Skip to main content Accessibility help
×
Hostname: page-component-6bb9c88b65-6vlrh Total loading time: 0 Render date: 2025-07-23T09:10:43.752Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  01 May 2025

Antoni Planes
Affiliation:
University of Barcelona
Avadh Saxena
Affiliation:
Los Alamos National Laboratory
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'

Information

Type
Chapter
Information
Phase Transitions
A Materials Perspective
, pp. 370 - 388
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

[1]Sachdev, S., Quantum Phase Transitions, 2nd ed., Cambridge University Press, Cambridge, 2011.10.1017/CBO9780511973765CrossRefGoogle Scholar
[2]Jaeger, G., The Ehrenfest Classification of Phase Transitions: Introduction and Evolution, Arch. Hist. Exact Sci. 53, 5181 (1998).10.1007/s004070050021CrossRefGoogle Scholar
[3]Yeoman, J. M., Statistical Mechanics of Phase Transitions, Oxford University Press, New York, 1992.10.1093/oso/9780198517290.001.0001CrossRefGoogle Scholar
[4]Stanley, H. E., Introduction to Phase Transitions and Critical Phenomena, Oxford University Press, New York, 1971.Google Scholar
[5]ter Haar, D. and Wergeland, H., Elements of Thermodynamics, Addison-Wesley Publishing Company, Reading, 1966.Google Scholar
[6]Sun, W. and Powell-Palm, M. J., Generalized Gibbs’ Phase Rule, arXiv:2105.01337v1 [math-ph].Google Scholar
[7]Gibbs, J. W., The Scientific Papers of J. Willard Gibbs, Vol. 1: Thermodynamics, Ox Bow Press, Woodbridge, CT, 1993.Google Scholar
[8]Tolman, R. C., The Effect of Droplet Size on Surface Tension, J. Chem. Phys. 17, 333337 (1949).10.1063/1.1747247CrossRefGoogle Scholar
[9]Hill, T. L., Thermodynamics of Small Systems, J. Chem. Phys. 36, 31823197 (1962).10.1063/1.1732447Google Scholar
[10]Hill, T. L., Perspective: Nanothermodynamics, Nano Lett. 11, 111112 (2001).10.1021/nl010010dCrossRefGoogle Scholar
[11]Gunton, J. D. and Droz, M., Introduction to the Theory of Metastable and Unstable States, Sringer-Verlag, Berlin, 1983.10.1007/BFb0035331CrossRefGoogle Scholar
[12]Hiley, B. J. and Joyce, G. S., Ising Models with Long Range Interactions, Proc. Phys. Soc. 85, 493–507 (1965).Google Scholar
[13]Smart, J. S., Effective Field Theories of Magnetism, Saunders, Philadelphia, PA, 1966.10.1063/1.3048415CrossRefGoogle Scholar
[14]Blume, M., Emery, V. J., and Griffiths, R. B., Ising Model for the λ Transition and Phase Separation in He3-He4 Mixtures, Phys. Rev. A 4, 10711077 (1971).10.1103/PhysRevA.4.1071CrossRefGoogle Scholar
[15]Baxter, R. J., Exactly Solved Models in Statistical Mechanics, Academic Press, London, 1982.Google Scholar
[16]Kadanoff, L. P., More Is the Same; Phase Transitions and Mean Field Theory, J. Stat. Phys. 137, 777797 (2009).10.1007/s10955-009-9814-1CrossRefGoogle Scholar
[17]Bragg, W. L. and Williams, E. J., The Effect of Thermal Agitation on Atomic Arrangement in Alloys, Proc. R. Soc. Lond. 145 A, 699–730 (1934).Google Scholar
[18]Kinkaid, J. M. and Cohen, E. G. D., Phase Diagrams of Liquids Helium Mixtures and Metamagnets: Experiment and Mean Field Theory, Phys. Rep. 22, 57143 (1975).10.1016/0370-1573(75)90005-8CrossRefGoogle Scholar
[19]Weiss, P., L hypothèse du champ moléculaire et la propriété ferromagnétique, J. Phys. Theor. Appl. 6, 661690 (1907).10.1051/jphystap:019070060066100Google Scholar
[20]Bethe, H., Statistical Theory of Superlattices, Proc. R. Soc. Lond. A 150, 552–575 (1935).Google Scholar
[21]Kirkwood, J. G., Order and Disorder in Binary Solid Solutions, J. Chem. Phys. 6, 7075 (1938).10.1063/1.1750205CrossRefGoogle Scholar
[22]Kruseman Aretz, F. E. J. and Cohen, E. G. D., A Theory of Order-Disorder Phenomena I, Physica 26, 967980 (1960).10.1016/0031-8914(60)90047-1CrossRefGoogle Scholar
[23]Moessner, R. and Ramirez, A. P., Geometrical Frustration, Phys. Today 59, 2429 (2006).10.1063/1.2186278Google Scholar
[24]van de Walle, A. and Ceder, G., The Effect of Lattice Vibrations on Substitutional Alloy Thermodynamics, Rev. Mod. Phys. 74, 1145 (2002).10.1103/RevModPhys.74.11CrossRefGoogle Scholar
[25]Jones, R. A. L., Soft Condensed Matter, Oxford University Press, Oxford, 2002.10.1093/oso/9780198505907.001.0001CrossRefGoogle Scholar
[26]Born, M. and Huang, K., Dynamical Theory of Crystal Lattices, Oxford University Press, Oxford, 1954.Google Scholar
[27]Vives, E., Castán, T., and Planes, A., Unified Mean-Field Study of Ferro- and Antiferromagnetic Behavior of the Ising Model with External Field, Am. J. Phys. 65, 907913 (1997).10.1119/1.18681CrossRefGoogle Scholar
[28]Tolédano, J. C. and Tolédano, P., The Landau Theory of Phase Transitions, World Scientific, Singapore, 1987.10.1142/0215CrossRefGoogle Scholar
[29]Triguero, C., Porta, M., and Planes, A., Coupling between Lattice Vibrations and Magnetism in Ising-Like Systems, Phys. Rev. B 73, 054401 (2006).CrossRefGoogle Scholar
[30]Landau, L. D. and Lifshitz, E. M., Statistical Physics, 3rd ed., Part 1, Course in Theoretical Physics, Vol. 5, Pergamon Press, Oxford, 1980.Google Scholar
[31]Devonshire, A., Theory of Ferroelectrics, Adv. Phys. 3, 85130 (1954).10.1080/00018735400101173CrossRefGoogle Scholar
[32]Ginzburg, V. L. and Landau, L. D., On the Theory of Superconductivity, Zh. Eksp. Teor. Fiz. 20, 1064–1082 (1950); English translation in: L. D. Landau, Collected Papers, Pergamon Press, Oxford, pp. 546–568, 1965.Google Scholar
[33]Salje, E. K. H., Wruck, B., and Thomas, H., Order-Parameter Saturation and Low-Temperature Extension of Landau Theory, Z. Phys. B 82, 399–404 (1991).Google Scholar
