Skip to main content Accessibility help
×
Hostname: page-component-6bb9c88b65-bw5xj Total loading time: 0 Render date: 2025-07-25T05:42:01.555Z Has data issue: false hasContentIssue false

Section 5 - Bacterial Infections

Published online by Cambridge University Press:  18 June 2025

David Mabey
Affiliation:
London School of Hygiene and Tropical Medicine
Martin W. Weber
Affiliation:
World Health Organization
Moffat Nyirenda
Affiliation:
London School of Hygiene and Tropical Medicine
Dorothy Yeboah-Manu
Affiliation:
Noguchi Memorial Institute for Medical Research, University of Ghana
Jackson Orem
Affiliation:
Uganda Cancer Institute, Kampala
Laura Benjamin
Affiliation:
University College London
Michael Marks
Affiliation:
London School of Hygiene and Tropical Medicine
Nicholas A. Feasey
Affiliation:
Liverpool School of Tropical Medicine
Get access

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

References

Marchello, C. S. et al. (2021) Incidence of non-typhoidal Salmonella invasive disease: A systematic review and meta-analysis. Journal of Infection, 83(5), 523532. doi: 10.1016/j.jinf.2021.06.029.CrossRefGoogle ScholarPubMed
Meiring, J. E. et al. (2021) Burden of enteric fever at three urban sites in Africa and Asia: a multicentre population-based study. The Lancet Global Health, 9(12), e1688e1696. doi: 10.1016/S2214-109X(21)00370-3.CrossRefGoogle Scholar
Patel, P. D. et al. (2021) Safety and efficacy of a typhoid conjugate vaccine in Malawian children. New England Journal of Medicine, 385(12), 11041115. doi: 10.1056/NEJMoa2035916.CrossRefGoogle ScholarPubMed
Stanaway, J. D. et al. (2019) The global burden of non-typhoidal salmonella invasive disease: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet Infectious Diseases, 19(12), 13121324. doi: 10.1016/S1473-3099(19)30418-9.CrossRefGoogle Scholar
Tack, B. et al. (2021) Direct association between rainfall and non-typhoidal Salmonella bloodstream infections in hospital-admitted children in the Democratic Republic of Congo. Scientific Reports, 11(1), 114. doi: 10.1038/s41598-021-01030-x.CrossRefGoogle ScholarPubMed
von Kalckreuth, V. et al. (2016) The Typhoid Fever Surveillance in Africa Program (TSAP): clinical, diagnostic, and epidemiological methodologies. Clinical Infectious Diseases, 62, s9s16. doi: 10.1093/cid/civ693.CrossRefGoogle ScholarPubMed
WHO (2019) Typhoid vaccines: WHO position paper, March 2018 – Recommendations. Vaccine, 37, 214216. doi: 10.1016/j.vaccine.2018.04.022.CrossRefGoogle Scholar

References

Adeleke, OE, Odelola, HA (1997) Plasmid profiles of multiple drug resistant local strains of Staphylococcus aureus. Afr J Med Sci; 26: 119–21.Google ScholarPubMed
Angwafo, FF, Sosso, AM, Muna, WF, Edzoa, T, Juimo, AG (1996) Prostatic abscesses in sub-Saharan Africa: a hospital-based experience from Cameroon. Eur Urol; 30: 2833.10.1159/000474141CrossRefGoogle ScholarPubMed
Armitage, EP, Senghore, E, Darboe, S et al. (2019) High burden and seasonal variation of paediatric scabies and pyoderma prevalence in The Gambia: a cross-sectional study. Plos Neglect Trop Dis; 13: e0007801.10.1371/journal.pntd.0007801CrossRefGoogle ScholarPubMed
Barth, DD, Engel, ME, Whitelaw, A et al. (2016) Rationale and design of the African group A streptococcal infection registry: the AFROStrep study. BMJ Open; 6: e010248.10.1136/bmjopen-2015-010248CrossRefGoogle ScholarPubMed
Barth, DD, Moloi, A, Mayosi, BM, Engel, ME (2020) Prevalence of group A Streptococcal infection in Africa to inform GAS vaccines for rheumatic heart disease: a systematic review and meta-analysis. Int J Cardiol; 307: 200–8.10.1016/j.ijcard.2019.11.109CrossRefGoogle ScholarPubMed
Berkley, JA, Lowe, BS, Mwangi, I et al. (2005) Bacteremia among children admitted to a rural hospital in Kenya. N Engl J Med; 352: 3947.10.1056/NEJMoa040275CrossRefGoogle ScholarPubMed
Bisno, AL (2001) Primary care: acute pharyngitis. N Engl J Med; 344: 205–11.10.1056/NEJM200101183440308CrossRefGoogle ScholarPubMed
Breurec, S, Zriouil, S, Fall, C et al. (2011) Epidemiology of methicillin-resistant Staphylococcus aureus lineages in five major African towns: emergence and spread of atypical clones. Clin Microbiol Infect; 17: 160–5.Google ScholarPubMed
Carapetis, JR, Steer, AC, Mulholland, EK, Weber, M (2005) The global burden of group A streptococcal diseases. Lancet Infect Dis; 5: 685–94.10.1016/S1473-3099(05)70267-XCrossRefGoogle Scholar
Carroll, K, Reimer, L (1996) Microbiology and laboratory diagnosis of upper respiratory tract infections. Clin Infect Dis; 23: 442–8.CrossRefGoogle ScholarPubMed
Chang, AY, Scheel, A, Dewyer, A et al. (2019) Prevalence, clinical features and antibiotic susceptibility of group A streptococcal skin infections in school children in urban Western and Northern Uganda. Pediatric Infect Dis J; 38: 1183–8.10.1097/INF.0000000000002467CrossRefGoogle Scholar
Cohen, JF, Bertille, N, Cohen, R, Chalumeau, M (2016) Rapid antigen detection test for group A streptococcus in children with pharyngitis. Cochrane Database Syst Rev; 7: CD010502.Google Scholar
Comegna, L, Guidone, PI, Prezioso, G et al. (2016) Pyomyositis is not only a tropical pathology: a case series. J Med Case Reports; 10: 372.10.1186/s13256-016-1158-2CrossRefGoogle ScholarPubMed
Conceição, T, Santos Silva, I, de Lencastre, H, Aires-de-Sousa, M (2014) Staphylococcus aureus nasal carriage among patients and health care workers in São Tomé and Príncipe. Microb Drug Resist; 20: 5766.10.1089/mdr.2013.0136CrossRefGoogle ScholarPubMed
DeWyer, A, Scheel, A, Webel, AR et al. (2020) Prevalence of Group A β-hemolytic streptococcal throat carriage and prospective pilot surveillance of streptococcal sore throat in Ugandan school children. Int J Infect Dis; 93: 245–51.CrossRefGoogle Scholar
Engel, ME, Cohen, K, Gounden, R et al. (2017) The Cape Town Clinical Decision Rule for Streptococcal Pharyngitis in Children. Pediatric Infect Dis J; 36: 250–5.10.1097/INF.0000000000001413CrossRefGoogle ScholarPubMed
Fraser, JL, Mwatondo, A, Alimi, YH, Varma, JK, Vilas, VJDR (2020) Healthcare-associated outbreaks of bacterial infections in Africa, 2009–2018: A review. Int J Infect Dis; 103: 469477.Google ScholarPubMed
Gillet, Y, Henry, T, Vandenesch, F (2018) Fulminant staphylococcal infections. Microbiol Spectr; 6. doi: 10.1128/microbiolspec.GPP3-0036-2018.CrossRefGoogle ScholarPubMed
Katzenberger, RH, Rösel, A, Vonberg, RP (2021) Bacterial survival on inanimate surfaces: a field study. BMC Res Notes; 14(1): 97. doi: 10.1186/s13104-021-05492-0.CrossRefGoogle ScholarPubMed
Khan, KS, Wojdyla, D, Say, L, Gülmezoglu, AM, Look, PFAV (2006) WHO analysis of causes of maternal death: a systematic review. Lancet; 367: 1066–74.10.1016/S0140-6736(06)68397-9CrossRefGoogle ScholarPubMed
Löffler, B, Niemann, S, Ehrhardt, C et al. (2013) Pathogenesis of Staphylococcus aureus necrotizing pneumonia: the role of PVL and an influenza coinfection. Expert Rev Anti Infect Ther; 11: 1041–51.CrossRefGoogle Scholar
McDonald, M, Towers, R, Fagan, P et al. (2006) Recovering streptococci from the throat, a practical alternative to direct plating in remote tropical communities. J Clin Microbiol; 44: 547–52.10.1128/JCM.44.2.547-552.2006CrossRefGoogle Scholar
Okello, E, Murali, M, Rwebembera, J et al. (2020) Cross-sectional study of population-specific streptococcal antibody titres in Uganda. Arch Dis Child; 105: 825829.10.1136/archdischild-2020-318859CrossRefGoogle ScholarPubMed
Oliver, J, Wadu, EM, Pierse, N et al. (2018) Group A streptococcus pharyngitis and pharyngeal carriage: a meta-analysis. PLoS Negl Trop Dis; 12: e0006335.10.1371/journal.pntd.0006335CrossRefGoogle ScholarPubMed
Parks, T, Smeesters, PR, Curtis, N, Steer, AC (2015) ASO titer or not? When to use streptococcal serology: a guide for clinicians. Eur J Clin Microbiol Infect Dis; 34: 845–9.10.1007/s10096-014-2303-8CrossRefGoogle ScholarPubMed
Parks, T, Wilson, C, Curtis, N et al. (2018) Polyspecific intravenous immunoglobulin in clindamycin-treated patients with streptococcal toxic shock syndrome: a systematic review and meta-analysis. Clin Infect Dis; 67: 1434–6.10.1093/cid/ciy401CrossRefGoogle ScholarPubMed
Rothenbühler, M, O’Sullivan, CJ, Stortecky, S et al. (2014) Active surveillance for rheumatic heart disease in endemic regions: a systematic review and meta-analysis of prevalence among children and adolescents. Lancet Glob Health; 2: e717–26.10.1016/S2214-109X(14)70310-9CrossRefGoogle ScholarPubMed
Ruffing, U, Alabi, A, Kazimoto, T et al. (2017) Community-associated Staphylococcus aureus from sub-Saharan Africa and Germany: a cross-sectional geographic correlation study. Sci Rep; 7: 154.10.1038/s41598-017-00214-8CrossRefGoogle Scholar
Schaumburg, F, Alabi, AS, Peters, G, Becker, K (2014a) New epidemiology of Staphylococcus aureus infection in Africa. Clin Microbiol Infect; 20: 589–96.10.1111/1469-0691.12690CrossRefGoogle ScholarPubMed
Schaumburg, F, Alabi, AS, Mombo-Ngoma, G et al. (2014b) Transmission of Staphylococcus aureus between mothers and infants in an African setting. Clin Microbiol Infect; 20(6): O390–6. doi: 10.1111/1469-0691.12417.CrossRefGoogle Scholar
Schuler, F, Barth, PJ, Niemann, S, Schaumburg, F (2021) A narrative review on the role of Staphylococcus aureus bacteriuria in S. aureus bacteremia. Open Forum Infect Dis; 8: ofab158.10.1093/ofid/ofab158CrossRefGoogle ScholarPubMed
Shittu, A, Deinhardt-Emmer, S, Vas Nunes, J et al. (2020) Tropical pyomyositis: an update. Trop Med Int Health; 25: 660–5.10.1111/tmi.13395CrossRefGoogle ScholarPubMed
Shulman, ST, Bisno, AL, Clegg, HW et al. (2012) Clinical practice guideline for the diagnosis and management of group A streptococcal pharyngitis: 2012 update by the Infectious Diseases Society of America. Clin Infect Dis; 55: e86102.10.1093/cid/cis629CrossRefGoogle Scholar
Steinhoff, M, Walker, C, Rimoin, A, Hamza, H (2005) A clinical decision rule for management of streptococcal pharyngitis in low-resource settings. Acta Paediatr; 94: 1038–42.10.1111/j.1651-2227.2005.tb02042.xCrossRefGoogle ScholarPubMed
Steer, AC, Lamagni, T, Curtis, N, Carapetis, JR (2012) Invasive group A streptococcal disease: epidemiology, pathogenesis and management. Drugs; 72: 1213–27.10.2165/11634180-000000000-00000CrossRefGoogle Scholar
Stevens, DL, Bryant, AE (2016a) Impetigo, erysipelas and cellulitis. In Ferretti, JJ, Stevens, DL, Fischetti, VA, eds. Streptococcus pyogenes: Basic Biology to Clinical Manifestations. Oklahoma: University of Oklahoma Health Sciences Center.Google Scholar
Stevens, DL, Bryant, AE (2016b) Severe Group A streptococcal infections. In Ferretti, JJ, Stevens, DL, Fischetti, VA, eds. Streptococcus pyogenes: Basic Biology to Clinical Manifestations. Oklahoma: University of Oklahoma Health Sciences Center.Google Scholar
van Belkum, A, Verkaik, NJ, de Vogel, CP et al. (2009) Reclassification of Staphylococcus aureus nasal carriage types. J Infect Dis; 199: 1820–6.10.1086/599119CrossRefGoogle ScholarPubMed
von Eiff, C, Becker, K, Machka, K, Stammer, H, Peters, G (2001) Nasal carriage as a source of Staphylococcus aureus bacteremia. N Engl J Med; 344: 1116.10.1056/NEJM200101043440102CrossRefGoogle ScholarPubMed
Walker, MJ, Barnett, TC, McArthur, JD et al. (2014) Disease manifestations and pathogenic mechanisms of group A streptococcus. Clin Microbiol Rev; 27: 264301.10.1128/CMR.00101-13CrossRefGoogle ScholarPubMed
Young, BC, Earle, SG, Soeng, S et al. (2019) Panton–Valentine leucocidin is the key determinant of Staphylococcus aureus pyomyositis in a bacterial GWAS. Elife; 8: e42486.10.7554/eLife.42486CrossRefGoogle Scholar
Zühlke, L, Karthikeyan, G, Engel, ME et al. (2016) Clinical outcomes in 3343 children and adults with rheumatic heart disease from 14 low- and middle-income countries: two-year follow-up of the Global Rheumatic Heart Disease Registry (the REMEDY Study). Circulation; 134: 1456–66.10.1161/CIRCULATIONAHA.116.024769CrossRefGoogle ScholarPubMed

