AIDS, 24(15), 2381–90.10.1097/QAD.0b013e32833dfc68CrossRefGoogle ScholarPubMed
Meintjes, G. et al. (2018). Prednisone for the prevention of paradoxical tuberculosis-associated IRIS. N Engl J Med, 379, 19151925.10.1056/NEJMoa1800762CrossRefGoogle ScholarPubMed
Namale, P., et al. (2015). Paradoxical TB-IRIS in HIV-infected adults: a systematic review and meta-analysis. Future Microbiol, 10, 1077–99.10.2217/fmb.15.9CrossRefGoogle ScholarPubMed
Pai, M. et al. (2016). Tuberculosis. Nat Rev Dis Primers, 2, 16076.10.1038/nrdp.2016.76CrossRefGoogle ScholarPubMed
Penn-Nicholson, A et al. (2021). Detection of isoniazid, fluoroquinolone, ethionamide, amikacin, kanamycin, and capreomycin resistance by the Xpert MTB/XDR assay: a cross-sectional multicentre diagnostic accuracy study. Lancet Infect Dis. doi.org/10.1016/S1473-3099(21)00452-7.Google Scholar
Peter, J. G. et al. (2016). Effect on mortality of point-of-care, urine-based lipoarabinomannan testing to guide tuberculosis treatment initiation in HIV-positive hospital inpatients: a pragmatic, parallel-group, multicountry, open-label, randomised controlled trial. Lancet, 387, 1187–97.10.1016/S0140-6736(15)01092-2CrossRefGoogle ScholarPubMed
Rangaka, M. X. et al. (2014). Isoniazid plus antiretroviral therapy to prevent tuberculosis: a randomised double-blind, placebo-controlled trial. Lancet, 384(9944), 682–90.10.1016/S0140-6736(14)60162-8CrossRefGoogle ScholarPubMed
Ross, J. M. et al. (2021). Isoniazid preventive therapy plus antiretroviral therapy for the prevention of tuberculosis: a systematic review and meta-analysis of individual participant data. Lancet HIV, 8, e815.10.1016/S2352-3018(20)30299-XCrossRefGoogle ScholarPubMed
Saukkonen, J. J. et al. (2006). An official ATS statement: hepatotoxicity of antituberculosis therapy. Am J Respir Crit Care Med, 174(8), 935–52.10.1164/rccm.200510-1666STCrossRefGoogle ScholarPubMed
Schnippel, K. et al. (2018). Effect of bedaquiline on mortality in South African patients with drug-resistant tuberculosis: a retrospective cohort study. Lancet Respir Med, 6(9), 699706.10.1016/S2213-2600(18)30235-2CrossRefGoogle ScholarPubMed
Tait, D. R. et al. (2019). Final analysis of a trial of M72/AS01(E) vaccine to prevent tuberculosis. N Engl J Med, 381, 2429–39.10.1056/NEJMoa1909953CrossRefGoogle ScholarPubMed
Tostmann, A. et al. (2008). Antituberculosis drug-induced hepatotoxicity: concise up-to-date review. J Gastroenterol Hepatol, 23(2), 192202.10.1111/j.1440-1746.2007.05207.xCrossRefGoogle ScholarPubMed
van Toorn, R et al. (2012). Value of different staging systems for predicting neurological outcome in childhood tuberculous meningitis. Int J Tuberc Lung Dis, 16(5), 628–32.10.5588/ijtld.11.0648CrossRefGoogle ScholarPubMed
van Zyl, L., du, Plessis J., Viljoen, J. (2015). Cutaneous tuberculosis overview and current treatment regimens. Tuberculosis (Edinb), 95(6), 629–38.10.1016/j.tube.2014.12.006CrossRefGoogle ScholarPubMed
WHO (2017). Guidelines for treatment of drug-susceptible tuberculosis and patient care, 2017 update. Geneva: WHO. https://apps.who.int/iris/handle/10665/255052.Google Scholar
WHO (2018). Latent tuberculosis infection: updated and consolidated guidelines for programmatic management. Geneva: WHO. www.who.int/publications/i/item/9789241550239.Google Scholar
WHO (2019). Lateral flow urine lipoarabinomannan assay (LF-LAM) for the diagnosis of active tuberculosis in people living with HIV. Policy update 2019. Geneva: WHO. www.who.int/publications/i/item/9789241550604.Google Scholar
WHO (2020). Global tuberculosis report 2020. Geneva: WHO. www.who.int/publications/i/item/9789240013131.Google Scholar
WHO (2020). WHO operational handbook on tuberculosis. Module 1: prevention – tuberculosis preventive treatment. Geneva: WHO. www.who.int/publications/i/item/9789240002906.Google Scholar
WHO (2020). WHO consolidated guidelines on tuberculosis. Module 2: Screening – Systematic screening for tuberculosis disease. Geneva: WHO. www.who.int/publications/i/item/9789240022676.Google Scholar
WHO (2021). Global tuberculosis report 2021. Geneva: WHO. www.who.int/publications/i/item/9789240037021.Google Scholar
WHO (2021). WHO consolidated guidelines on tuberculosis. Module 3: diagnosis – rapid diagnostics for tuberculosis detection, 2021 update. Geneva: WHO. www.who.int/publications/i/item/9789240029415.Google Scholar

References

Aderaye, G. 1994. Community acquired pneumonia in adults in Addis Ababa: etiologic agents and the impact of HIV infection. Tubercle and Lung Disease, 75, 308312.10.1016/0962-8479(94)90138-4CrossRefGoogle Scholar