[34]Mermin, N. D. and Wagner, H., Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models, Phys. Rev. Lett. 17, 11331136 (1966).10.1103/PhysRevLett.17.1133CrossRefGoogle Scholar
[35]Chaikin, P. M. and Lubensky, T. C., Principles of Condensed Matter Physics, Cambridge University Press, Cambridge, 1995.10.1017/CBO9780511813467CrossRefGoogle Scholar
[36]Binney, J. J., Dowrick, N. J., Fisher, A. J., and Newman, M. E. J., The Theory of Critical Phenomena, Oxford University Press, New York, 1992.10.1093/oso/9780198513940.001.0001CrossRefGoogle Scholar
[37]Nishimori, H. and Ortiz, G., Elements of Phase Transitions and Critical Phenomena, Oxford University Press, Oxford, 2011.Google Scholar
[38]Widom, B., Equation of State in the Neighborhood of the Critical Point, J. Chem. Phys. 43, 38983905 (1965).10.1063/1.1696618Google Scholar
[39]Kadanoff, L. P., Scaling Laws for Ising Models near TC, Phys. 2, 263 (1966).10.1103/PhysicsPhysiqueFizika.2.263Google Scholar
[40]Ho, J. T. and Litster, J. D., Magnetic Equation of State of CrBr3, Near the Critical Point, Phys. Rev. Lett. 22, 603606 (1969).10.1103/PhysRevLett.22.603CrossRefGoogle Scholar
[41]Maris, H. J. and Kadanoff, L. P., Teaching the Renormalization Group, Am. J. Phys. 46, 653657 (1978).10.1119/1.11224CrossRefGoogle Scholar
[42]Reichl, L. E., A Modern Course in Statistical Physics, 4th revised and updated edition, Wiley-VCH, Weinheim, 2016.Google Scholar
[43]Wilson, K. G., The Renormalization Group: Critical Phenomena and the Kondo Problem, Rev. Mod. Phys. 47, 773840 (1975).10.1103/RevModPhys.47.773CrossRefGoogle Scholar
[44]Gunton, J. D., San Miguel, M., and Sahni, P. S., The Dynamics of First Order Phase Transitions, in Phase Transitions and Critical Phenomena, Vol. 8, pp. 269–466, edited by Domb, C. and Lebowitz, J. L., Press, Academic, London 1983.Google Scholar
[45]Mouritsen, O. G., Pattern Formation in Condensed Matter, Int. J. Mod. Phys. B 4 1925–1954 (1990).10.1142/S0217979290000954Google Scholar
[46]Mazenko, G. F., Universal Features in Growth Kinetics: Some Experimental Tests, Phys. Rev. B 43, 82048210 (1991).10.1103/PhysRevB.43.8204Google ScholarPubMed
[47]Noda, Y., Nishihara, S., and Yamada, Y., Critical Behavior and Scaling Law in Ordering Process of the First Order Phase Transition in Cu3Au Alloy, J. Phys. Soc. Jpn. 53, 42414249 (1984).10.1143/JPSJ.53.4241CrossRefGoogle Scholar
[48]Shannon, R. F., Nagler, E. E., Harkless, C. R., and Nicklow, R. M., Time-Resolved X-ray-Scattering Study of Ordering Kinetics in Bulk Single-Crystal Cu3Au, Phys. Rev. B 46, 4054 (1992).10.1103/PhysRevB.46.40CrossRefGoogle ScholarPubMed
[49]Gaulin, B. D., Spooner, S., and Morii, Y., Kinetics of Phase Separation in Mn0.67Cu0.33, Phys. Rev. Lett. 59 668671 (1987).10.1103/PhysRevLett.59.668CrossRefGoogle Scholar
[50]Glas, R., Blaschko, O., and Rosta, L., Structure Functions in Decomposing Au-Pt Systems, Phys. Rev. B 46, 59725981 (1992).10.1103/PhysRevB.46.5972CrossRefGoogle ScholarPubMed
[51]Gunton, J. D. and Droz, M., Introduction to the Theory of Metastable and Unstable States, Springer-Verlag, Berlin, 1983.10.1007/BFb0035331CrossRefGoogle Scholar
[52]Binder, K., Theory of First-Order Phase Transitions, Rep. Prog. Phys. 50 783859 (1987).10.1088/0034-4885/50/7/001Google Scholar
[53]Hänggi, P., Talkner, P., and Borkovec, M., Reaction-Rate Theory: Fifty Years after Kramers, Rev. Mod. Phys. 62, 251341 (1990).10.1103/RevModPhys.62.251CrossRefGoogle Scholar
[54]Ort́ın, J. and Planes, A., Hysteresis in Shape-Memory Materials, in The Science of Hysteresis, Vol. III, pp. 467–553, edited by Bertotti, G. and Mayergoyz, I., Inc, Elsevier., Amsterdam 2005.Google Scholar
[55]Mahato, M. C. and Shenoy, R. C., Langevin Dynamics Simulations of Hysteresis in Field-Swept Landau Potentials, J. Stat. Phys. 73, 123145 (1993).10.1007/BF01052753CrossRefGoogle Scholar
[56]Langer, J. S., Theory of Spinodal Decomposition in Alloys, Ann. Phys. 65, 5386 (1971).10.1016/0003-4916(71)90162-XCrossRefGoogle Scholar
[57]Hohenberg, P. C. and Halperin, B. I., Theory of Dynamic Critical Phenomena, Rev. Mod. Phys. 49, 435479 (1977).10.1103/RevModPhys.49.435CrossRefGoogle Scholar
[58]Cahn, J. W. and Hilliard, J. E., Free Energy of a Nonuniform System. I. Interfacial Free Energy, J. Chem. Phys. 28, 258267 (1958).10.1063/1.1744102Google Scholar
[59]Cahn, J. W., Phase Separation by Spinodal Decomposition in Isotropic Systems, J. Chem. Phys. 42, 9399 (1965).10.1063/1.1695731Google Scholar
[60]Onuki, A., Phase Transition Dynamics, Cambridge University Press, Cambridge, 2002.10.1017/CBO9780511534874CrossRefGoogle Scholar
[61]Angell, A. Supercooled Water, Ann. Rev. Phys. Chem. 34, 593630 (1984).10.1146/annurev.pc.34.100183.003113CrossRefGoogle Scholar
[62]Landau, L. D. and Lifshitz, E. M., Statistical Physics, 3rd ed., Pergamon Press, Oxford, 1980.Google Scholar
[63]Lifshitz, E. M. and Pitaevskii, L. P., Physical Kinetics, Pergamon Press, Oxford, 1981.Google Scholar
[64]Becker, E. and Döring, W., Kinetische Behandlung der Keimbildung in übersättigten Dämpfen, Ann. Phys. 24, 719752 (1935).10.1002/andp.19354160806Google Scholar
[65]Mullins, W. W. and Sekerka, R. F., Morphological Stability of a Particle Growing by Diffusion or Heat Flow, J. Appl. Phys. 33, 323329 (1963).10.1063/1.1702607CrossRefGoogle Scholar
[66]Balluffi, R. W., Allen, S. M., and Carter, W. C., Kinetics of Materials, John Wiley & Sons, Hoboken, 2005.10.1002/0471749311CrossRefGoogle Scholar