References

Anderson, A., Bijlmer, H., Fournier, P. E. et al. 2013. Diagnosis and management of Q fever–United States, 2013: recommendations from CDC and the Q Fever Working Group. MMWR Recomm Rep, 62, 130.Google Scholar
Biggs, H. M., Behravesh, C. B., Bradley, K. K. et al. 2016. Diagnosis and management of tickborne rickettsial diseases: Rocky Mountain spotted fever and other spotted fever group rickettsioses, ehrlichioses, and anaplasmosis – United States. MMWR Recomm Rep, 65, 144.10.15585/mmwr.rr6502a1CrossRefGoogle ScholarPubMed
Blanton, L. S. & Walker, D. H. 2017. Flea-borne rickettsioses and rickettsiae. Am J Trop Med Hyg, 96, 53–6.CrossRefGoogle ScholarPubMed
Cherry, C. C., Denison, A. M., Kato, C. Y., Thornton, K. & Paddock, C. D. 2018. Diagnosis of spotted fever group rickettsioses in U.S. travelers returning from Africa, 2007–2016. Am J Trop Med Hyg, 99, 136–42.CrossRefGoogle ScholarPubMed
Fournier, P. E., Jensenius, M., Laferl, H., Vene, S. & Raoult, D. 2002. Kinetics of antibody responses in Rickettsia africae and Rickettsia conorii infections. Clin Diagn Lab Immunol, 9, 324–8.Google ScholarPubMed
Raoult, D., Ndihokubwayo, J. B., Tissot-Dupont, H. et al. 1998. Outbreak of epidemic typhus associated with trench fever in Burundi. Lancet, 352, 353–8.10.1016/S0140-6736(97)12433-3CrossRefGoogle ScholarPubMed
Raoult, D., Weiller, P. J., Chagnon, A., Chaudet, H., Gallais, H. & Casanova, P. 1986. Mediterranean spotted fever: clinical, laboratory and epidemiological features of 199 cases. Am J Trop Med Hyg, 35, 845–50.10.4269/ajtmh.1986.35.845CrossRefGoogle ScholarPubMed
Richards, A. L. & Jiang, J. 2020. Scrub typhus: historic perspective and current status of the worldwide presence of Orientia species. Trop Med Infect Dis, 5. doi: 10.3390/tropicalmed5020049.Google ScholarPubMed
Roest, H. I., Tilburg, J. J., Van Der Hoek, W. et al. 2011. The Q fever epidemic in The Netherlands: history, onset, response and reflection. Epidemiol Infect, 139, 112.10.1017/S0950268810002268CrossRefGoogle Scholar
Saraswati, K., Day, N. P. J., Mukaka, M. & Blacksell, S. D. 2018. Scrub typhus point-of-care testing: a systematic review and meta-analysis. PLoS Negl Trop Dis, 12, e0006330.10.1371/journal.pntd.0006330CrossRefGoogle ScholarPubMed
Tissot-Dupont, H., Brouqui, P., Faugere, B. & Raoult, D. 1995. Prevalence of antibodies to Coxiella burnetii, Rickettsia conorii, and Rickettsia typhi in seven African countries. Clin Infect Dis, 21, 1126–33.Google Scholar
Umulisa, I., Omolo, J., Muldoon, K. A. et al. 2016. A mixed outbreak of epidemic typhus fever and trench fever in a youth rehabilitation center: risk factors for illness from a case-control study, Rwanda, 2012. Am J Trop Med Hyg, 95, 452–6.CrossRefGoogle Scholar
Vanderburg, S., Rubach, M. P., Halliday, J. E., Cleaveland, S., Reddy, E. A. & Crump, J. A. 2014. Epidemiology of Coxiella burnetii infection in Africa: a OneHealth systematic review. PLoS Negl Trop Dis, 8, e2787.10.1371/journal.pntd.0002787CrossRefGoogle Scholar
Walker, J. B. & Olwage, A. 1987. The tick vectors of Cowdria ruminantium (Ixodoidea, Ixodidae, genus Amblyomma) and their distribution. Onderstepoort J Vet Res, 54, 353–79.Google ScholarPubMed