African COVID-19 Critical Care Outcomes Study (ACCCOS) Investigators. 2021. Patient care and clinical outcomes for patients with COVID-19 infection admitted to African high-care or intensive care units (ACCCOS): a multicentre, prospective, observational cohort study. Lancet, 397, 1885–1894.Google Scholar
Allen, S. C. 1984. Lobar pneumonia in Northern Zambia: clinical study of 502 adult patients. Thorax, 39, 612616.10.1136/thx.39.8.612CrossRefGoogle ScholarPubMed
Aston, S. J., Ho, A., Jary, H. et al. 2019. Etiology and risk factors for mortality in an adult community-acquired pneumonia cohort in Malawi. Am J Respir Crit Care Med, 200, 359369.10.1164/rccm.201807-1333OCCrossRefGoogle Scholar
Aston, S. J. & Rylance, J. 2016. Community-acquired pneumonia in sub-Saharan Africa. Semin Respir Crit Care Med, 37, 855867.Google ScholarPubMed
Austrian, R., Douglas, R. M., Schiffman, G. et al. 1976. Prevention of pneumococcal pneumonia by vaccination. Trans Assoc Am Physicians, 89, 184194.Google ScholarPubMed
Bar-zeev, N., Swarthout, T. D., Everett, D. B. et al. 2021. Impact and effectiveness of 13-valent pneumococcal conjugate vaccine on population incidence of vaccine and non-vaccine serotype invasive pneumococcal disease in Blantyre, Malawi, 2006–18: prospective observational time-series and case-control studies. Lancet Glob Health, 9, e989e998.10.1016/S2214-109X(21)00165-0CrossRefGoogle ScholarPubMed
Batungwanayo, J., Taelman, H., Lucas, S. et al. 1994. Pulmonary disease associated with the human immunodeficiency virus in Kigali, Rwanda. A fiberoptic bronchoscopic study of 111 cases of undetermined etiology. Am J Respir Crit Care Med, 149, 15911596.10.1164/ajrccm.149.6.8004318CrossRefGoogle ScholarPubMed
Bell, D. J., Dacombe, R., Graham, S. M. et al. 2009. Simple measures are as effective as invasive techniques in the diagnosis of pulmonary tuberculosis in Malawi. Int J Tuberc Lung Dis, 13, 99104.Google ScholarPubMed
Daley, C. L., Mugusi, F., Chen, L. L. et al. 1996. Pulmonary complications of HIV infection in Dar es Salaam, Tanzania. Role of bronchoscopy and bronchoalveolar lavage 115. Am J Respir Crit Care Med, 154, 105110.10.1164/ajrccm.154.1.8680664CrossRefGoogle Scholar
Dowell, S. F., Anderson, L. J., Gary, H. E. et al. 1996. Respiratory syncytial virus is an important cause of community-acquired lower respiratory infection among hospitalized adults. J Infect Dis, 174, 456462.10.1093/infdis/174.3.456CrossRefGoogle Scholar
Feikin, D. R., Dowell, S. F., Nwanyanwu, O. C. et al. 2000. Increased carriage of trimethoprim/sulfamethoxazole-resistant Streptococcus pneumoniae in Malawian children after treatment for malaria with sulfadoxine/pyrimethamine. J Infect Dis, 181, 15011505.CrossRefGoogle ScholarPubMed
French, N., Gordon, S. B., Mwalukomo, T. et al. 2010. A trial of a 7-valent pneumococcal conjugate vaccine in HIV-infected adults. N Engl J Med, 362, 812823.10.1056/NEJMoa0903029CrossRefGoogle ScholarPubMed
Garcia-Leoni, M. E., Moreno, S., Rodeno, P., Cercenado, E., Vicente, T. & Bouza, E. 1992. Pneumococcal pneumonia in adult hospitalized patients infected with the human immunodeficiency virus. Arch Intern Med, 152, 18081812.10.1001/archinte.1992.00400210040007CrossRefGoogle ScholarPubMed
Gilks, C. F., Ojoo, S. A., Ojoo, J. C. et al. 1996. Invasive pneumococcal disease in a cohort of predominantly HIV-1 infected female sex-workers in Nairobi, Kenya. Lancet, 347, 718723.10.1016/S0140-6736(96)90076-8CrossRefGoogle Scholar
Grant, A. D., Sidibe, K., Domoua, K. et al. 1998. Spectrum of disease among HIV-infected adults hospitalised in a respiratory medicine unit in Abidjan, Cote d’Ivoire 71. Int J Tuberc Lung Dis, 2, 926934.Google Scholar
Harries, A. D., Speare, R. & Wirima, J. J. 1988. A profile of respiratory disease in an African medical ward. J R Coll Physicians Lond, 22, 109113.Google Scholar
Hartung, T. K., Chimbayo, D., Van Oosterhout, J. J. et al. 2011. Etiology of suspected pneumonia in adults admitted to a high-dependency unit in Blantyre, Malawi. Am J Trop Med Hyg, 85, 105112.10.4269/ajtmh.2011.10-0640CrossRefGoogle ScholarPubMed
Heller, T., Wallrauch, C., Lessells, R. J., Goblirsch, S. & Brunetti, E. 2010. Short course for focused assessment with sonography for human immunodeficiency virus/tuberculosis: preliminary results in a rural setting in South Africa with high prevalence of human immunodeficiency virus and tuberculosis. Am J Trop Med Hyg, 82, 512515.10.4269/ajtmh.2010.09-0561CrossRefGoogle Scholar