[67]Cahn, J. W., Nucleation on Dislocations, Acta Metall. 5, 165–172 (1957).Google Scholar
[68]Larché, F. C., Nucleation and Precipitation on Dislocations, in Dislocations in Solids, edited by Nabarro, F. R. N., Vol. 4, pp. 137–152, North Holland, Amsterdam, 1979.Google Scholar
[69]Hirth, J. P. and Lothe, J., Theory of Dislocations, 2nd ed., John Wiley & Sons, New York, 1982.Google Scholar
[70]Langer, J. S., Bar-on, M., and Miller, H. D., New Computational Method in the Theory of Spinodal Decomposition, Phys. Rev. A 11, 14171429 (1975).10.1103/PhysRevA.11.1417CrossRefGoogle Scholar
[71]Mainville, J., Yang, Y. S., Elder, K. R., Sutton, M., X-ray Scattering Study of Early Stage Spinodal Decomposition in Al0.62Zn0.38, Phys. Rev. Lett. 78, 27872790 (1997).10.1103/PhysRevLett.78.2787CrossRefGoogle Scholar
[72]Bray, A. J., Theory of Phase Ordering Kinetics, Adv. Phys. 43, 357459 (1994).10.1080/00018739400101505CrossRefGoogle Scholar
[73]Allen, S. M. and Cahn, J. W., A Microscopic Theory for Antiphase Boundary Motion and Its Application to Antiphase Domain Coarsening, Acta metall. 27, 1085–1085 (1979).Google Scholar
[74]Lifshitz, I. M. and Slyozov, V. V., The Kinetics of Precipitation from Super-Saturated Solid Solutions, J. Phys. Chem. Solids 19, 3550 (1961).10.1016/0022-3697(61)90054-3CrossRefGoogle Scholar
[75]Wagner, C., Theorie der Alterung von Niderschlagen durch Umlösen (Ostwald Reifung), Z. Electrochem. 65, 581591 (1961).Google Scholar
[76]Katano, S., Iizumi, M., Nicklov, R. M., and Child, H. R., Scaling in the Kinetics of the Order-Disorder Transition in Ni3Mn, Phys. Rev. B 38, 26592663 (1988).10.1103/PhysRevB.38.2659CrossRefGoogle ScholarPubMed
[77]Oki, K., Sagane, H., and Eguchi, T., Separation and Domain Structure of α + B2 Phase in Fe-Al Alloys, J. Phys. 38, C7-414–417 (1977).10.1051/jphyscol:1977784Google Scholar
[78]Kikuchi, R. and Cahn, J. W., Theory of Interphase and Antiphase Boundaries in f.c.c. Alloys, Acta Metall. 27, 1337–1353 (1979).Google Scholar
[79]Frontera, C., Vives, E., Castán, T., and Planes, A., Monte Carlo Study of the Growth of L12-ordered domains in fcc A3B binary alloys, Phys. Rev. B 55, 212225 (1997).10.1103/PhysRevB.55.212CrossRefGoogle Scholar
[80]Castán, T. and Lindgård, P.-A., n = ¼ Domain-Growth Univesrality Class: Crossover to the n = ½ Class, Phys. Rev. B 41, 25342536 (1990).10.1103/PhysRevB.41.2534CrossRefGoogle Scholar
[81]Aizu, K., Possible Species of Ferromagnetic, Ferroelectric, and Ferroelastic Crystals, Phys. Rev. B 2, 754772 (1970).10.1103/PhysRevB.2.754CrossRefGoogle Scholar
[82]Aizu, K., Possible Species of “Ferroelastic” Crystals and of Simultaneously Ferroelectric and Ferroelastic Crystals, J. Phys. Soc. Japan 27, 387–396 (1969).Google Scholar
[83]Gutfleisch, O., Willard, M. A., Brück, E., Chen, C. H., Sankar, S. G., and Liu, J. P., Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient, Adv. Mater. 23, 821842 (2011).10.1002/adma.201002180CrossRefGoogle ScholarPubMed
[84]Scott, J. F, Applications of Modern Ferroelectrics, Science 315, 954959 (2007).10.1126/science.1129564CrossRefGoogle ScholarPubMed
[85]Otsuka, K. and Wayman, C. M., eds., Shape Memory Materials, Cambridge University Press, Cambridge, 1998.Google Scholar
[86]Lehmann, J., Bortis, A., Derlet, P. M., Donnelly, C., and Leo, N., Heyderman, L. J., Fiebig, M., Relation between Microscopic Interactions and Macroscopic Properties in Ferroics, Nature Nanotech. 15, 896–900 (2020).Google Scholar
[87]Jackson, J. D., Classical Electrodynamics, 3rd ed., John Wiley & Sons, Inc., 1999.Google Scholar
[88]Dubovik, V. M., Martsenyuk, M. A., and Saha, B., Materials Equations for Electromagnetism with Toroidal Polarization, Phys. Rev. E 61, 70877097 (2000).10.1103/PhysRevE.61.7087CrossRefGoogle Scholar
[89]Beardley, I. A., Reconstruction of the Magnetization in a Thin Film by a Combination of Lorentz Microscopy and External Field Measurements, IEEE Trans. Mag. 25, 671–677 (1989).Google Scholar
[90]Prosandeev, S. and Bellaiche, L., Hypertoroidal Moment in Complex Dipolar Structures, J. Mater. Sci. 44, 52355248 (2009).10.1007/s10853-009-3460-5CrossRefGoogle Scholar
[91]Shenoy, S. R., Lookman, T., and Saxena, A., Scaled Free Energies, Power-Law Potentials, Strain Pseudospins, and Quasiuniversality for First-Order Structural Transitions, Phys. Rev. B 82, 144103 (2010).10.1103/PhysRevB.82.144103CrossRefGoogle Scholar
[92]Onuki, A., Phase Transition Dynamics, Cambridge University Press, Cambridge, 2002.10.1017/CBO9780511534874CrossRefGoogle Scholar
[93]Porta, M. and Lookman, T., Heterogeneity and Phase Transformation in Materials: Energy Minimization, Iterative Methods and Geometric Nonlinearity, Acta mater. 61, 53115340 (2013).10.1016/j.actamat.2013.05.022CrossRefGoogle Scholar
[94]Gröger, R., Lookman, T., and Saxena, A., Defect-Induced Incompatibility of Elastic Strains: Dislocations within the Landau Theory of Martensitic Phase Transformations, Phys. Rev. B 78, 184101 (2008).10.1103/PhysRevB.78.184101CrossRefGoogle Scholar
[95]Tolédano, P. and Tolédano, J. C., Order-Parameter Symmetries for the Phase Transitions of Nonmagnetic Secondary and Higher-Order Ferroics, Phys. Rev. B 16, 386407 (1977).10.1103/PhysRevB.16.386CrossRefGoogle Scholar
[96]Tolédano, P. and Dimitriev, V., Reconstructive Phase Transitions in Crystals and Quasicrystals, World Scientific, Singapur, 1996.10.1142/2848CrossRefGoogle Scholar
[97]Moriya, T. and Takahashi, Y., Itinerant Electron Theory, Ann. Rev. Mater. Sci. 14, 125 (1984).Google Scholar