References

Bodenham, R.F., Lukambagire, A.S., Ashford, R.T. et al. (2020) Prevalence and speciation of brucellosis in febrile patients from a pastoralist community of Tanzania. Sci Rep, 10, 7081.10.1038/s41598-020-62849-4CrossRefGoogle ScholarPubMed
Cash-Goldwasser, S., Maze, M.J., Rubach, M.P. et al. (2018) Risk factors for human brucellosis in northern Tanzania. Am J Trop Med Hyg, 98, 598606.10.4269/ajtmh.17-0125CrossRefGoogle ScholarPubMed
Dean, A.S., Crump, L., Greter, H., Schelling, E. & Zinsstag, J. (2012) Global burden of human brucellosis: a systematic review of disease frequency. PLoS Negl Trop Dis, 6, e1865.10.1371/journal.pntd.0001865CrossRefGoogle ScholarPubMed
Gotuzzo, E., Carrillo, C., Guerra, J. & Llosa, L. (1986) An evaluation of diagnostic methods for brucellosis: the value of bone marrow culture. J Infect Dis, 153, 122–5.10.1093/infdis/153.1.122CrossRefGoogle ScholarPubMed
Kunda, J., Fitzpatrick, J., Kazwala, R. et al. (2007) Health-seeking behaviour of human brucellosis cases in rural Tanzania. BMC Public Health, 7, 315.CrossRefGoogle ScholarPubMed
Makita, K., Fèvre, E.M., Waiswa, C. et al. (2008) Human brucellosis in urban and peri-urban areas of Kampala, Uganda. Ann N Y Acad Sci, 1149, 309–11.10.1196/annals.1428.015CrossRefGoogle Scholar
Pappas, G., Akritidis, N., Bosilkovski, M. & Tsianos, E. (2005) Brucellosis. N Eng J Med, 352, 2325–36.10.1056/NEJMra050570CrossRefGoogle ScholarPubMed
Reddy, E.A., Shaw, A.V. & Crump, J.A. (2010) Community acquired bloodstream infections in Africa: a systematic review and meta-analysis. Lancet Infect Dis, 10, 417–32.10.1016/S1473-3099(10)70072-4CrossRefGoogle Scholar
Yousefi-Nooraie, R., Mortaz-Hejri, S., Mehrani, M. & Sadeghipour, P. (2012) Antibiotics for treating human brucellosis. Cochrane Database Syst Rev, 10, CD007179.Google ScholarPubMed

References

Biggs, H. M., Bui, D. M., Galloway, R. L. et al. (2011). Leptospirosis among hospitalized febrile patients in northern Tanzania. Am J Trop Med Hyg, 85, 275–81.10.4269/ajtmh.2011.11-0176CrossRefGoogle ScholarPubMed
Brett-Major, D. M. & Coldren, R. (2012). Antibiotics for leptospirosis. Cochrane Database Syst Rev, CD008264.10.1002/14651858.CD008264.pub2CrossRefGoogle Scholar
Costa, F., Hagan, J. E., Calcagno, J. et al. (2015). Global morbidity and mortality of leptospirosis: a systematic review. PLoS Negl Trop Dis, 9, e0003898.10.1371/journal.pntd.0003898CrossRefGoogle ScholarPubMed
Goris, M. G., Leeflang, M. M., Boer, K. R. et al. (2012). Establishment of valid laboratory case definition for human leptospirosis. J Bacteriol Parasitol, doi: 10.4172/2155-9597.1000132.CrossRefGoogle Scholar
Maze, M. J., Sharples, K. J., Allan, K. J. et al. (2019). Diagnostic accuracy of leptospirosis whole-cell lateral flow assays: a systematic review and meta-analysis. Clin Microbiol Infect, 25, 437–44.10.1016/j.cmi.2018.11.014CrossRefGoogle ScholarPubMed
Mwachui, M. A., Crump, L., Hartskeerl, R. et al. (2015). Environmental and behavioural determinants of leptospirosis transmission: a systematic review. PLoS Negl Trop Dis, 9, e0003843.CrossRefGoogle ScholarPubMed
Segura, E. R., Ganoza, C. A., Campos, K. et al. (2005). Clinical spectrum of pulmonary involvement in leptospirosis in a region of endemicity, with quantification of leptospiral burden. Clin Infect Dis, 40, 343–51.10.1086/427110CrossRefGoogle Scholar
Thaipadungpanit, J., Chierakul, W., Wuthiekanun, V. et al. (2011). Diagnostic accuracy of real-time PCR assays targeting 16S rRNA and LipL32 genes for human leptospirosis in Thailand: a case-control study. PLoS ONE, 6, e16236.10.1371/annotation/e2b77844-576a-4d20-b698-09ad057872fcCrossRefGoogle ScholarPubMed

References

Barbour, A (1990). Antigenic variation of a relapsing fever Borrelia species. Ann Rev Microbiol; 44: 155–71.10.1146/annurev.mi.44.100190.001103CrossRefGoogle ScholarPubMed
Bryceson, ADM, Parry, EHO, Perine, PL et al. (1970). Louse borne relapsing fever: a clinical and laboratory study of 62 cases in Ethiopia and reconsideration of the literature. Quart J Med; 39: 129–70.Google Scholar
Butler, T (2017). The Jarisch-Herxheimer reaction after antibiotic treatment of spirochetal infections: a review of recent cases and our understanding of pathogenesis. Am J Trop Med Hyg; 96: 4652.10.4269/ajtmh.16-0434CrossRefGoogle ScholarPubMed
Cutler, SJ (2015). Relapsing fever borreliae: A global review Clin Lab Med; 35: 847–65.10.1016/j.cll.2015.07.001CrossRefGoogle ScholarPubMed
Elbir, H, Raoult, D, Drancourt, M (2013). Relapsing fever borreliae in Africa. Am J Trop Med Hyg; 89: 288–92.CrossRefGoogle ScholarPubMed
Fekade, D, Knox, K, Hussein, K et al. (1996). Prevention of Jarisch–Herxheimer reactions by treatment with antibodies against tumor necrosis factor alpha. N Engl J Med; 335: 311–15.10.1056/NEJM199608013350503CrossRefGoogle ScholarPubMed
Guerrier, G, Doherty, T (2011). Comparison of antibiotic regimens for treating louse-borne relapsing fever: a meta-analysis. Trans R Soc Trop Med Hyg; 105: 483–90.10.1016/j.trstmh.2011.04.004CrossRefGoogle ScholarPubMed
Hasin, T, Davidovitch, N, Cohen, R et al. (2006). Postexposure treatment with doxycycline for the prevention of tick-borne relapsing fever. N Engl J Med; 355: 148–55.10.1056/NEJMoa053884CrossRefGoogle ScholarPubMed
Houhamdi, L, Raoult, D. (2005). Excretion of living Borrelia recurrentis in feces of infected human body lice. J Infect Dis; 191: 1898–906.10.1086/429920CrossRefGoogle ScholarPubMed
Lescot, M, Audic, S, Robert, C et al. (2008). The genome of Borrelia recurrentis, the agent of deadly louse-borne relapsing fever, is a degraded subset of tick-borne Borrelia duttoni. PLoS Genet; 4: e1000185.10.1371/journal.pgen.1000185CrossRefGoogle Scholar
Ndiaye, EHI, Diouf, FS, Ndiaye, M et al (2021). Tick-borne relapsing fever borreliosis, a major public health problem overlooked in Senegal. PLoS Negl Trop Dis; 15: e0009184.10.1371/journal.pntd.0009184CrossRefGoogle Scholar
Negussie, Y, Remick, DG, DeForge, LE et al. (1992). Detection of plasma tumor necrosis factor, interleukins 6, and 8 during the Jarisch–Herxheimer reaction of relapsing fever. J Exp Med; 175: 1207–12.10.1084/jem.175.5.1207CrossRefGoogle ScholarPubMed
Remick, DG, Negussie, Y, Fekade, D, Griffin, GJ (1996). Pentoxifylline fails to prevent the Jarisch–Herxheimer reaction or associated cytokine release. J Infect Dis; 174: 627–30.10.1093/infdis/174.3.627CrossRefGoogle ScholarPubMed
Schofield, TPC, Talbot, JM, Bryceson, ADM et al. (1968). Leucopenia and fever in the ‘Jarisch–Herxheimer’ reaction of louse-borne relapsing fever. Lancet; i: 5862.CrossRefGoogle Scholar
Sundnes, KO, Haimanot, AT (1993). Epidemic of louse-borne relapsing fever in Ethiopia. Lancet; 342: 1213–15.10.1016/0140-6736(93)92190-5CrossRefGoogle ScholarPubMed
Talbert, A, Nyange, A, Molteni, F (1998). Spraying tick-infested houses with lambda-cyhalothrin reduces the incidence of tick-borne relapsing fever in children under five years old. Trans Roy Soc Trop Med Hyg; 92: 251–3.10.1016/S0035-9203(98)90998-1CrossRefGoogle ScholarPubMed
Vidal, V, Scragg, IG, Cutler, SJ et al. (1998). Variable major lipoprotein is a principal TNF-inducing factor of louse-borne relapsing fever. Nature; 4: 1416–20.Google ScholarPubMed
Warrell, DA, Perine, PL, Krause, DW et al. (1983). Pathophysiology and immunology of the Jarisch–Herxheimer-like reaction in louse-borne relapsing fever: comparison of tetracycline and slow-release penicillin. J Infect Dis; 147: 898909.10.1093/infdis/147.5.898CrossRefGoogle ScholarPubMed