Iroezindu, M. O., Chima, E. I., Isiguzo, G. C. et al. 2014. Sputum bacteriology and antibiotic sensitivity patterns of community-acquired pneumonia in hospitalized adult patients in Nigeria: a 5-year multicentre retrospective study. Scand J Infect Dis, 46, 875887.10.3109/00365548.2014.954263CrossRefGoogle ScholarPubMed
Iroh Tam, P. Y., Sadoh, A. E. & Obaro, S. K. 2018. A meta-analysis of antimicrobial susceptibility profiles for pneumococcal pneumonia in sub-Saharan Africa. Paediatr Int Child Health, 38, 715.10.1080/20469047.2017.1298700CrossRefGoogle ScholarPubMed
Jary, H. R., Aston, S., Ho, A., Giorgi, E. et al. 2017. Household air pollution, chronic respiratory disease and pneumonia in Malawian adults: a case-control study. Wellcome Open Res, 2, 103.10.12688/wellcomeopenres.12621.1CrossRefGoogle ScholarPubMed
Jochems, S. P., Marcon, F., Carniel, B. F. et al. 2018. Inflammation induced by influenza virus impairs human innate immune control of pneumococcus. Nat Immunol, 19, 12991308.10.1038/s41590-018-0231-yCrossRefGoogle ScholarPubMed
Jokinen, J. & Scott, J. A. 2010. Estimating the proportion of pneumonia attributable to pneumococcus in Kenyan adults: latent class analysis. Epidemiology, 21, 719725.10.1097/EDE.0b013e3181e4c4d5CrossRefGoogle ScholarPubMed
Kahn, D., Pool, K. L., Phiri, L. et al. 2020. Diagnostic utility and impact on clinical decision making of focused assessment with sonography for HIV-associated tuberculosis in malawi: a prospective cohort study. Glob Health Sci Pract, 8, 2837.10.9745/GHSP-D-19-00251CrossRefGoogle ScholarPubMed
Kamanfu, G., Mlika-Cabanne, N., Girard, P. M. et al. 1993. Pulmonary complications of human immunodeficiency virus infection in Bujumbura, Burundi. Am Rev Respir Dis, 147, 658663.10.1164/ajrccm/147.3.658CrossRefGoogle ScholarPubMed
Kleynhans, J., Tempia, S., Shioda, K., Gottberg, Von, Weinberger, A., D. M. & Cohen, C. 2021. Estimated impact of the pneumococcal conjugate vaccine on pneumonia mortality in South Africa, 1999 through 2016: An ecological modelling study. PLoS Med, 18, e1003537.10.1371/journal.pmed.1003537CrossRefGoogle ScholarPubMed
Koulla-Shiro, S., Kuaban, C. & Belec, L. 1996. Acute community-acquired bacterial pneumonia in human immunodeficiency virus (HIV) infected and non-HIV-infected adult patients in Cameroon: aetiology and outcome. Tuber Lung Dis, 77, 4751.10.1016/S0962-8479(96)90075-1CrossRefGoogle Scholar
Lewis, J. M., Mphasa, M., Keyala, L. et al. 2021. A longitudinal observational study of aetiology and long-term outcomes of sepsis in Malawi revealing the key role of disseminated tuberculosis. Clin Infect Dis, 74, 18401849.10.1093/cid/ciab710CrossRefGoogle Scholar
Lozano, R., Naghavi, M., Foreman, K. et al. 2012. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 380, 20952128.10.1016/S0140-6736(12)61728-0CrossRefGoogle ScholarPubMed
Macpherson, P., Webb, E. L., Kamchedzera, W. et al. 2021. Computer-aided X-ray screening for tuberculosis and HIV testing among adults with cough in Malawi (the PROSPECT study): A randomised trial and cost-effectiveness analysis. PLoS Med, 18, e1003752.10.1371/journal.pmed.1003752CrossRefGoogle ScholarPubMed
Malin, A. S., Gwanzura, L. K., Klein, S., Robertson, V. J., Musvaire, P. & Mason, P. R. 1995. Pneumocystis carinii pneumonia in Zimbabwe. Lancet, 346, 12581261.10.1016/S0140-6736(95)91862-0CrossRefGoogle ScholarPubMed
Meghji, J., Mortimer, K., Agusti, A. et al. 2021. Improving lung health in low-income and middle-income countries: from challenges to solutions. Lancet, 397, 928940.10.1016/S0140-6736(21)00458-XCrossRefGoogle ScholarPubMed
Murray, C. J. & Lopez, A. 1996. The Global Burden of Disease: A comprehensive assessment of mortality and disability from disease, injuries and risk factors in 1990 and projected to 2020. Cambridge, MA: Harvard School of Public Health.Google Scholar
Nuorti, J. P., Butler, J. C., Farley, M. M. et al. 2000a. Cigarette smoking and invasive pneumococcal disease. Active Bacterial Core Surveillance Team. N Engl J Med, 342, 681689.10.1056/NEJM200003093421002CrossRefGoogle ScholarPubMed
Nuorti, J. P., Butler, J. C., Gelling, L., Kool, J. L., Reingold, A. L. & Vugia, D. J. 2000b. Epidemiologic relation between HIV and invasive pneumococcal disease in San Francisco County, California. Ann Intern Med, 132, 182190.10.7326/0003-4819-132-3-200002010-00003CrossRefGoogle Scholar
O’Brien, K. L., Wolfson, L. J., Watt, J. P. et al.; HIB & Pneumococcal Global Burden of Disease Study. 2009. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet, 374, 893902.10.1016/S0140-6736(09)61204-6CrossRefGoogle ScholarPubMed