[98]Buschow, K. H. J. and de Boer, F. R. Physics of Magnetism and Magnetic Materials, Kluwer Academic Publishers, New York, 2003.10.1007/b100503CrossRefGoogle Scholar
[99]Spaldin, N. A., Magnetic Materials. Fundamentals and Applications, 2nd ed., Cambridge University Press, Cambridge, 2003.Google Scholar
[100]Tayler, F., The Magnetization-Temperature Curves of Iron, Cobalt, and Nickel, Philos. Mag. 11, 596602 (1931).10.1080/14786443109461711CrossRefGoogle Scholar
[101]Aharoni, A., Introduction to the Theory of Ferromagnetism, Oxford University Press, New York, 1996. 1996.Google Scholar
[102]Osborn, J. A., Demagnetizing Factors of the General Ellipsoid, Phys. Rev. 67, 351357 (1945).10.1103/PhysRev.67.351CrossRefGoogle Scholar
[103]Bertotti, G., Hysteresis in Magnetism, Academic Press, San Diego, 1998.Google Scholar
[104]Smart, J. S., Effective Field Theories of Magnetism, W. B. Saunders Company, Philadelphia, 1966.10.1063/1.3048415CrossRefGoogle Scholar
[105]Yoshimori, A., A New Type of Antiferromagnetic Structure in the Rutile Type Crystal J. Phys. Soc. Japan 14, 807–821 (1959).Google Scholar
[106]Borriello, I., Cantele, G., and Ninno, D., Ab initio Investigation of Hybrid Organic-Inorganic Perovskites Based on Tin Halides, Phys. Rev. B 77, 235214 (2008).10.1103/PhysRevB.77.235214CrossRefGoogle Scholar
[107]Bersuker, I. B., Pseudo-Jahn-Teller Effect – A Two-State Paradigm in Formation, Deformation, and Transformation of Molecular Systems and Solids, Chem. Rev. 113, 13511390 (2013).10.1021/cr300279nCrossRefGoogle ScholarPubMed
[108]Van Aken, B., Rivera, J. P., Schmid, H., and Fiebig, M., Observation of Ferrotoroidic Domains, Nature 449, 702705 (2007).10.1038/nature06139CrossRefGoogle ScholarPubMed
[109]Zimmermann, A. S., Meier, D., and Fiebig, M., Ferroic Nature of Magnetic Toroidal Order, Nature Comm. 5, 4796 (2014).Google Scholar
[110]Tang, J., Hewitt, I., Madhu, N. T., Chastanet, G., Wernsdorfer, W., Anson, C. E., Benelli, C., Sessoli, R., and Powell, A. K., Dysprosium Triangles Showing Single-Molecule Magnet Behavior of Thermally Excited Spin States, Angew. Chem., Int. Eds. 45, 1729–1733 (2006).Google Scholar
[111]Ungur, L., Lin, S.-Y., Tang, J., and Chibotaru, L. F., Single-Molecule Toroidics in Ising-Type Lanthanide Molecular Clusters, Chem. Soc. Rev. 43, 68946905 (2014).10.1039/C4CS00095ACrossRefGoogle ScholarPubMed
[112]Luzon, J., Bernot, K., Hewitt, I. J., Anson, C. E., and Powell, A. K., Sessoli, R., Spin Chirality in a Molecular Dysprosium Triangle: The Archetype of the Noncollinear Ising Model, Phys. Rev. Lett. 100, 247205 (2008).10.1103/PhysRevLett.100.247205CrossRefGoogle Scholar
[113]Lehmann, J., Donnelly, C., Derlet, P. M., Heyderman, L. J., and Fiebig, M., Poling of an Artificial Magneto-Toroidal Crystal, Nature Nanotech. 14, 141–144 (2019).10.1038/s41565-018-0321-xCrossRefGoogle Scholar
[114]Schmid, H., On Ferrotoroidics and Electrotoroidics, Magnetotoroidics and Piezotoroidics Effects, Ferroelectrics 252, 4150 (2001).10.1080/00150190108016239CrossRefGoogle Scholar
[115]Spaldin, N. A., Fiebig, M., and Mostovoy, M., The Toroidal Moment in Condensed-Matter Physics and Its Relation to the Magnetoelectric Effect, J. Phys. Condens. Matter. 20, 434203 (2008).10.1088/0953-8984/20/43/434203CrossRefGoogle Scholar
[116]Baum, M., Schmalzl, K., Steffens, P., Hiess, A., Regnault, L. P., Meven, M., Becker, P., Bohatý, L., and Braden, M., Controlling Toroidal Moments by Crossed Electric and Magnetic Field, Phys. Rev. B 88, 024414 (2013).10.1103/PhysRevB.88.024414CrossRefGoogle Scholar
[117]Yu, S.-Y., Mao, Schmid, H., Triscone, G., and Muller, J., Spontaneous Magnetization and Magnetic Susceptibility of a Ferroelectric/Ferromagnetic/Ferroelastic Single Domain Crystal of Nickel Bromine Boracite Ni3B7O13Br, J. Mag. Mag. Mater. 195, 6575 (1999).Google Scholar
[118]Popov, Y. F., Kadomtseva, A. M., Vorob’ev, Tomofeeva, V. A., Ustinin, D. M., Zvezdin, A. K., and Tegeranvhi, M. M., Magnetoelectric Effect and Toroidal Ordering in Ga2–xFexO3, JEPT 87, 146–151 (1998).Google Scholar
[119]Popov, Y. F., Kadomtseva, A. M., Vorob’ev, G. P., and Zvezdin, A. K., Magnetic-Field Induced Toroidal Moment in the Magnetoelectric Cr2O3, JEPT Lett. 69, 300–335 (1999).Google Scholar
[120]Sannikov, D. G., Ferrotoroidics, Ferroelectrics 354, 3943 (2007).10.1080/00150190701454487CrossRefGoogle Scholar
[121]Ederer, C. and Spaldin, N. A., Towards a Microscopic Theory of Toroidal Moments in Bulk Periodic Crystals, Phys. Rev. B 76, 214404 (2007).10.1103/PhysRevB.76.214404CrossRefGoogle Scholar
[122]Eshelby, J. D., The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems, Proc. R. Soc. A 241 376–396 (1957); The Elastic Field Outside an Ellipsoidal Inclusion, Proc. R. Soc. A 252, 561–569 (1959).Google Scholar
[123]Wechsler, M. S., Lieberman, D. S., and Read, T. A., Theory of the Formation of Martensite, Trans. AIME 197, 1503–1515 (1953).Google Scholar
[124]Bowles, J. S. and Mackenzie, J. K., The Crystallography of Martensite Transformations I, Acta Metal. 2, 129–137 (1954).Google Scholar
[125]Khachaturyan, A. G., The Theory of Structural Transformations in Solids, John Wiley & Sons, New York, 1983.Google Scholar
[126]Ball, J. M. and James, R. D., Fine Phase Mixtures as Minimizers of Energy, Arch. Ration Mech. Anal. 100, 1352 (1987).10.1007/BF00281246CrossRefGoogle Scholar
[127]Bhattacharya, K., Microstructure of Martensite, 1st ed., Oxford University Press, New York, 2003.10.1093/oso/9780198509349.001.0001CrossRefGoogle Scholar