References

Bertherat, E. Plague around the world, 2010–2015. WHO (2016) Weekly Epidemiol Record 2016; 91: 8993. www.who.int/wer/2016/wer9108.pdf?ua=1.Google Scholar
Bertherat, E, Jullien, S. Revision of the international definition of plague cases. WHO (2021) Weekly Epidemiological Record No. 23, 2021; 96: 238240. https://reliefweb.int/sites/reliefweb.int/files/resources/WER9624-eng-fre.pdfGoogle Scholar
Demeure, CE, Dussurget, O, Mas Fiol, G, Le Guern, AS, Savin, C, Pizarro-Cerdá, J. Yersinia pestis and plague: an updated view on evolution, virulence determinants, immune subversion, vaccination, and diagnostics. Genes & Immunity 2019; 20: 357370. https://doi.org/10.1038/s41435-019-0065-0.CrossRefGoogle ScholarPubMed
Evans, CM, Egan, JR, Hall, I. Pneumonic Plague in Johannesburg, South Africa, 1904. Emerging Infectious Diseases 2018; 24(1). doi.org/10.3201/eid2401.161817.CrossRefGoogle Scholar
Hänsch, S, Cilli, E, Catalano, G et al. The pla gene, encoding plasminogen activator, is not specific to Yersinia pestis. BMC Res Notes 2015; 8: 535. doi: 10.1186/s13104-015–1525-x.CrossRefGoogle Scholar
Mwengee, W, Butler, T, Mgema, S et al. Treatment of plague with gentamicin or doxycycline in a randomized clinical trial in Tanzania. Clin Infect Dis 2006; 42(5): 614621. doi: 10.1086/500137.CrossRefGoogle ScholarPubMed
Neerinckx, SB, Peterson, AT, Gulinck, H, Duckers, J, Leirs, H. Geographic distribution and ecological niche of plague in sub-Saharan Africa. Int J Health Geographics 2008; 7: 54. doi: 10.1186/1476-072X-7-54.CrossRefGoogle ScholarPubMed
Nelson, CA, Fleck-Derderian, S, Cooley, KM et al. Antimicrobial treatment of human plague: a systematic review of the literature on individual cases, 1937–2019. Clin Infect Dis 2020; 70(Suppl. 1): S310. doi: 10.1093/cid/ciz1226.CrossRefGoogle ScholarPubMed
Rajerison, M, Melocco, M, Andrianaivoarimanana, V et al. Performance of plague rapid diagnostic test compared to bacteriology: a retrospective analysis of the data collected in Madagascar. BMC Infect Dis 2020; 20: 90. https://doi.org/10.1186/s12879-020-4812-7.Google Scholar
Rasmussen, S, Allentoft, ME, Nielsen, K, Nielsen, R, Kristiansen, K, Willerslev, E. Early divergent strains of Yersinia pestis in Eurasia 5,000 years ago. Cell 2015; 163: 571–82. doi: 10.1016/j.cell.2015.10.009.CrossRefGoogle ScholarPubMed
Riehm, JM, Projahn, M, Vogler, AJ et al. Diverse genotypes of Yersinia pestis caused plague in Madagascar in 2007. PLoS Negl Trop Dis 2015; 9(6): e0003844. doi: 10.1371/journal.pntd.0003844.CrossRefGoogle ScholarPubMed
WHO. Plague Manual Epidemiology, Distribution, Surveillance and Control. 1999. Geneva: WHO.Google Scholar
WHO. Operational guidelines on plague surveillance, diagnosis, prevention and control. 2009. New Delhi: WHO Regional Office for South-East Asia. https://apps.who.int/iris/handle/10665/205593.Google Scholar
WHO. WHO guidelines for plague management: revised recommendations for the use of rapid diagnostic tests, fluoroquinolones for case management and personal protective equipment for prevention of post-mortem transmission. 2021. https://apps.who.int/iris/handle/10665/341505.Google Scholar

References

Ascenzi, P, Visca, P, Ippolito, G, Spallarossa, A, Bolognesi, M, Montecucco, C. Anthrax toxin: a tripartite lethal combination. FEBS Letters 2002; 531(3): 384–8.10.1016/S0014-5793(02)03609-8CrossRefGoogle ScholarPubMed
Balogh, Kd, Bbalo, G, Böhm, R et al. Anthrax control and research, with special reference to national programme development in Africa: memorandum from a WHO meeting. Bulletin of the World Health Organization 1994; 72(1): 1322.Google Scholar
Blackburn, JK, Kenu, E, Asiedu-Bekoe, F et al. High case-fatality rate for human anthrax, Northern Ghana, 2005–2016. Emerging Infectious Diseases 2021; 27(4): 1216.10.3201/eid2704.204496CrossRefGoogle ScholarPubMed
Carlson, CJ, Getz, WM, Kausrud, KL et al. Spores and soil from six sides: interdisciplinarity and the environmental biology of anthrax (Bacillus anthracis). Biological Reviews of the Cambridge Philosophical Society 2018; 93(4): 1813–31. doi: 10.1111/brv.12420.CrossRefGoogle ScholarPubMed
Carlson, CJ, Kracalik, IT, Ross, N et al. The global distribution of Bacillus anthracis and associated anthrax risk to humans, livestock and wildlife. Nature Microbiology 2019; 4(8): 1337–43.10.1038/s41564-019-0435-4CrossRefGoogle ScholarPubMed
Coulibaly, ND, Yameogo, KR. Prevalence and control of zoonotic diseases: collaboration between public health workers and veterinarians in Burkina Faso. Acta Tropica 2000; 76(1): 53–7.10.1016/S0001-706X(00)00090-5CrossRefGoogle ScholarPubMed
Dey, R, Hoffman, PS, Glomski, IJ. Germination and amplification of anthrax spores by soil-dwelling amoebas. Applied and Environmental Microbiology 2012; 78(22): 8075–81.10.1128/AEM.02034-12CrossRefGoogle ScholarPubMed
Gilfoyle, D. Anthrax in South Africa: economics, experiment and the mass vaccination of animals, c. 1910–1945. Medical History 2006; 50(4): 465–90.Google ScholarPubMed
Kock, R, Haider, N, Mboera, LE, Zumla, A. A One-Health lens for anthrax. The Lancet Planetary Health 2019; 3(7): e285.10.1016/S2542-5196(19)30111-1CrossRefGoogle ScholarPubMed
Lehman, MW, Craig, AS, Malama, C et al. Role of food insecurity in outbreak of anthrax infections among humans and hippopotamuses living in a game reserve area, rural Zambia. Emerging Infectious Diseases 2017; 23(9): 1471.10.3201/eid2309.161597CrossRefGoogle Scholar
Makurumidze, R, Gombe, NT, Magure, T, Tshimanga, M. Investigation of an anthrax outbreak in Makoni District, Zimbabwe. BMC Public Health 2021; 21(1): 110.10.1186/s12889-021-10275-0CrossRefGoogle ScholarPubMed
Muller, J, Gwozdz, J, Hodgeman, R et al. Diagnostic performance characteristics of a rapid field test for anthrax in cattle. Preventive Veterinary Medicine 2015; 120(3–4): 277–82.10.1016/j.prevetmed.2015.03.016CrossRefGoogle ScholarPubMed
Muturi, M, Gachohi, J, Mwatondo, A et al. Recurrent anthrax outbreaks in humans, livestock, and wildlife in the same locality, Kenya, 2014–2017. American Journal of Tropical Medicine and Hygiene 2018; 99(4): 833.10.4269/ajtmh.18-0224CrossRefGoogle ScholarPubMed
Mwakapeje, ER, Høgset, S, Fyumagwa, R, Nonga, HE, Mdegela, RH, Skjerve, E. Anthrax outbreaks in the humans-livestock and wildlife interface areas of Northern Tanzania: a retrospective record review 2006–2016. BMC Public Health 2018; 18(1): 111.10.1186/s12889-017-5007-zCrossRefGoogle Scholar
Pohanka, M. Bacillus anthracis as a biological warfare agent: infection, diagnosis and countermeasures. Bratislavske Lekarske Listy 2020; 121(3): 175–81. doi: 10.4149/BLL_2020_026.Google ScholarPubMed
An, Ridder J. epidemic in Guinea Bissau. Tropical Doctor 1994; 24(1): 32.Google Scholar
Spencer, RC. Bacillus anthracis. Journal of Clinical Pathology 2003; 56(3): 182–7.10.1136/jcp.56.3.182CrossRefGoogle ScholarPubMed
Swartz, MN. Recognition and management of anthrax—an update. New England Journal of Medicine 2001; 345(22): 1621–6.10.1056/NEJMra012892CrossRefGoogle ScholarPubMed
Sweeney, DA, Hicks, CW, Cui, X et al. Anthrax infection. American Journal of Respiratory and Critical Care Medicine 2011; 184(12): 1333–41.CrossRefGoogle ScholarPubMed
Wilson, JM, Brediger, W, Albright, TP, Smith-Gagen, J. Reanalysis of the anthrax epidemic in Rhodesia, 1978–1984. PeerJ 2016; 4: e2686.10.7717/peerj.2686CrossRefGoogle ScholarPubMed
Zasada, AA. Detection and identification of Bacillus anthracis: from conventional to molecular microbiology methods. Microorganisms 2020; 8(1): 125.10.3390/microorganisms8010125CrossRefGoogle ScholarPubMed