Pneumonia Etiology Research For Child Health Study. 2019. Causes of severe pneumonia requiring hospital admission in children without HIV infection from Africa and Asia: the PERCH multi-country case-control study. Lancet, 394, 757779.10.1016/S0140-6736(19)30721-4CrossRefGoogle Scholar
Roca, A., Hill, P. C., Townend, J., Egere, U. et al. 2011. Effects of community-wide vaccination with PCV-7 on pneumococcal nasopharyngeal carriage in the Gambia: a cluster-randomized trial. PLoS Med, 8, e1001107.10.1371/journal.pmed.1001107CrossRefGoogle ScholarPubMed
Sanjoaquin, M. A., Allain, T. J., Molyneux, M. E. et al. 2013. Surveillance Programme of IN-patients and Epidemiology (SPINE): implementation of an electronic data collection tool within a large hospital in Malawi. PLoS Med, 10, e1001400.CrossRefGoogle ScholarPubMed
Scott, J. A., Hall, A. J., Muyodi, C. et al. 2000. Aetiology, outcome, and risk factors for mortality among adults with acute pneumonia in Kenya. Lancet, 355, 12251230.10.1016/S0140-6736(00)02089-4CrossRefGoogle ScholarPubMed
Scott, J. A. G., Hall, A. J., Hannington, A. et al. 1998. Serotype distribution and prevalence of resistance to benzylpenicillin in three representative populations of Streptococcus pneumoniae isolates from the coast of Kenya. Clin Infect Dis, 27, 14421450.CrossRefGoogle ScholarPubMed
Sow, O, Frechet, M, Diallo, AA et al. 1996. Community acquired pneumonia in adults: a study comparing clinical features and outcome in Africa (Republic of Guinea) and Europe (France). Thorax, 51, 385388.10.1136/thx.51.4.385CrossRefGoogle ScholarPubMed
Swarthout, T. D., Fronterre, C., Lourenco, J. et al. 2020. High residual carriage of vaccine-serotype Streptococcus pneumoniae after introduction of pneumococcal conjugate vaccine in Malawi. Nat Commun, 11, 2223.10.1038/s41467-020-15786-9CrossRefGoogle ScholarPubMed
Vanderburg, S., Rubach, M. P., Halliday, J. E., Cleaveland, S., Reddy, E. A. & Crump, J. A. 2014. Epidemiology of Coxiella burnetii infection in Africa: a OneHealth systematic review. PLoS Negl Trop Dis, 8, e2787.10.1371/journal.pntd.0002787CrossRefGoogle Scholar
Vray, M., Germani, Y., Chan, S. et al. 2008. Clinical features and etiology of pneumonia in acid-fast bacillus sputum smear-negative HIV-infected patients hospitalized in Asia and Africa. AIDS, 22, 13231332.10.1097/QAD.0b013e3282fdf8bfCrossRefGoogle ScholarPubMed
Wasserman, S., Engel, M. E., Griesel, R. & Mendelson, M. 2016. Burden of pneumocystis pneumonia in HIV-infected adults in sub-Saharan Africa: a systematic review and meta-analysis. BMC Infect Dis, 16, 482.10.1186/s12879-016-1809-3CrossRefGoogle ScholarPubMed
Watera, C., Nakiyingi, J., Miiro, G. et al. 2004. 23-Valent pneumococcal polysaccharide vaccine in HIV-infected Ugandan adults: 6-year follow-up of a clinical trial cohort. AIDS, 18, 12101213.10.1097/00002030-200405210-00018CrossRefGoogle ScholarPubMed
Wootton, D. G., Diggle, P. J., Court, J. et al. 2016. Recovery from pneumonia requires efferocytosis which is impaired in smokers and those with low body mass index and enhanced by statins. Thorax, 71, 10521054.10.1136/thoraxjnl-2016-208505CrossRefGoogle ScholarPubMed
Wootton, D. G., Dickinson, L., Pertinez, H. et al. 2017. A longitudinal modelling study estimates acute symptoms of community acquired pneumonia recover to baseline by 10 days. Eur Respir J, 49, 1602170.10.1183/13993003.02170-2016CrossRefGoogle ScholarPubMed
Wootton, D. G., Cox, M. J., Gloor, G. B. et al. 2019. A Haemophilus sp. dominates the microbiota of sputum from UK adults with non-severe community acquired pneumonia and chronic lung disease. Sci Rep, 9, 2388.10.1038/s41598-018-38090-5CrossRefGoogle ScholarPubMed
Working Group Of The South African Thoracic Society. 2007. Management of community-acquired pneumonia in adults. S Afr Med J, 97, 12961306.Google Scholar

References

Adegbola, R. A., Secka, O., Lahai, G. et al. 2005. Elimination of Haemophilus influenzae type b (Hib) disease from The Gambia after the introduction of routine immunisation with a Hib conjugate vaccine: a prospective study. Lancet, 366, 144–50.10.1016/S0140-6736(05)66788-8CrossRefGoogle ScholarPubMed
Ajdukiewicz, K. M., Cartwright, K. E., Scarborough, M. et al. 2011. Glycerol adjuvant therapy in adults with bacterial meningitis in a high HIV seroprevalence setting in Malawi: a double-blind, randomised controlled trial. Lancet Infect Dis, 11, 293300.10.1016/S1473-3099(10)70317-0CrossRefGoogle Scholar