[128]Porta, M., Castán, T., Lloveras. P., Lookman, T., Saxena, A., and Shenoy, S. R., Interfaces in Ferroelastics: Fringing Fields, Microstructure, and Size and Shape Effects, Phys. Rev. B 79, 214117 (2009).10.1103/PhysRevB.79.214117CrossRefGoogle Scholar
[129]Kittel, C., Physical Theory of Ferromagnetic Domains, Rev. Mod. Phys. 21, 541583 (1949).10.1103/RevModPhys.21.541CrossRefGoogle Scholar
[130]Bales, G. S. and Gooding, R. J., Interfacial Dynamics at a First-Order Phase Transition Involving Strain: Dynamical Twin Formation, Phys. Rev. Lett. 67, 34123415 (1991).10.1103/PhysRevLett.67.3412CrossRefGoogle Scholar
[131]Lookman, T., Shenoy, S. R., Rasmussen, K. Ø., Saxena, A., and Bishop, A. R., Ferroelastic Dynamics and Strain Compatibility, Phys. Rev. B 67, 024114 (2003).10.1103/PhysRevB.67.024114CrossRefGoogle Scholar
[132]Otsuka, K. and Wayman, C. M., eds., Shape Memory Materials, Cambridge University Press, Cambridge, 1998.Google Scholar
[133]Kaspar, G., Ravoo, B. J., van der Wiel, W. G., Wegner, S. V., and Pernice, W. H. P., The Rise of Intelligent Matter, Nature 594, 345355 (2021).10.1038/s41586-021-03453-yCrossRefGoogle ScholarPubMed
[134]Schmid, H., Multi-ferroic Magnetoelectrics, Ferroelectrics 162, 317338 (1994).10.1080/00150199408245120CrossRefGoogle Scholar
[135]Eerenstein, W., Mathur, N. D., and Scott, J., Multiferroic and Magnetoelectric Materials, Nature 442, 759765 (2006).10.1038/nature05023CrossRefGoogle ScholarPubMed
[136]Martin, L. W., Crane, S. P., Chu, Y.-H., Holcomb, M. B., Gajek, M., Huijben, M., Yang, C.-H., Balke, N., and Ramesh, R., Multiferroics and Magnetoelectrics: Thin Films and Nanostructures, J. Phys.: Condens. Matter 20, 434220 (2008).Google Scholar
[137]Spaldin, N. A. and and Ramesh, R., Advances in Magnetoelectric Multiferroics, Nature Mater. 18, 203212 (2019).Google Scholar
[138]Forsbergh, P. W., Domain Structures and Phase Transitions in Barium Titanate, Phys. Rev. 76, 11871201 (1949).10.1103/PhysRev.76.1187CrossRefGoogle Scholar
[139]Liebermann, H. H. and Graham, C. D., Plastic and Magnetoplastic Deformation of Dy Single Crystals, Acta Metall. 25, 715–720 (1977).Google Scholar
[140]Ullakko, K., Huang, J. K., Kantner, C., O’Handley, R. C., and Kokorin, V. V., Large Magnetic-Field-Induced Strains in Ni2MnGa Single Crystals, Appl. Phys. Lett. 69, 1966–1968 (1996).Google Scholar
[141]Schmid, H., Some Symmetry Aspects of Ferroics and Single Phase Multiferroics, J. Phys. Condens. Matter 20, 434201 (2008).10.1088/0953-8984/20/43/434201CrossRefGoogle Scholar
[142]Hill, N. A., Why Are There So Few Magnetic Ferroelectrics? J. Phys. Chem. B 104, 66946709 (2000).10.1021/jp000114xCrossRefGoogle Scholar
[143]Ascher, E., Rieder, H., Schmid. H., and Stössel, H., Some Properties of Ferromagnetoelectric Nickel-Iodine Boracite, Ni3B7O13I, J. Appl. Phys. 37, 14041405 (1966).10.1063/1.1708493CrossRefGoogle Scholar
[144]Kiselev, S. V., Ozerov, R. P., and Zhdanov, G. S., Detection of Magnetic Order in Ferroelectric BiFeO3 by Neutron Diffraction, Sov. Phys. Dokl. 7, 742744 (1963).Google Scholar
[145]Bertaut, E. F., Forrat, F., and Fang, P., Les Manganites de Terres Rares et d’Ytrium: Une Nouvelle Classe de Ferroélectriques, Comptes Rendus Acad. Sci. 256, 1958–1961 (1963).Google Scholar
[146]Scott, J. F. and Blinc, R., Multiferroic Magnetoelectric Fluorides: Why Are There So Many Magnetic Ferroelectrics?, J. Phys. Condens. Matter 23, 113202 (2011).10.1088/0953-8984/23/11/113202CrossRefGoogle ScholarPubMed
[147]Khomskii, D., Classifying Multiferroics: Mechanisms and Effects, Physics 2, 20 (2009).10.1103/Physics.2.20CrossRefGoogle Scholar
[148]Smolenskii, G. A. and Chupis, I. E., Ferroelectromagnets, Sov. Phys. Usp. 25, 475–493 (1982).Google Scholar
[149]Cheong, S.-W. and Mostovoy, M., Multiferroics: A Magnetic Twist for Ferroelectricity, Nature Mater. 6, 1320 (2007).Google Scholar
[150]Efremov, D. V., Van den Brink, J., and Khomskii, D. I., Bond-versus Site-Centred Ordering and Possible Ferroelectricity in Manganites, Nature Mater. 3, 853856 (2004).Google Scholar
[151]Ikeda, N., Ohsumi, H., Ohwada, K., Ishii, K., Inami, T., Kakurai, K., Murakami, Y., Yoshii, K., Mori, S., Horibe, Y., and Kito, H., Ferroelectricity from Iron Valence Ordering in the Charge-Frustrated System LuFe2O4, Nature 436, 11361138 (2005).10.1038/nature04039CrossRefGoogle ScholarPubMed
[152]van Aken, B. B., Palastra, T. T. M., Filippetti, A., and Spaldin, N. A., The Origin of Ferroelectricity in Magnetoelectric YMnO3, Nature Mater. 3, 164170 (2004).Google Scholar
[153]Newnham, R. E., Kramer, J. J. Schulze, W. A., and Cross, L. E., Magnetoferroelectricity in Cr2BeO4, J. Appl. Phys. 49, 60886091 (1978).10.1063/1.324527CrossRefGoogle Scholar
[154]Kimuta, T., Goto, T., Shintani, H., Ishizaka, K., Arima, T., and Tokura, Y., Magnetic Control of Ferroelectric Polarization, Nature 426, 5558 (2003).Google Scholar
[155]Choi, Y. J., Yi, H. T., Lee, S., Huang, Q., Kiryukhin, V., and Cheong, S.-W., Ferroelectricity in an Ising Chain Magnet, Phys. Rev. Lett. 100, 047601 (2008).10.1103/PhysRevLett.100.047601CrossRefGoogle Scholar
[156]Tokura, Y., Seki, S., and Nagaosa, N., Multiferroics of Spin Origin, Rep. Progress Phys. 77, 076501 (2014).Google Scholar
[157]Bulaevskii, L. N., Batista, C. D., Mostovoy, M. V., and Khomskii, D. I., Electronic Orbital Currents and Polarization in Mott Insulators, Phys. Rev. B 78, 024402 (2008).10.1103/PhysRevB.78.024402CrossRefGoogle Scholar