References

Barlow, J. L., Mung’Ala-Odera, V., Gona, J., and Newton, C. R. J. C.. 2001. Brain damage after neonatal tetanus in a rural Kenyan hospital. Trop Med Int Health, 6: 305–8.10.1046/j.1365-3156.2001.00705.xCrossRefGoogle Scholar
Bleck, T. P. & Brauner, J. S.. 1997. Tetanus. In Scheld, WM, Whitley, RJW, Durack, DT (eds), Infections of the Cen- tral Nervous System. 2nd ed. New York: Lippincott Williams & Wilkins.Google Scholar
Burgoine, K., Egiru, E., Ikiror, J., Acom, L., Akol, S. & Olupot-Olupot, P.. 2020. Neonatal tetanus in eastern Uganda: improved outcome following the implementation of a neonatal tetanus protocol. Trop Doct, 50: 5762.10.1177/0049475519872860CrossRefGoogle ScholarPubMed
Causey, K., Fullman, N., Sorensen, R. J. D. et al. 2021. Estimating global and regional disruptions to routine childhood vaccine coverage during the COVID-19 pandemic in 2020: a modelling study. Lancet, 398(10299): 522–34.10.1016/S0140-6736(21)01337-4CrossRefGoogle Scholar
Chukwubike, O. A. & God’spower, A. E.. 2009. A 10-year review of outcome of management of tetanus in adults at a Nigerian tertiary hospital. Ann Afr Med, 8: 168–72.10.4103/1596-3519.57239CrossRefGoogle Scholar
Cumberland, P., Shulman, C. E., Maple, P. A. et al. 2007. Maternal HIV infection and placental malaria reduce transplacental antibody transfer and tetanus antibody levels in newborns in Kenya. J Infect Dis, 196: 550–7.10.1086/519845CrossRefGoogle ScholarPubMed
Farrar, J. J., Yen, L. M., Cook, T. et al. 2000. Tetanus. J Neurol Neurosurg Psychiatry, 69: 292301.10.1136/jnnp.69.3.292CrossRefGoogle ScholarPubMed
Fetuga, B. M., Ogunlesi, T. A. & Adekanmbi, F. A.. 2010. Risk factors for mortality in neonatal tetanus: a 15-year experience in Sagamu, Nigeria. World J Pediatr, 6: 71–5.CrossRefGoogle ScholarPubMed
Hesse, I. F., Mensah, A., Asante, D. K., Lartey, M. & Neequaye, A.. 2005. Adult tetanus in Accra, why the high mortality? An audit of clinical management of tetanus. West Afr J Med, 24: 157–61.Google ScholarPubMed
Jeena, P. M., Coovadia, H. M. & Gouws, E.. 1997. Risk factors for neonatal tetanus in KwaZulu-Natal. S Afr Med J, 87: 46–8.Google ScholarPubMed
Jeena, P. M., Wesley, A. G. & Coovadia, H. M.. 1999. Admission patterns and outcomes in a paediatric intensive care unit in South Africa over a 25-year period (1971–1995). Intensive Care Med, 25: 8894.10.1007/s001340050792CrossRefGoogle Scholar
Kabura, L., Ilibagiza, D., Menten, J. & Van den Ende, J.. 2006. Intrathecal vs. intramuscular administration of human antitetanus immunoglobulin or equine tetanus antitoxin in the treatment of tetanus: a meta-analysis. Trop Med Int Health, 11: 1075–81.10.1111/j.1365-3156.2006.01659.xCrossRefGoogle ScholarPubMed
Masawe, A. E. 1973. An approach to prognosis and treatment of tetanus: with special reference to tetanus in Kampala-Uganda. East Afr Med J, 50: 727–37.Google ScholarPubMed
Meegan, M. E., Conroy, R. M., Lengeny, S. O., Renhault, K. & Nyangole, J.. 2001. Effect on neonatal tetanus mortality after a culturally-based health promotion programme. Lancet, 358: 640–1.10.1016/S0140-6736(01)05787-7CrossRefGoogle ScholarPubMed
Messeret, E. S., Masresha, B., Yakubu, A. et al. 2018. Maternal and neonatal tetanus elimination (MNTE) in the WHO African Region. J Immunol Sci, Suppl.: 103–7.Google Scholar
Njuguna, H. N., Yusuf, N., Raza, A. A., Ahmed, B. & Tohme, R. A.. 2020. Progress toward maternal and neonatal tetanus elimination – worldwide, 2000–2018. MMWR Morb Mortal Wkly Rep, 69: 515–20.10.15585/mmwr.mm6917a2CrossRefGoogle ScholarPubMed
Okoromah, C. N. & Lesi, F. E.. 2004. Diazepam for treating tetanus. Cochrane Database Syst Rev, Cd003954.Google Scholar
Phillips, L. A. 1967. A classification of tetanus. Lancet, 1: 1216-7.Google ScholarPubMed
Roper, M. H., Vandelaer, J. H. & Gasse, F. L.. 2007. Maternal and neonatal tetanus. Lancet, 370: 1947–59.10.1016/S0140-6736(07)61261-6CrossRefGoogle ScholarPubMed
Sanya, E. O., Taiwo, S. S., Olarinoye, J. K., Aje, A., Daramola, O. O. & Ogunniyi, A.. 2007. A 12-year review of cases of adult tetanus managed at the University College Hospital, Ibadan, Nigeria. Trop Doct, 37: 170–3.10.1258/004947507781524601CrossRefGoogle ScholarPubMed
Thwaites, C. L., Yen, L. M., Glover, C. et al. 2006. Predicting the clinical outcome of tetanus: the tetanus severity score. Tropical Medicine & International Health, 11: 279–87.10.1111/j.1365-3156.2006.01562.xCrossRefGoogle ScholarPubMed
Thwaites, C. L., Yen, L. M., Loan, H. T. et al. 2006. Magnesium sulphate for treatment of severe tetanus: a randomised controlled trial. Lancet, 368: 1436–43.10.1016/S0140-6736(06)69444-0CrossRefGoogle ScholarPubMed
Weatherall, D. J., Ledingham, J. G. G. & Warrell, D.A.. 1996. Oxford Textbook of Medicine. Oxford: Oxford University Press.Google Scholar
WHO. 2018. Neonatal Tetanus: Vaccine Preventable Diseases Surveillance Standards. www.who.int/publications/m/item/vaccine-preventable-diseases-surveillance-standards-neonatal-tetanus.Google Scholar
Yeshaw, Y., Jemere, T., Dagne, H. et al. 2021. Factors associated with births protected against neonatal tetanus in Africa: evidences from demographic and health surveys of five African countries. PLoS ONE, 16: e0253126.10.1371/journal.pone.0253126CrossRefGoogle ScholarPubMed

References

Besa, NC, Coldiron, ME, Bakri, A et al. (2014). Diphtheria outbreak with high mortality in northeastern Nigeria. Epidemiol Infect; 142: 797802.10.1017/S0950268813001696CrossRefGoogle ScholarPubMed
Blumberg, LH, Prieto, MA, Diaz, JV et al. (2019). The preventable tragedy of diphtheria in the 21st century. Int J Infect Dis; 71: 122–3.Google Scholar
Clarke, KEN, MacNeil, A, Hadler, S et al. (2019). Global epidemiology of diphtheria, 2000–2017. Emerg Infect Dis; 25: 1834–42.Google ScholarPubMed
Mahomed, S, Archary, M, Mutevedzi Pagner, KS et al. (2017). An isolated outbreak of diphtheria in South Africa, 2015. Epidemiol Infect; 145: 2100–8.10.1017/S0950268817000851CrossRefGoogle ScholarPubMed
Mosser, JF, Gagne-Maynard, W, Rao, PC et al. (2019). Mapping diphtheria-pertussis-tetanus vaccine coverage in Africa, 2000–2016. Lancet; 393: 1834–55.10.1016/S0140-6736(19)30226-0CrossRefGoogle ScholarPubMed