Baker, M., Mcnicholas, A., Garrett, N. et al. 2000. Household crowding a major risk factor for epidemic meningococcal disease in Auckland children. Pediatr Infect Dis J, 19, 983–90.10.1097/00006454-200010000-00009CrossRefGoogle Scholar
Battersby, A. J., Knox-Macaulay, H. H. & Carrol, E. D. 2010. Susceptibility to invasive bacterial infections in children with sickle cell disease. Pediatr Blood Cancer, 55, 401–6.10.1002/pbc.22461CrossRefGoogle ScholarPubMed
Brouwer, B., Parvataneni, K. & Olney, S. J. 2009. A comparison of gait biomechanics and metabolic requirements of overground and treadmill walking in people with stroke. Clin Biomech (Bristol, Avon), 24, 729–34.10.1016/j.clinbiomech.2009.07.004CrossRefGoogle ScholarPubMed
Campagne, G., Schuchat, A., Djibo, S., Ousséini, A., Cissé, L. & Chippaux, J. P. 1999. Epidemiology of bacterial meningitis in Niamey, Niger, 1981–96. Bull World Health Organ, 77, 499508.Google ScholarPubMed
Chiam, A. L., Cheng, N. W. I. & Larson, H. 2021. Community engagement for outbreak preparedness and response in high-income settings: a systematic review. Glob Public Health. doi: 10.1080/17441692.2021.1919734.CrossRefGoogle Scholar
Cutts, F. T., Zaman, S. M., Enwere, G. et al.; Vaccine Trial, Gambian Pneumococcal. 2005. Efficacy of nine-valent pneumococcal conjugate vaccine against pneumonia and invasive pneumococcal disease in The Gambia: randomised, double-blind, placebo-controlled trial. Lancet, 365, 1139–46.10.1016/S0140-6736(05)71876-6CrossRefGoogle ScholarPubMed
GBD 2016 Meningitis Collaborators. 2018. Global, regional, and national burden of meningitis, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol, 17, 1061–82.Google Scholar
Greenwood, B. 1999. Manson Lecture. Meningococcal meningitis in Africa. Trans R Soc Trop Med Hyg, 93, 341–53.10.1016/S0035-9203(99)90106-2CrossRefGoogle ScholarPubMed
Greenwood, B. 2006a. Editorial: 100 years of epidemic meningitis in West Africa – has anything changed? Trop Med Int Health, 11, 773–80.10.1111/j.1365-3156.2006.01639.xCrossRefGoogle ScholarPubMed
Greenwood, B. 2006b. Pneumococcal meningitis epidemics in Africa. Clin Infect Dis, 43, 701–3.10.1086/506943CrossRefGoogle ScholarPubMed
Greenwood, B., Sow, S. & Preziosi, M. P. 2021. Defeating meningitis by 2030 – an ambitious target. Trans R Soc Trop Med Hyg, 115, 10991101.10.1093/trstmh/trab133CrossRefGoogle ScholarPubMed
Hodgson, A., Smith, T., Gagneux, S. et al. 2001. Risk factors for meningococcal meningitis in northern Ghana. Trans R Soc Trop Med Hyg, 95, 477–80.10.1016/S0035-9203(01)90007-0CrossRefGoogle ScholarPubMed
Idoko, O. T., Diallo, A., Sow, S. O. et al. 2015. Community perspectives associated with the African PsA-TT (MenAfriVac) vaccine trials. Clin Infect Dis, 61 Suppl. 5, S416–21.10.1093/cid/civ596CrossRefGoogle ScholarPubMed
Kilpi, T., Peltola, H., Jauhiainen, T. & Kallio, M. J. 1995. Oral glycerol and intravenous dexamethasone in preventing neurologic and audiologic sequelae of childhood bacterial meningitis. The Finnish Study Group. Pediatr Infect Dis J, 14, 270–8.10.1097/00006454-199504000-00005CrossRefGoogle ScholarPubMed
Klugman, K. P., Madhi, S. A., Huebner, R. E. et al. 2003. A trial of a 9-valent pneumococcal conjugate vaccine in children with and those without HIV infection. N Engl J Med, 349, 1341–8.10.1056/NEJMoa035060CrossRefGoogle ScholarPubMed
Kwambana-Adams, B. A., Liu, J., Okoi, C. et al. on behalf of the Paediatric Bacterial Meningitis Surveillance Network in West Africa. 2020. Etiology of pediatric meningitis in West Africa using molecular methods in the era of conjugate vaccines against pneumococcus, meningococcus, and Haemophilus influenzae Type b. Am J Trop Med Hyg, 103, 696703.10.4269/ajtmh.19-0566CrossRefGoogle ScholarPubMed
Lapeyssonnie, L. 1963. La meningite cerebro-spinale en Afrique. Bull World Health Organ, 28, 1114.Google Scholar
Mackenzie, G. A., Hill, P. C., Jeffries, D. J., et al. 2016. Effect of the introduction of pneumococcal conjugate vaccination on invasive pneumococcal disease in The Gambia: a population-based surveillance study. Lancet Infect Dis, 16, 703–11.Google Scholar
Miller, L., Arakaki, L., Ramautar, A. et al. 2014. Elevated risk for invasive meningococcal disease among persons with HIV. Ann Intern Med, 160, 30-7.10.7326/0003-4819-160-1-201401070-00731CrossRefGoogle ScholarPubMed
Molyneux, E. M., Walsh, A. L., Forsyth, H. et al. 2002. Dexamethasone treatment in childhood bacterial meningitis in Malawi: a randomised controlled trial. Lancet, 360, 211–18.10.1016/S0140-6736(02)09458-8CrossRefGoogle ScholarPubMed
Muller, O. & Krawinkel, M. 2005. Malnutrition and health in developing countries. CMAJ, 173, 279–86.10.1503/cmaj.050342CrossRefGoogle ScholarPubMed