[158]Cherifi, R. O., Ivanovskaya, V., Phillips, L. C., Zobelli, A., Infante, I. C., Jacquet, E., Garcia, V., Fusil, S., Briddon, P. R., Guiblin, N., Mougin, A., Ünal, A. A., Kronast, F., Valencia, S., Dkhil, B., Barthélémy, A., and Bibes, M., Electric-Field Control of Magnetic Order above Room Temperature, Nature Mater. 13, 345351 (2014).Google Scholar
[159]Mostovoy, M., Ferroelectricity in Spiral Magnets, Phys. Rev. Lett. 96, 067601 (2006).10.1103/PhysRevLett.96.067601CrossRefGoogle ScholarPubMed
[160]Kenzelmann, M., Harris, A. B., Jonas, S., Broholm, C., Schefer, J., Kim, S. B., Zhang, C. L., Cheong, S.-W., Vajk, O. P., and Lynn, J. W., Magnetic Inversion Symmetry Breaking and Ferroelectricity in TbMnO3, Phys. Rev. Lett. 95, 087206 (2005).10.1103/PhysRevLett.95.087206CrossRefGoogle ScholarPubMed
[161]Kimura, T. and Tokura, Y., Magnetoelectric Phase Control in a Magnetic System Showing Cycloidal/Conical Spin Order, J. Phys. Condens. Matter 20, 434204 (2008).10.1088/0953-8984/20/43/434204CrossRefGoogle Scholar
[162]Ge, Y., Heczko, O., Söderberg, O., and Lindroos, V. K., Various Magnetic Domain Structures in a Ni–Mn–Ga Martensite Exhibiting Magnetic Shape Memory Effect, J. Appl. Phys. 96, 2159 (2004).10.1063/1.1773381CrossRefGoogle Scholar
[163]Merz, W. J., Domain Formation and Domain Wall Motions in Ferroelectric BaTiO3 Single Crystals, Phys. Rev. 95, 690698 (1954).10.1103/PhysRev.95.690CrossRefGoogle Scholar
[164]Sozinov, A., Likhachev, A. A., Lanska, N., and Ullakko, K., Giant Magnetic-Field-Induced Strain in NiMnGa Seven-Layered Martensitic Phase, Appl. Phys. Lett. 80, 17461748 (2002).10.1063/1.1458075CrossRefGoogle Scholar
[165]Gebbia, J. F., Lloveras, P., Castán, T., Saxena, A., and Planes, A., Modelling Shape-Memory Effects in Ferromagnetic Alloys, Shap. Mem. Superelasticity 1, 347358 (2015).Google Scholar
[166]James, R. D. and Wuttig, M., Magnetostriction of Martensite, Philos. Mag. A 77, 12731299 (1998).10.1080/01418619808214252CrossRefGoogle Scholar
[167]Lavrov, A. N., Komiya, S., and Ando, Y., Magnetic Shape-Memory Effects in a Crystal, Nature 418, 385386 (2002).10.1038/418385aCrossRefGoogle ScholarPubMed
[168]Buchelnikov, V. D., Entel, P., Taskaev, S. V., Sokolovskiy, V. V., Hucht, A., Ogura, M., Akai, H., Gruner, M. E., and Nayak, S. K., Monte Carlo Study of the Influence of Antiferromagnetic Exchange Interactions on the Phase Transitions of Ferromagnetic Ni-Mn-X alloys (X = In,Sn,Sb), Phys. Rev. B 78, 184427 (2008).10.1103/PhysRevB.78.184427CrossRefGoogle Scholar
[169]Goldschmidt, V. M., Crystal Structure and Chemical Constitution, Trans. Faraday Soc. 25, 253–283 (1929).10.1039/tf9292500253CrossRefGoogle Scholar
[170]Liu, W. and Ren, X., Large Piezoelectric Effect in Pb-Free Ceramics, Phys. Rev. Lett. 103, 257602 (2009).10.1103/PhysRevLett.103.257602CrossRefGoogle ScholarPubMed
[171]Yang, S., Yang, S., Bao, H., Zhou, C., Wang, Y., Ren, X., Matsushita, Y., Katsuya, Y., Tanaka, M., Kobayashi, K., Song, X., and Gao, J., Large Magnetostriction from Morphotropic Phase Boundary in Ferromagnets, Phys. Rev. Lett. 104, 197201 (2010).10.1103/PhysRevLett.104.197201CrossRefGoogle ScholarPubMed
[172]Rossetti, G. A., Khachaturyan, A. G., Akcay, G., and Ni, Y., Ferroelectric Solid Solutions with Morphotropic Boundaries: Vanishing Polarization Anisotropy, Adaptive, Polar Glass, and Two-Phase States, J. Appl. Phys. 103, 114113 (2008).10.1063/1.2930883CrossRefGoogle Scholar
[173]Porta, M. and Lookman, T., Effects of Tricritical Points and Morphotropic Phase Boundaries on the Piezoelectric Properties of Ferroelectrics, Phys. Rev. B 83, 174108 (2011).10.1103/PhysRevB.83.174108CrossRefGoogle Scholar
[174]Tagantsev, A. K., Susceptibility Anomaly in Films with Bilinear Coupling between Order Parameter and Strain, Phys. Rev. Lett. 94, 247603 (2005).10.1103/PhysRevLett.94.247603CrossRefGoogle Scholar
[175]Joule, J. P., On Some Thermo-Dynamic Properties of Solids, Phil. Trans. R. Soc. Lond. 149, 91131 (1859).Google Scholar
[176]Weiss, P. and Piccard, A., Les Phenomènes Magnétocaloriques, J. Phys. Theor. Appl. 7, 103109 (1917).10.1051/jphystap:019170070010300CrossRefGoogle Scholar
[177]Debye, P., Einige Bemerkungen zur Magnetisierung bei tiefer Temperatur, Ann. Phys. 81, 11541160 (1926).10.1002/andp.19263862517CrossRefGoogle Scholar
[178]Giauque, W. F., A Thermodynamic Treatment of Certain Magnetic Effects. A Proposed Method of Producing Temperatures Considerably Below 1° Absolute, J. Am. Chem. Soc. 49, 1864–1870 (1927).Google Scholar
[179]Giauque, W. F. and MacDougall, D. P., Attainment of Temperatures Below 1° Absolute by Demagnetization of Gd2(SO4)3.8H2O, Phys. Rev. 43 768 (1933).10.1103/PhysRev.43.768CrossRefGoogle Scholar
[180]Kobeko, P. and Kurtschatov, J., Dielektrische Eigenschaften der Seignettesalzkristalle, Z. Phys. 66, 192205 (1930).Google Scholar
[181]Brown, G. V. Magnetic Heat Pumping Near Room Temperature. J. Appl. Phys. 47, 36733680 (1976).10.1063/1.323176Google Scholar
[182]Pecharsky, V. K. and Gschneider, K. A., Giant Magnetocaloric Effect in Gd5(Si2Ge2) Phys. Rev. Lett. 78, 44944497 (1997).10.1103/PhysRevLett.78.4494CrossRefGoogle Scholar
[183]Mischenko, A. S., Zhang, Q., Scott, J. F., Whatmore, R. W., Mathur, N. D., Giant Electrocaloric Effect in Thin-Film PbZr0.95Ti0.05O3, Science 311, 12701271 (2006).10.1126/science.1123811CrossRefGoogle Scholar
[184]Bonnot, E., Romero, R., Vives, E., Mañosa, L., and Planes, A., Elastocaloric Effect Associated with the Martensitic Transition in Shape-Memory Alloys, Phys. Rev. Lett. 100, 125901 (2008).10.1103/PhysRevLett.100.125901CrossRefGoogle ScholarPubMed