References

Assefa, A, Nash, J (2000). Patterns of health seeking behavior amongst leprosy patients in former Shoa province, Ethiopia. Ethiop J Health Dev; 14: 43–7.Google Scholar
Beyene, D, Aseffa, A, Harboe, M et al. (2003). Nasal carriage of Mycobacterium leprae DNA in healthy individuals in Lega Robi village, Ethiopia. Epidemiol Infect; 131: 841–8.10.1017/S0950268803001079CrossRefGoogle ScholarPubMed
Cree, IA, Smith, WC (1998). Leprosy transmission and mucosal immunity: toward eradication? Lepr Rev; 69: 112–21.Google Scholar
Deps, PD, Lockwood, DN (2008). Leprosy occurring as immune reconstitution syndrome. Trans R Soc Trop Med Hyg; 102: 966–8.10.1016/j.trstmh.2008.06.003CrossRefGoogle ScholarPubMed
Gebre, S, Saunderson, P, Messele, T, Byass, P (2000). The effect of HIV status on the clinical picture of leprosy: a prospective study in Ethiopia. Lepr Rev; 71: 338–43.Google ScholarPubMed
Girdhar, BK, Girdhar, A, Kumar, A et al. (2000). Relapses in multibacillary leprosy patients: effect of length of therapy. Lepr Rev; 71: 144–53.Google ScholarPubMed
Goulart, IM, Do, Bernardes Souza, Marwues, CR et al. (2008). Risk and protective factors for leprosy development determined by epidemiological surveillance of household contacts. Clin Vaccine Immunol; 15: 105.10.1128/CVI.00372-07CrossRefGoogle ScholarPubMed
Hilder, R, Lockwood, DN (2020). The adverse drug effects of dapsone therapy in leprosy: a systematic review. Lepr Rev; 91; 3; 232243.10.47276/lr.91.3.232CrossRefGoogle Scholar
Jamet, P, Ji, B, Marchoux Chemotherapy Study Group (1995). Relapse after long-term follow-up of multibacillary patients treated by WHO Multidrug regimen. Int J Lepr; 63: 195201.Google ScholarPubMed
Kazen, R (1999). Management of plantar ulcer in leprosy. Lepr Rev; 70: 63–9.Google ScholarPubMed
Lockwood, DN, Sinha, HH (1999). Pregnancy and leprosy: a comprehensive literature review. Int J Lepr Other Mycobact Dis; 67: 612.Google ScholarPubMed
Lockwood, DN, Lambert, SM (2010). Editorial: HIV and leprosy: what’s new? Lepr Rev; 81: 169–75.Google Scholar
Merle, CS, Cunha, SS, Rodrigues, LC (2010). BCG vaccination and leprosy protection: review of current evidence and status of BCG in leprosy control. Expert Rev Vaccines; 9(2): 209–22.10.1586/erv.09.161CrossRefGoogle ScholarPubMed
Moet, FJ, Pahan, D, Oskam, L, Richardus, JH (2008). Effectiveness of single dose rifampicin in preventing leprosy in close contacts of patients with newly diagnosed leprosy: cluster randomised controlled trial. BMJ; 336(7647): 761–4.10.1136/bmj.39500.885752.BECrossRefGoogle ScholarPubMed
Pönnighaus, JM, Fine, PEM, Sterne, JA et al. (1994a). Incidence rate of leprosy in Karonga district, Northern Malawi: patterns by age, sex, BCG status and classification. Int J Lep; 62: 1023.Google ScholarPubMed
Pönnighaus, JM, Fine, PEM, Sterne, JA et al. (1994b). Extended schooling and good housing conditions are associated with reduced risk of leprosy in rural Malawi. Int J Lep; 62: 345–52.Google ScholarPubMed
Richardus, JH, Tiwari, A, Barth-Jaeggi, T et al. (2021). Leprosy post-exposure prophylaxis with single-dose rifampicin (LPEP): an international feasibility programme. Lancet Glob Health; 9(1): e8190.10.1016/S2214-109X(20)30396-XCrossRefGoogle ScholarPubMed
Ridley, DS, Jopling, WH (1966). Classification of leprosy according to immunity. A five-group system. Int J Lepr Other Mycobact Dis; 34: 255–73.Google ScholarPubMed
Rijk, AJ, Gebre, Shibru, Byass, P, Birhanu, T (1994). Field evaluation of WHO-MDT of fixed duration at ALERT, Ethiopia: the AMFES project-I. MDT course completion, case- holding and another score of disability grading. Lepr Rev; 65: 305–19.Google Scholar
Saunderson, P, Gronen, G (2000). Which physical signs help most in diagnosis of leprosy? A proposal based on experience in the AMFES project, ALERT, Ethiopia. Lepr Rev; 71: 285308.Google ScholarPubMed
Schuring, RP, Richardus, JH, Pahan, D, Oskan, L (2009). Protective effect of combination BCG vaccination and rifampicin prophylaxis in leprosy prevention. Vaccine; 27: 7125–8.CrossRefGoogle ScholarPubMed
Setia, MS, Steinmaus, C, Ho, CS, Rutherford, GW (2006). The role of BCG in prevention of leprosy: a meta-analysis. Lancet Infect Dis; 6: 162–70.10.1016/S1473-3099(06)70412-1CrossRefGoogle ScholarPubMed
Walker, SL, Waters, MFR, Lockwood, DNJ (2007). The role of thalidomide in the management of erythema nodosum leprosum. Lepr Rev; 78: 197215.10.47276/lr.78.3.197CrossRefGoogle ScholarPubMed
Weg, NVG, Post, EB, Lucassen, R et al. (1998). Explanatory models and help-seeking behavior of leprosy patients in Adamawa state, Nigeria. Lep Rev; 69: 382–9.Google Scholar
WHO (2018). WHO Guidelines for the diagnosis, treatment and prevention of leprosy. World Health Organization, Regional Office for South-East Asia.Google Scholar
WHO (2020). Global Leprosy Update. Weekly Epidemiological Record; No. 36, 2020, 95, 417–40. www.who.int/wer.Google Scholar
WHO (2021). Global Leprosy Update. Weekly Epidemiological Record; No. 36, 2021, 96, 421–44. www.who.int/wer.Google Scholar