Scarborough, M., Gordon, S. B., Whitty, C. J. et al. 2007. Corticosteroids for bacterial meningitis in adults in sub-Saharan Africa. N Engl J Med, 357, 2441–50.10.1056/NEJMoa065711CrossRefGoogle ScholarPubMed
Slack, M. P. E., Cripps, A. W., Grimwood, K., Mackenzie, G. A. & Ulanova, M. 2021. Invasive Haemophilus influenzae infections after 3 decades of Hib protein conjugate vaccine use. Clin Microbiol Rev, 34, e0002821.10.1128/CMR.00028-21CrossRefGoogle ScholarPubMed
Soeters, H. M., Diallo, A. O., Bicaba, B. W. et al. 2019. Bacterial meningitis epidemiology in five countries in the meningitis belt of Sub-Saharan Africa, 2015–2017. J Infect Dis, 220, S165–74.10.1093/infdis/jiz358CrossRefGoogle ScholarPubMed
Sow, S. O., Okoko, B. J., Diallo, A. et al. 2011. Immunogenicity and safety of a meningococcal A conjugate vaccine in Africans. N Engl J Med, 364, 2293–304.10.1056/NEJMoa1003812CrossRefGoogle ScholarPubMed
Stephens, D. S., Greenwood, B. & Brandtzaeg, P. 2007. Epidemic meningitis, meningococcaemia, and Neisseria meningitidis. Lancet, 369, 21962210.10.1016/S0140-6736(07)61016-2CrossRefGoogle ScholarPubMed
Thwaites, G. E., Nguyen, D. B., Nguyen, H. D. et al. 2004. Dexamethasone for the treatment of tuberculous meningitis in adolescents and adults. N Engl J Med, 351, 1741–51.10.1056/NEJMoa040573CrossRefGoogle ScholarPubMed
Vardakas, K. Z., Matthaiou, D. K. & Falagas, M. E. 2009. Adjunctive dexamethasone therapy for bacterial meningitis in adults: a meta-analysis of randomized controlled trials. Eur J Neurol, 16, 662–73.10.1111/j.1468-1331.2009.02615.xCrossRefGoogle ScholarPubMed
Venkatesan, P. 2021. Defeating meningitis by 2030: the WHO roadmap. Lancet Infect Dis, 21, 1635.10.1016/S1473-3099(21)00712-XCrossRefGoogle ScholarPubMed

References

Achkar, JM, Fries, BC (2010). Candida infections of the genitourinary tract. Clin Microbiol Rev; 23(2):253–73.10.1128/CMR.00076-09CrossRefGoogle ScholarPubMed
Baumann, L, Cina, M, Egli-Gany, D et al. (2018). Prevalence of Mycoplasma genitalium in different population groups: systematic review and meta-analysis. Sex Transm Infect; 94(4):255–62.10.1136/sextrans-2017-053384CrossRefGoogle Scholar
Beale, MA, Marks, M, Sahi, SK et al. (2019). Genomic epidemiology of syphilis reveals independent emergence of macrolide resistance across multiple circulating lineages. Nat Commun; 10(1):19.10.1038/s41467-019-11216-7CrossRefGoogle ScholarPubMed
Boschiero MN, Sansone NMS, Ribeiro LM, Marson FAL (2024). Efficacy of doxycycline as pre-exposure and/or post-exposure prophylaxis to prevent sexually transmitted diseases: a systematic review and meta-analysis. Sex Transm Dis. Sep 24. doi: 10.1097/OLQ.0000000000002082. Online ahead of print.CrossRefGoogle Scholar
Chesson, HW, Mayaud, P, Aral, SO (2017). In Holmes, KK, Bertozzi, S, Bloom, BR et al. (eds), Major Infectious Diseases. 3rd ed. Washington (DC): The World Bank.Google Scholar
Collet, M, Resniers, S, Frost, E et al. (1988). Infertility in Central Africa: infertility is the cause. Int J Gynaecol Obstet; 26:423–8.10.1016/0020-7292(88)90340-2CrossRefGoogle ScholarPubMed
Fleming, DT, Wasserheit, JN (1999). From epidemiological synergy to public health policy and practice: the contribution of other sexually transmitted diseases to sexual transmission of HIV infection. Sex Transm Infect; 75:317.10.1136/sti.75.1.3CrossRefGoogle ScholarPubMed
Gaydos, CA, Klausner, JD, Pai, NP, Kelly, H, Coltart, C, Peeling, RW (2017). Rapid and point-of-care tests for the diagnosis of Trichomonas vaginalis in women and men. Sex Transm Infect; 93(S4):S31–5.10.1136/sextrans-2016-053063CrossRefGoogle ScholarPubMed
González-Beiras, C, Marks, M, Chen, CY, Roberts, S, Mitjà, O (2016). Epidemiology of Haemophilus ducreyi infections. Emerg Infect Dis; 22(1):1.10.3201/eid2201.150425CrossRefGoogle ScholarPubMed
Gottlieb, SL, Deal, CD, Giersing, B et al. (2016). The global roadmap for advancing development of vaccines against sexually transmitted infections: update and next steps. Vaccine; 34(26):2939–47.10.1016/j.vaccine.2016.03.111CrossRefGoogle ScholarPubMed
Grosskurth, H, Todd, J, Mwijarubi, E et al. (1995). Impact of improved treatment of sexually transmitted diseases on HIV infection in rural Tanzania: randomised controlled trial. Lancet; 346:530–6.10.1016/S0140-6736(95)91380-7CrossRefGoogle ScholarPubMed
Johnson, LF, Lewis, DA (2008). The effect of genital tract infections on HIV-1 shedding in the genital tract: a systematic review and meta-analysis. Sex Transm Dis; 35:946–59.10.1097/OLQ.0b013e3181812d15CrossRefGoogle ScholarPubMed