[185]Moya, X., Kar-Narayan, S., and Mathur, N. D., Caloric Materials Near Ferroic Phase Transitions, Nature Mater. 13, 439450 (2014).Google Scholar
[186]Castán, T., Planes, A., and Saxena, A., Thermodynamics of Ferrotoroidic Materials: Toroidocaloric Effect, Phys. Rev. B 85, 144429 (2012).10.1103/PhysRevB.85.144429CrossRefGoogle Scholar
[187]Mathon, J. and Wohlfarth, E. P., Thermodynamic Properties of Nickel Near the Curie Temperature, J. Phys. C: Solid St. Phys. 2, 16471652 (1969).Google Scholar
[188]Gottschall, T., Ku’zmin, M. D., Skokov, K. P., Skourski, Y., Fries, M.,Gutfleish, O., Ghorbani Zavareh, M., Schlagel, D. L., Mudryk, Y., Pecharsky, V., and Wosnitza, J., Magnetocaloric Effect of Gadolinium in High Magnetic Fields, Phys. Rev. B 99, 134429 (2019).10.1103/PhysRevB.99.134429CrossRefGoogle Scholar
[189]Srinath, S. and Kaul, S. N., Static Universality Class for Gadolinium, Phys. Rev. B 60, 12176 (1999).10.1103/PhysRevB.60.12166CrossRefGoogle Scholar
[190]Fujita, A., Fujieda, S., Fukachimi, K., Mitamura, H., and Goto, T., Itinerant-Electron Metamagnetic Transition and Large Magnetovolume Effects in La(FexSi1-x)13 Compounds, Phys. Rev. B, 65, 014410 (2001).10.1103/PhysRevB.65.014410CrossRefGoogle Scholar
[191]Fujita, A., Fujieda, S., Hasegawa, Y., and Fukachimi, K., Itinerant-Electron Metamagnetic Transition and Large Magnetocaloric Effects in La(FexSi1-x)13 Compounds and their Hydrides, Phys. Rev. B 67, 104416 (2003).10.1103/PhysRevB.67.104416CrossRefGoogle Scholar
[192]Bean, C. P. and Rodbell, D. S., Magnetic Disorder as a First-Order Phase Transformation, Phys. Rev. 126, 104115 (1962).10.1103/PhysRev.126.104CrossRefGoogle Scholar
[193]Triguero, C., Porta, M., Planes, A., Magnetocaloric Effect in Metamagnetic Systems, Phys. Rev. B 76, 094415 (2007).10.1103/PhysRevB.76.094415CrossRefGoogle Scholar
[194]Planes, A., Castán, T., and Saxena, A., Thermodynamics of Multicaloric Effects in Multiferroics, Philos. Mag. 94, 1893–1908 (2014).10.1080/14786435.2014.899438CrossRefGoogle Scholar
[195]Stern-Taulats, E., Castán, T., Planes, A., Lewis, L. H., Barua, R.,Pramanick, S., Majumdar, S., and Mañosa, L., Giant Multicaloric Response of Bulk Fe49Rh51, Phys. Rev. B 95, 104424 (2017).10.1103/PhysRevB.95.104424CrossRefGoogle Scholar
[196]Stephen, M. J. and Straley, J. P., Physics of Liquid Crystals, Rev. Mod. Phys. 46, 617704.10.1103/RevModPhys.46.617CrossRefGoogle Scholar
[197]Mitov, M., A Brief History of Liquid Crystals Can Be Found, in Liquid-Crystal Science from 1888 to 1922: Building a Revolution, Chem. Phys. Chem. 15, 12451250 (2014).Google Scholar
[198]Liquid Crystals – Applications and Uses, Vol. III, edited by Bahadur, B., Scientific, World, Singapur, 1992.Google Scholar
[199]Kast, W., Landolt-Bornstein Tables, Vol. 2, Part 2a, Springer-Verlag, Berlin, 1969.Google Scholar
[200]Chandrasekhar, S., Liquid Crystals, 2nd ed., Cambridge University Press, Cambridge, 1992.10.1017/CBO9780511622496CrossRefGoogle Scholar
[201]Jákli, A., Lavrentovich, O. D., and Selinger, J. V., Physics of Liquid Crystals of Bent-Shaped Molecules, Rev. Mod. Phys. 90, 045004 (2018).10.1103/RevModPhys.90.045004CrossRefGoogle Scholar
[202]Bushbya, R. J. and Kawata, K., Liquid Crystals That Affected the World: Discotic Liquid Crystals, Liquid Crystals 38, 14151426 (2011).10.1080/02678292.2011.603262CrossRefGoogle Scholar
[203]Maier, W. and Saupe, A., Eine Einfache Molekulare Theorie des Nematischen Kristallinflüssigen Zustandes, Z. Naturforsch. A 13a, 564–566 (1958); Eine Einfache Molekular-Statistische Theorie der Nematischen Kristallinflüssigen Phase. Teil 1, Z. Naturforsch. A 14 882–889 (1959); Eine Einfache Molekular-Statistische Theorie der Nematischen Kristallinflüssigen Phase. Teil 2, Z. Naturforsch. A 15, 287–292 (1960).Google Scholar
[204]de Gennes, P. G., Short Range Order Effects in the Isotropic Phase of Nematics and Cholesterics, Mol. Cryst. Liq. Cryst. 12, 193214 (1971).10.1080/15421407108082773CrossRefGoogle Scholar
[205]Gramsbergen, E. F., Longa, L., and Jeu, W. H., Landau Theory of the Nematic-Isotropic Phase Transition, Phys. Rep. 135, 195257 (1986).10.1016/0370-1573(86)90007-4CrossRefGoogle Scholar
[206]Chaikin, P. M. and Lubesnsky, T. C., Principles of Condensed Matter Physics, Cambridge University Press, New York, 1995.10.1017/CBO9780511813467CrossRefGoogle Scholar
[207]Luckhurst, G. R. and Zannoni, C., Why Is the Maier-Saupe Theory of Nematic Liquid Crystals So Successful?, Nature 267, 412414 (1977).10.1038/267412b0Google Scholar
[208]Gelbart, W. M., Molecular Theory of Nematic Liquid Crystals, J. Chem. Phys. 86, 42984307 (1986).10.1021/j100219a007CrossRefGoogle Scholar
[209]Saupe, A., Biaxial Nematic Phases in Amphiphilic Systems, J. Chem. Phys. 80, 713 (1983).Google Scholar
[210]Anisimov, M. A., Garber, S. R., Esipov, V. S., Mannitskiĭ, V. M., Ovodov, G. I., Smolenko, L. A., and Sorkin, E. L., Anomaly of the Specific Heat and the Nature of the Phase Transition from an Isotropic Liquid to a Nematic Liquid Crystal, Sov. Phys. JETP 45, 1042–1047 (1977).Google Scholar
[211]Oseen, C. W., The Theory of Liquid Crystals, Trans. Faraday Soc. 29, 883–899 (1933).10.1039/tf9332900883Google Scholar
[212]Frank, F. C. I., I Liquid Crystals. On the Theory of Liquid Crystals, Discuss. Faraday Soc. 25, 1928 (1958).10.1039/df9582500019CrossRefGoogle Scholar