References

Adusumilli, S., Mve-Obiang, A., Sparer, T. et al. 2005. Mycobacterium ulcerans toxic macrolide, mycolactone modulates the host immune response and cellular location of M. ulcerans in vitro and in vivo. Cell Microbiol, 7, 1295–304.10.1111/j.1462-5822.2005.00557.xCrossRefGoogle ScholarPubMed
Amoako, Y. A., Frimpong, M., Awuah, D. O. et al. 2019. Providing insight into the incubation period of Mycobacterium ulcerans disease: two case reports. J Med Case Rep, 13, 218.10.1186/s13256-019-2144-2CrossRefGoogle ScholarPubMed
Amoako, Y. A., Ackam, N., Omuojine, J. P. et al. 2021a. Caregiver burden in Buruli ulcer disease: evidence from Ghana. PLoS Negl Trop Dis, 15, e0009454.10.1371/journal.pntd.0009454CrossRefGoogle ScholarPubMed
Amoako, Y. A., Loglo, A. D., Frimpong, M. et al. 2021b. Co-infection of HIV in patients with Buruli ulcer disease in Central Ghana. BMC Infect Dis, 21, 331.10.1186/s12879-021-06009-7CrossRefGoogle ScholarPubMed
Amofah, G. K., Sagoe-Moses, C., Adjei-Acquah, C. & Frimpong, E. H. 1993. Epidemiology of Buruli ulcer in Amansie West district, Ghana. Trans R Soc Trop Med Hyg, 87, 644–5.10.1016/0035-9203(93)90272-RCrossRefGoogle Scholar
Barogui, Y. T., Klis, S. A., Johnson, R. C. et al. 2016. Genetic susceptibility and predictors of paradoxical reactions in Buruli ulcer. PLoS Negl Trop Dis, 10, e0004594.10.1371/journal.pntd.0004594CrossRefGoogle ScholarPubMed
Bratschi, M. W., Bolz, M., Minyem, J. C. et al. 2013. Geographic distribution, age pattern and sites of lesions in a cohort of Buruli ulcer patients from the Mapé Basin of Cameroon. PLoS Negl Trop Dis, 7, e2252.10.1371/journal.pntd.0002252CrossRefGoogle Scholar
Christinet, V., Comte, E., Ciaffi, L. et al. 2014. Impact of human immunodeficiency virus on the severity of Buruli ulcer disease: results of a retrospective study in Cameroon. Open Forum Infect Dis, 1, ofu021.10.1093/ofid/ofu021CrossRefGoogle ScholarPubMed
De Zeeuw, J., Omansen, T. F., Douwstra, M. et al. 2014. Persisting social participation restrictions among former Buruli ulcer patients in Ghana and Benin. PLoS Negl Trop Dis, 8, e3303.10.1371/journal.pntd.0003303CrossRefGoogle ScholarPubMed
Diaz, D., Döbeli, H., Yeboah-Manu, D. et al. 2006. Use of the immunodominant 18-kiloDalton small heat shock protein as a serological marker for exposure to Mycobacterium ulcerans. Clin Vaccine Immunol, 13, 1314–21.10.1128/CVI.00254-06CrossRefGoogle ScholarPubMed
Frimpong, M., Sarpong-Duah, M., Beissner, M. et al. 2015. Microscopy for acid fast bacilli: a useful but neglected tool in routine laboratory diagnosis of Buruli ulcer. J Trop Dis Public Health, 3, 14.Google Scholar
Frimpong, M., Agbavor, B., Duah, M. S. et al. 2019a. Paradoxical reactions in Buruli ulcer after initiation of antibiotic therapy: relationship to bacterial load. PLoS Negl Trop Dis, 13, e0007689.10.1371/journal.pntd.0007689CrossRefGoogle ScholarPubMed
Frimpong, M., Ahor, H. S., Wahed, A. A. E. et al. 2019b. Rapid detection of Mycobacterium ulcerans with isothermal recombinase polymerase amplification assay. PLoS Negl Trop Dis, 13, e0007155.10.1371/journal.pntd.0007155CrossRefGoogle ScholarPubMed
Grietens, K. P., Boock, A. U., Peeters, H. et al. 2008. “It is me who endures but my family that suffers”: social isolation as a consequence of the household cost burden of Buruli ulcer free of charge hospital treatment. PLoS Negl Trop Dis, 2, e321.10.1371/journal.pntd.0000321CrossRefGoogle ScholarPubMed
Guarner, J., Bartlett, J., Whitney, E. A. et al. 2003. Histopathologic features of Mycobacterium ulcerans infection. Emerg Infect Dis, 9, 651–6.10.3201/eid0906.020485CrossRefGoogle ScholarPubMed
Hayman, J. 1985. Clinical features of Mycobacterium ulcerans infection. Australas J Dermatol, 26, 67-73.10.1111/j.1440-0960.1985.tb01819.xCrossRefGoogle ScholarPubMed
Herbinger, K. H., Adjei, O., Awua-Boateng, N. Y. et al. 2009. Comparative study of the sensitivity of different diagnostic methods for the laboratory diagnosis of Buruli ulcer disease. Clin Infect Dis, 48, 1055–64.10.1086/597398CrossRefGoogle ScholarPubMed
Huang, G. K. & Johnson, P. D. 2014. Epidemiology and management of Buruli ulcer. Expert Rev Anti Infect Ther, 12, 855–65.10.1586/14787210.2014.910113CrossRefGoogle ScholarPubMed
Kiiza, A. M. & Wood, P. B. 2012. Buruli ulcer in an 18-day-old baby. Trop Doct, 42, 48.10.1258/td.2011.110230CrossRefGoogle Scholar
Klis, S., Stienstra, Y., Phillips, R. O. et al. 2014. Long term streptomycin toxicity in the treatment of Buruli ulcer: follow-up of participants in the BURULICO drug trial. PLoS Negl Trop Dis, 8, e2739.10.1371/journal.pntd.0002739CrossRefGoogle ScholarPubMed
Loftus, M. J., Trubiano, J. A., Tay, E. L. et al. 2018. The incubation period of Buruli ulcer (Mycobacterium ulcerans infection) in Victoria, Australia – remains similar despite changing geographic distribution of disease. PLoS Negl Trop Dis, 12, e0006323.10.1371/journal.pntd.0006323CrossRefGoogle ScholarPubMed
Nienhuis, W. A., Stienstra, Y., Abass, K. M. et al. 2012. Paradoxical responses after start of antimicrobial treatment in Mycobacterium ulcerans infection. Clin Infect Dis, 54, 519–26.10.1093/cid/cir856CrossRefGoogle ScholarPubMed
O’Brien, D. P., Robson, M., Friedman, N. D. et al. 2013. Incidence, clinical spectrum, diagnostic features, treatment and predictors of paradoxical reactions during antibiotic treatment of Mycobacterium ulcerans infections. BMC Infect Dis, 13, 416.10.1186/1471-2334-13-416CrossRefGoogle ScholarPubMed
Phillips, R. O., Robert, J., Abass, K. M. et al. 2020. Rifampicin and clarithromycin (extended release) versus rifampicin and streptomycin for limited Buruli ulcer lesions: a randomised, open-label, non-inferiority phase 3 trial. Lancet, 395, 1259–67.10.1016/S0140-6736(20)30047-7CrossRefGoogle ScholarPubMed
Phillips, R. O., Sarfo, F. S., Abass, M. K. et al. 2014. Clinical and bacteriological efficacy of rifampin-streptomycin combination for two weeks followed by rifampin and clarithromycin for six weeks for treatment of Mycobacterium ulcerans disease. Antimicrob Agents Chemother, 58, 1161–6.10.1128/AAC.02453-14CrossRefGoogle ScholarPubMed
Ruf, M. T., Chauty, A., Adeye, A. et al. 2011. Secondary Buruli ulcer skin lesions emerging several months after completion of chemotherapy: paradoxical reaction or evidence for immune protection? PLoS Negl Trop Dis, 5, e1252.10.1371/journal.pntd.0001252CrossRefGoogle ScholarPubMed
Sarfo, F. S., Phillips, R., Asiedu, K. et al. 2010. Clinical efficacy of combination of rifampin and streptomycin for treatment of Mycobacterium ulcerans disease. Antimicrob Agents Chemother, 54, 3678–85.10.1128/AAC.00299-10CrossRefGoogle ScholarPubMed
Sarfo, F. S., Phillips, R., Wansbrough-Jones, M. & Simmonds, R. E. 2016. Recent advances: role of mycolactone in the pathogenesis and monitoring of Mycobacterium ulcerans infection/Buruli ulcer disease. Cell Microbiol, 18, 1729.10.1111/cmi.12547CrossRefGoogle ScholarPubMed
Sarfo, F. S., Phillips, R. O., Zhang, J. et al. 2014. Kinetics of mycolactone in human subcutaneous tissue during antibiotic therapy for Mycobacterium ulcerans disease. BMC Infect Dis, 14, 202.10.1186/1471-2334-14-202CrossRefGoogle Scholar
Sarpong-Duah, M., Frimpong, M., Beissner, M. et al. 2017. Clearance of viable Mycobacterium ulcerans from Buruli ulcer lesions during antibiotic treatment as determined by combined 16S rRNA reverse transcriptase /IS 2404 qPCR assay. PLoS Negl Trop Dis, 11, e0005695.10.1371/journal.pntd.0005695CrossRefGoogle ScholarPubMed
Stinear, T. P., Mve-Obiang, A., Small, P. L. et al. 2004. Giant plasmid-encoded polyketide synthases produce the macrolide toxin of Mycobacterium ulcerans. Proc Natl Acad Sci USA, 101, 1345–9.10.1073/pnas.0305877101CrossRefGoogle ScholarPubMed
Trubiano, J. A., Lavender, C. J., Fyfe, J. A. et al. 2013. The incubation period of Buruli ulcer (Mycobacterium ulcerans infection). PLoS Negl Trop Dis, 7, e2463.10.1371/journal.pntd.0002463CrossRefGoogle ScholarPubMed
Tuffour, J., Owusu-Mireku, E., Ruf, M. T. et al. 2015. Challenges associated with management of Buruli ulcer/human immunodeficiency virus coinfection in a treatment center in Ghana: a case series study. Am J Trop Med Hyg, 93, 216–23.10.4269/ajtmh.14-0571CrossRefGoogle Scholar
Wanda, F., Nkemenang, P., Ehounou, G. et al. 2014. Clinical features and management of a severe paradoxical reaction associated with combined treatment of Buruli ulcer and HIV co-infection. BMC Infect Dis, 14, 423.10.1186/1471-2334-14-423CrossRefGoogle ScholarPubMed
Yeboah-Manu, D., Röltgen, K., Opare, W. et al. 2012. Sero-epidemiology as a tool to screen populations for exposure to Mycobacterium ulcerans. PLoS Negl Trop Dis, 6, e1460.10.1371/journal.pntd.0001460CrossRefGoogle ScholarPubMed
Yeboah-Manu, D., Kpeli, G. S., Ruf, M. T. et al. 2013. Secondary bacterial infections of Buruli ulcer lesions before and after chemotherapy with streptomycin and rifampicin. PLoS Negl Trop Dis, 7, e2191.10.1371/journal.pntd.0002191CrossRefGoogle ScholarPubMed
Yerramilli, A., Tay, E. L., Stewardson, A. J. et al. 2017. The location of Australian Buruli ulcer lesions – implications for unravelling disease transmission. PLoS Negl Trop Dis, 11, e0005800.10.1371/journal.pntd.0005800CrossRefGoogle ScholarPubMed