Karim, QA, Karim, SSA, Frohlich, JA et al. (2010). Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science; 329:1168–74.Google Scholar
Kenyon, C, Colebunders, R, Crucitti, T (2013). The global epidemiology of bacterial vaginosis: a systematic review. Am J Obstet Gynecol; 209:505–23.10.1016/j.ajog.2013.05.006CrossRefGoogle ScholarPubMed
Korenromp, EL, Rowley, J, Alonso, M et al. (2019). Global burden of maternal and congenital syphilis and associated adverse birth outcomes – estimates for 2016 and progress since 2012. PLoS ONE; 14(2):e0251720.Google ScholarPubMed
Laga, M, Meheus, A, Piot, P (1989). Epidemiology and control of gonococcal ophthalmia neonatorum. Bull Wld Hlth Org; 67:471–8.Google ScholarPubMed
Lancet Infectious Diseases (editorial) (2024). doxyPEP: a controversial new tool against STIs. Lancet Infect Dis; 24(10):1059.Google Scholar
Lewis, DA (2010). The gonococcus fights back: is this time a knock out? Sex Transm Infect; 86:415–21.10.1136/sti.2010.042648CrossRefGoogle Scholar
Lis, R, Rowhani-Rahbar, A, Manhart, LE (2015). Mycoplasma genitalium infection and female reproductive tract disease: a meta-analysis. Clin Infect Dis; 61(3):418–26.10.1093/cid/civ312CrossRefGoogle ScholarPubMed
Looker, KJ, Elmes, JA, Gottlieb, SL et al. (2017). Effect of HSV-2 infection on subsequent HIV acquisition: an updated systematic review and meta-analysis. Lancet Infect Dis; 17:1303–16.10.1016/S1473-3099(17)30405-XCrossRefGoogle ScholarPubMed
Looker, KJ, Rönn, MM, Brock, PM et al. (2018). Evidence of synergistic relationships between HIV and human papillomavirus (HPV): systematic reviews and meta-analyses of longitudinal studies of HPV acquisition and clearance by HIV status, and of HIV acquisition by HPV status. J Int AIDS Soc; 21(6):e25110.10.1002/jia2.25110CrossRefGoogle ScholarPubMed
Mayaud, P (2001). Role of reproductive tract infections. In Boerma, T, Mgalla, Z (eds), Women and Infertility in Africa: A Multi-Disciplinary Perspective. Amsterdam: KIT Royal Tropical Institute.Google Scholar
Mayaud, P, Gill, D, Weiss, HA et al. (2001). The interrelation of HIV, cervical human papillomavirus, and neoplasia among antenatal clinic attenders in Tanzania. Sex Transm Infect; 77:248–54.10.1136/sti.77.4.248CrossRefGoogle ScholarPubMed
Moses, S, Manji, F, Bradley, NE, Nagelkerke, NJ, Malisa, MA, Plummer, FA (1992). Impact of user fees on attendance at a referral centre for sexually transmitted diseases in Kenya. Lancet; 340:463–6.10.1016/0140-6736(92)91778-7CrossRefGoogle Scholar
Mungati, M, Machiha, A, Mugurungi, O et al. (2018). The etiology of genital ulcer disease and coinfections with Chlamydia trachomatis and Neisseria gonorrhoeae in Zimbabwe: results from the Zimbabwe STI Etiology Study. Sex Transm Dis; 45(1):61–8.10.1097/OLQ.0000000000000694CrossRefGoogle ScholarPubMed
Nagot, N, Ouedraogo, A, Foulongne, V et al. (2007). Reduction of HIV-1 RNA levels with therapy to suppress herpes simplex virus. N Engl J Med; 356:790–9.10.1056/NEJMoa062607CrossRefGoogle ScholarPubMed
Nugent, RP, Krohn, MA, Hillier, SL (1991). Reliability of diagnosing bacterial vaginosis is improved by a standardized method of Gram stain interpretation. J Clin Micro; 29:297301.10.1128/jcm.29.2.297-301.1991CrossRefGoogle ScholarPubMed
Ong, JJ, Baggaley, RC, Wi, TE et al. (2019). Global epidemiologic characteristics of sexually transmitted infections among individuals using preexposure prophylaxis for the prevention of HIV infection: a systematic review and meta-analysis. JAMA Netw Open; 2(12):e1917134.10.1001/jamanetworkopen.2019.17134CrossRefGoogle ScholarPubMed
Retchless, AC, Kretz, CB, Chang, H-Y et al. (2018). Expansion of a urethritis-associated Neisseria meningitidis clade in the United States with concurrent acquisition of N. gonorrhoeae alleles. BMC Genomics; 19(1):176.10.1186/s12864-018-4560-xCrossRefGoogle Scholar
Steen, R (2001). Eradicating chancroid. Bull World Hlth Organ; 79:818–26.Google ScholarPubMed
Steen, R, Wi, TE, Kamali, A, Ndowa, F (2009). Control of sexually transmitted infections and prevention of HIV transmission: mending a fractured paradigm. Bull World Hlth Organ; 87:858–65.Google ScholarPubMed
Su, CW, McKay, B (2012). Treatment of HSV infection in late pregnancy. Am Fam Physician; 85(4):390–3.Google ScholarPubMed
Unemo, M, Lahra, MM, Cole, M et al. (2019). World Health Organization Global Gonococcal Antimicrobial Surveillance Program (WHO GASP): review of new data and evidence to inform international collaborative actions and research efforts. Sexual Health; 16(5):412–25.10.1071/SH19023CrossRefGoogle ScholarPubMed
Vallely, LM, Egli-Gany, D, Wand, H et al. (2021). Adverse pregnancy and neonatal outcomes associated with Neisseria gonorrhoeae: systematic review and meta-analysis. Sex Transm Infect; 97:104–11.10.1136/sextrans-2020-054653CrossRefGoogle ScholarPubMed
Van der Bij, AK, Spaargaren, J, Morré, SA et al. (2006). Diagnostic and clinical implications of anorectal lymphogranuloma venereum in men who have sex with men: a retrospective case-control study. Clin Infect Dis; 42(2):186–94.10.1086/498904CrossRefGoogle ScholarPubMed
Van Gerwen, OT, Craig-Kuhn, MC, Jones, AT et al. (2021). Trichomoniasis and adverse birth outcomes: a systematic review and meta-analysis. BJOG; 128:1907–15.10.1111/1471-0528.16774CrossRefGoogle ScholarPubMed
Viravan, C, Dance, DAB, Ariyarit, C et al. (1996). A prospective clinical and bacteriologic study of inguinal buboes in Thai men. Clin Infect Dis; 22:233–9.10.1093/clinids/22.2.233CrossRefGoogle ScholarPubMed
Ward, H, Rönn, M (2010). The contribution of STIs to the sexual transmission of HIV. Curr Opin HIV AIDS; 5(4):305.10.1097/COH.0b013e32833a8844CrossRefGoogle Scholar
Watson-Jones, D, Changalucha, J, Gumodoka, B et al. (2002a). Syphilis and pregnancy outcomes in Tanzania. 1. Impact of maternal syphilis on outcome of pregnancy in Mwanza Region, Tanzania. J Infect Dis; 186:940–7.10.1086/342952CrossRefGoogle Scholar
Watson-Jones, D, Gumodoka, B, Changalucha, J et al. (2002b). Syphilis in pregnancy in Tanzania II. The effectiveness of antenatal syphilis screening and single dose benzathine penicillin treatment for the prevention of adverse pregnancy outcomes. J Infect Dis; 186:948–57.10.1086/342951CrossRefGoogle ScholarPubMed
Wi, T, Lahra, MM, Ndowa, F et al. (2017). Antimicrobial resistance in Neisseria gonorrhoeae: global surveillance and a call for international collaborative action. PLoS Med; 14(7):e1002344.10.1371/journal.pmed.1002344CrossRefGoogle Scholar
Wiesenfeld, HC, Manhart, LE (2017). Mycoplasma genitalium in women: current knowledge and research priorities for this recently emerged pathogen. J Infect Dis; 216(suppl._2):S389–95.10.1093/infdis/jix198CrossRefGoogle ScholarPubMed
WHO (2017). WHO guideline on syphilis screening and treatment for pregnant women. Geneva: WHO. www.who.int/reproductivehealth/publications/rtis/syphilis-ANC-screenandtreat-guidelines/en/.Google Scholar
WHO (2020a). Preventing HIV through safe voluntary medical male circumcision for adolescent boys and men in generalized HIV epidemics: recommendations and key considerations. Geneva: WHO. www.who.int/publications/i/item/978-92-4-000854–0.Google Scholar
WHO (2020b). Global strategy to accelerate the elimination of cervical cancer as a public health problem. Geneva: WHO. www.who.int/publications/i/item/9789240014107.Google Scholar
WHO (2021a). Global progress report on HIV, viral hepatitis and sexually transmitted infections, 2021. Accountability for the global health sector strategies 2016–2021: actions for impact. Geneva: WHO. www.who.int/publications/i/item/9789240027077.Google Scholar
WHO (2021b). Guidelines for the management of symptomatic sexually transmitted infections. Geneva: WHO. www.who.int/publications/i/item/9789240024168.Google Scholar
WHO (2021c). WHO guideline for screening and treatment of cervical pre-cancer lesions for cervical cancer prevention. Geneva: WHO. www.who.int/publications/i/item/9789240030824.Google Scholar
WHO (2021d). Consolidated guidelines on HIV prevention, testing, treatment, service delivery and monitoring: recommendations for a public health approach. Geneva: WHO. www.who.int/publications/i/item/9789240031593.Google Scholar
WHO (2022). Monkeypox. Key facts. Geneva: WHO. www.who.int/news-room/fact-sheets/detail/monkeypox.Google Scholar
WHO (2023). Laboratory and point-of-care diagnostic testing for sexually transmitted infections, including HIV. Geneva: WHO. https://iris.who.int/handle/10665/374252.Google Scholar
WHO (2024a). Updated recommendations for the treatment of Neisseria gonorrhoeae, Chlamydia trachomatis and Treponema pallidum (syphilis), and new recommendations on syphilis testing and partner services. Geneva: WHO. https://iris.who.int/handle/10665/378213.Google Scholar
WHO (2024b). Recommendations for the treatment of Trichomonas vaginalis, Mycoplasma genitalium, Candida albicans, bacterial vaginosis and human papillomavirus (anogenital warts). Geneva: WHO. www.who.int/publications/i/item/9789240096370.Google Scholar

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×