References

Alavi, S. et al. (2020). Interpersonal gut microbiome variation drives susceptibility and resistance to cholera infection. Cell, 181, 1533–1546.10.1016/j.cell.2020.05.036CrossRefGoogle ScholarPubMed
Ali, M. et al. (2015). Updated global burden of cholera in endemic countries. PLoS Neglected Tropical Diseases, 9(6), 113.10.1371/journal.pntd.0003832CrossRefGoogle ScholarPubMed
Clemens, J.D. et al. (2017). Cholera. Lancet, 390(10101), 15391549.10.1016/S0140-6736(17)30559-7CrossRefGoogle ScholarPubMed
Danso, E.K. et al. (2020). A molecular and epidemiological study of Vibrio cholerae isolates from cholera outbreaks in southern Ghana. PloS One, 15, e0236016.10.1371/journal.pone.0236016CrossRefGoogle ScholarPubMed
GAAC (2020). Ongoing cholera epidemic in Ethiopia. The Global Alliance against Cholera (GAAC). www.choleraalliance.org/en/ressources/news/ongoing-cholera-epidemic-ethiopia.Google Scholar
Global Task Force on Cholera Control (GTFCC). www.gtfcc.org/about-cholera/roadmap-2030/.Google Scholar
Harris, A.M. et al. (2009). Antigen-specific memory B-cell responses to Vibrio cholerae O1 infection in Bangladesh. Infection and Immunity, 77(9), 38503856.10.1128/IAI.00369-09CrossRefGoogle ScholarPubMed
Keddy, K. H. et al. (2013). Diagnosis of Vibrio cholerae O1 infection in Africa. J Infect Dis, 208 Suppl 1, S23–31.10.1093/infdis/jit196CrossRefGoogle ScholarPubMed
Mutreja, A. et al. (2011). Evidence for several waves of global transmission in the seventh cholera pandemic. Nature, 477, 462465.10.1038/nature10392CrossRefGoogle ScholarPubMed
Opintan, J.A., et al. (2021). Phylogenetic and antimicrobial drug resistance analysis of Vibrio cholerae O1 isolates from Ghana. Microb Genom. doi: 10.1099/mgen.0.000668.CrossRefGoogle Scholar
Rebaudet, S. et al. (2013). Cholera in coastal Africa: a systematic review of its heterogeneous environmental determinants. J Infect Dis, 208 Suppl. 1, S98106.10.1093/infdis/jit202CrossRefGoogle Scholar
Roy, S.K. et al. (2008). Zinc supplementation in children with cholera in Bangladesh: randomised controlled trial. BMJ, 336, 266268.10.1136/bmj.39416.646250.AECrossRefGoogle ScholarPubMed
UNICEF (2021). Cholera Outbreaks in Central and West Africa: Situational Report Weeks 1–17. https://reliefweb.int/report/democratic-republic-congo/cholera-outbreaks-central-and-west-africa-2021-regional-update-week.Google Scholar
Weil, A.A. et al. (2014). Bacterial shedding in household contacts of cholera patients in Dhaka, Bangladesh. Am J Trop Med Hyg, 91, 738742.10.4269/ajtmh.14-0095CrossRefGoogle ScholarPubMed
Weill, F.X. et al. (2017). Genomic history of the seventh pandemic of cholera in Africa. Science, 358, 785789.10.1126/science.aad5901CrossRefGoogle ScholarPubMed
WHO (2010). Cholera vaccines: WHO position paper. Wkly Epidemiol Rec, 85, 117128.Google Scholar

References

Abbafati, C. et al. (2020) Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet, 396(10258), 12041222. doi: 10.1016/S0140-6736(20)30925-9.Google Scholar
Almuzaini, T., Choonara, I. & Sammons, H. (2013) Substandard and counterfeit medicines: a systematic review of the literature. BMJ Open, 3(8), e002923. doi: 10.1136/bmjopen-2013-002923.CrossRefGoogle ScholarPubMed
Bekoe, S. O. et al. (2020) Exposure of consumers to substandard antibiotics from selected authorised and unauthorised medicine sales outlets in Ghana. Tropical Medicine & International Health, 25(8), 962975. doi: 10.1111/tmi.13442.CrossRefGoogle ScholarPubMed
Carter, J. Y. et al. (2011) Laboratory testing improves diagnosis and treatment outcomes in primary health care facilities. African Journal of Laboratory Medicine, 1(1). doi: 10.4102/ajlm.v1i1.8.CrossRefGoogle Scholar
Centers for Disease Control and Prevention (CDC) (2012). Laboratory Methods for the Diagnosis of Vibrio cholerae. Laboratory Identification of Vibrio cholerae. https://www.cdc.gov.Google Scholar
Dik, J.-W. H. et al. (2016) An integrated stewardship model: antimicrobial, infection prevention and diagnostic (AID). Future Microbiology, 11(1), 93102. doi: 10.2217/fmb.15.99.CrossRefGoogle ScholarPubMed
Doi, Y. & Paterson, D. (2015) Carbapenemase-producing Enterobacteriaceae. Seminars in Respiratory and Critical Care Medicine, 36(01), 7484. doi: 10.1055/s-0035-1544208.Google ScholarPubMed
van Duin, D. et al. (2018) Colistin versus ceftazidime-avibactam in the treatment of infections due to carbapenem-resistant Enterobacteriaceae. Clinical Infectious Diseases, 66(2), 163171. doi: 10.1093/cid/cix783.CrossRefGoogle ScholarPubMed
Durante-Mangoni, E., Andini, R. & Zampino, R. (2019) Management of carbapenem-resistant Enterobacteriaceae infections. Clinical Microbiology and Infection, 25(8), 943950. doi: 10.1016/j.cmi.2019.04.013.CrossRefGoogle ScholarPubMed
Friedrich, A. W. (2019) Control of hospital acquired infections and antimicrobial resistance in Europe: the way to go. Wiener Medizinische Wochenschrift, 169(S1), 2530. doi: 10.1007/s10354-018-0676-5.CrossRefGoogle ScholarPubMed
Humphries, R. M., Abbott, A. N. & Hindler, J. A. (2019) Understanding and addressing CLSI breakpoint revisions: a primer for clinical laboratories. Journal of Clinical Microbiology. doi: 10.1128/JCM.00203-19.CrossRefGoogle Scholar
Klein, E. Y. et al. (2018) Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proceedings of the National Academy of Sciences USA, 115(15), E3463E3470. doi: 10.1073/pnas.1717295115.CrossRefGoogle ScholarPubMed
Leopold, S. J. et al. (2014) Antimicrobial drug resistance among clinically relevant bacterial isolates in sub-Saharan Africa: a systematic review. Journal of Antimicrobial Chemotherapy 69(9), 23372353. doi: 10.1093/jac/dku176.CrossRefGoogle ScholarPubMed
Newton, P. N., Green, M. D. & Fernández, F. M. (2010) Impact of poor-quality medicines in the “developing” world. Trends in Pharmacological Sciences, 31(3), 99101. doi: 10.1016/j.tips.2009.11.005.CrossRefGoogle ScholarPubMed
Nkengasong, J. N., Maiyegun, O. & Moeti, M. (2017) Establishing the Africa Centres for Disease Control and Prevention: responding to Africa’s health threats. The Lancet Global Health, 5(3), e246e247. doi: 10.1016/S2214-109X(17)30025-6.CrossRefGoogle ScholarPubMed
O’Brien, T. F. & Stelling, J. (2015) WHONET – Tracking microbes for patient safety. Journal of Microbiology, Immunology and Infection. doi: 10.1016/j.jmii.2015.02.181.CrossRefGoogle Scholar
Okeke, I. N. et al. (2020) Leapfrogging laboratories: the promise and pitfalls of high-tech solutions for antimicrobial resistance surveillance in low-income settings. BMJ Global Health, 5(12), 19. doi: 10.1136/bmjgh-2020-003622.CrossRefGoogle ScholarPubMed
O’Neill, J. (ed.) (2016) Tackling drug-resistant infections globally: final report and recommendations. Review On Antimicrobial Resistance 2016. https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf.Google Scholar
Opintan, J. A. (2018) Leveraging donor support to develop a national antimicrobial resistance policy and action plan: Ghana’s success story. African Journal of Laboratory Medicine, 7(2). doi: 10.4102/ajlm.v7i2.825.CrossRefGoogle ScholarPubMed
Petti, C. A. et al. (2006) Laboratory medicine in Africa: a barrier to effective health care. Clinical Infectious Diseases, 42(3), 377382. doi: 10.1086/499363.CrossRefGoogle Scholar
Sayed, S. et al. (2018) Improving pathology and laboratory medicine in low-income and middle-income countries: roadmap to solutions. Lancet, 391(10133), 19391952. doi: 10.1016/S0140-6736(18)30459-8.CrossRefGoogle ScholarPubMed
Storr, J. et al. (2017) Core components for effective infection prevention and control programmes: new WHO evidence-based recommendations. Antimicrobial Resistance & Infection Control, 6(1), 6. doi: 10.1186/s13756-016-0149-9.CrossRefGoogle ScholarPubMed
Tadesse, B. T. et al. (2017) Antimicrobial resistance in Africa: a systematic review. BMC Infectious Diseases, 17(1), 117. doi: 10.1186/s12879-017-2713-1.CrossRefGoogle ScholarPubMed
WHO (1999) Counterfeit drugs guidelines for the development of measures to combat counterfeit drugs. WHO/EDM/QSM/99.1 Geneva: WHO. http://whqlibdoc.who.int/hq/1999/WHO_EDM_QSM_99.1.pdf.Google Scholar
WHO (2009a) Integrated management of adolescent and adulthood illnesses. www.who.int/publications/i/item/10665-68535.Google Scholar
WHO (2009b) World Health Organization. Counterfeit medicines: frequently asked questions, 2009. www.who.int/medicines/services/counterfeit/faqs/QACounterfeit-October2009.pdf.Google Scholar
WHO (2019a) Implementation manual to prevent and control the spread of carbapenem-resistant organisms at the national and health care facility level. www.who.int/publications/i/item/WHO-UHC-SDS-2019-6.Google Scholar
WHO (2019b) Minimum requirements for infection prevention and control. https://iris.who.int/bitstream/handle/10665/330080/9789241516945-eng.pdf?sequence=1.Google Scholar
Wilson, M. L. et al. (2018) Access to pathology and laboratory medicine services: a crucial gap. Lancet, 391(10133), 19271938. doi: 10.1016/S0140-6736(18)30458-6.CrossRefGoogle ScholarPubMed

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×