[213]Mori, H., GartlandJr., E. C., Kelly, J. R., and Bos, P. J., Multidimensional Director Modeling Using the Q Tensor Representation in a Liquid Crystal Cell and Its Application to the Cell with Patterned Electrodes, Jpn. J. Appl. Phys. 38, 135146 (1999).10.1143/JJAP.38.135CrossRefGoogle Scholar
[214]Binder, K., Egorov, S. A., Milchev, A., and Nikoubashman, A., Understanding the Properties of Liquid-Crystalline Polymers by Computational Modeling, J. Phys. Mater. 3, 032008 (2020).Google Scholar
[215]Zink, H. and De Jeu, W. H., A Light-Scattering Study of Pretransitional Behavior Around the Isotropic-Nematic Phase Transition in Alkylcyanobiphenyls, Mol. Cryst. Liq. Cryst. 124, 287304 (1985).10.1080/00268948508079484CrossRefGoogle Scholar
[216]Helfrich, W., Effect of Electric Fields on the Temperature of Phase Transitions of Liquid Crystals, Phys. Rev. Lett. 24, 201203.10.1103/PhysRevLett.24.201Google Scholar
[217]Rosenblatt, C., Magnetic Field Dependence of the Nematic-Isotropic Transition Temperature, Phys. Rev. A 24, 22362238 (1981).10.1103/PhysRevA.24.2236CrossRefGoogle Scholar
[218]Nicastro, A. J. and Heyes, P. H., Electric-Field-Induced Critical Phenomena at the Nematic-Isotropic Transition and the Nematic-Isotropic Critical Point, Phys. Rev. A 30, 31563160 (1984).10.1103/PhysRevA.30.3156CrossRefGoogle Scholar
[219]Fréedericksz, V. and Zolina, V., Forces Causing the Orientation of an Anisotropic Liquid, Trans. Faraday Soc. 29, 919–930 (1933).10.1039/TF9332900919CrossRefGoogle Scholar
[220]Mukherjee, P. K., Pleiner, H., and Brand, H. R., A Simple Landau Model for the Smectic-A-Isotropic Phase Transition, Eur. Phys. J. E4, 293297 (2001).Google Scholar
[221]Brinkman, W. F. and Cladis, P. E., Defects in Liquid Crystals, Phys. Today 35, 4854 (1982).10.1063/1.2915094CrossRefGoogle Scholar
[222]Kleman, M. and Friedel, J., Disclinations, Dislocations, and Continuous Defects: A Reappraisal, Rev. Mod. Phys. 80, 61115 (2008).10.1103/RevModPhys.80.61CrossRefGoogle Scholar
[223]Caroli, C. and Dubois-Violette, E., Energy of a Disinclination Line in an Anisotropic Cholesteric Liquid Crystal, Solid State Commun. 7, 799 (1969).10.1016/0038-1098(69)90764-9CrossRefGoogle Scholar
[224]Kamien, R. D. and Selinger, J. V., Order and Frustration in Chiral Liquid Crystals, J. Phys. Condens. Matter 13, R1–R22 (2001).10.1088/0953-8984/13/3/201Google Scholar
[225]Duzgun, A., Selinger, J. V., and Saxena, A., Comparing Skyrmions and Merons in Liquid Crystals and Magnets, Phys. Rev. B 97, 062706 (2018).10.1103/PhysRevE.97.062706CrossRefGoogle ScholarPubMed
[226]Mühlbauer, S., Binz, B., Jonietz, F., Pfleiderer, C., Rosch, A., Neubauer, A., Georgii, R., and Böni, P., Skyrmion Lattice in a Chiral Magnet, Science 323, 915919 (2019).10.1126/science.1166767CrossRefGoogle Scholar
[227]Bogdanov, A. N. and Rößler, U. K., Chiral Symmetry Breaking in Magnetic Thin Films and Multilayers, Phys. Rev. Lett. 87, 037203 (2001).10.1103/PhysRevLett.87.037203Google ScholarPubMed
[228]Imry, Y. and Ma, S.-K, Random-Field Instability of the Ordered State of Continuous Symmetry, Phys. Rev. Lett. 35, 13991401 (1975).Google Scholar
[229]Imry, Y. and Wortis, M., Influence of Quenched Impurities on First-Order Phase Transitions, Phys. Rev. B 19, 35803585 (1979).10.1103/PhysRevB.19.3580CrossRefGoogle Scholar
[230]Lubchenko, V. and Wolynes, P. G., Theory of Structural Glasses and Supercooled Liquids, Ann. Rev. Phys. Chem. 58, 235266 (2007).10.1146/annurev.physchem.58.032806.104653CrossRefGoogle Scholar
[231]Biroli, G and Garrahan, J. P., Perspective: The Glass Transition, J. Chem. Phys. 138, 12A301 (2013).Google Scholar
[232]Mydosh, J. A., Spin Glasses: An Experimental Introduction, Taylor & Francis, London, 1993.Google Scholar
[233]Cowley, R. A., Gvasaliyac†, S. N., Lushnikov, S. G., Roesslicand, B., and Rotaruc, G. M., Relaxing with Relaxors: A Review of Relaxor Ferroelectrics, Adv. Phys. 60, 229327 (2011).10.1080/00018732.2011.555385CrossRefGoogle Scholar
[234]Sharma, P. A., Kim, S. B., Koo, T. Y., Guha, S., and Cheong, S. -W., Reentrant Charge Ordering Transition in the Manganites as Experimental Evidence for Strain Glass, Phys. Rev. B 71, 224416 (2005).10.1103/PhysRevB.71.224416CrossRefGoogle Scholar
[235]Tolédano, P. and Manchon, D., Structural Mechanism Leading to a Ferroelastic Strain Glass State: Interpretation of Amophization under Pressure, Phys. Rev. B 71, 024210 (2005).10.1103/PhysRevB.71.024210CrossRefGoogle Scholar
[236]Sarkar, S., Ren, X., Otsuka, K., Evidence for Strain Glass in the Ferroelastic-Martensitic System Ti50+xNi50–x, Phys. Rev. Lett. 95, 205702 (2005).10.1103/PhysRevLett.95.205702CrossRefGoogle Scholar
[237]Lookman, T. and Ren, X., eds., Frustrated Materials and Ferroic Glasses, Springer-Verlag, Cham, Switzerland, 2018.10.1007/978-3-319-96914-5CrossRefGoogle Scholar
[238]Yamaguchi, Y. and Kimura, T., Magnetoelectric Control of Frozen State in a Toroidal Glass, Nature Comm. 4, 2063 (2013).Google Scholar
[239]Hurd, C. M., Varieties of Magnetic Order in Solids, Contemp. Phys. 23, 469493 (1982).10.1080/00107518208237096CrossRefGoogle Scholar
[240]Bedanta, S. and Kleemann, W., Supermagnetism, J. Phys. D Appl. Phys. 42, 013001 (2009).10.1088/0022-3727/42/1/013001CrossRefGoogle Scholar
[241]Ashcroft, N. W. and Mermin, N. D., Solid State Physics, Holt, Rinehart and Winston, Philadelphia, 1976.Google Scholar
[242]Ruderman, M. A. and Kittel, C., Indirect Exchange Coupling of Nuclear Magnetic Moments by Conduction Electrons, Phys. Rev. 96, 99 (1954).10.1103/PhysRev.96.99CrossRefGoogle Scholar
[243]Kasuya, T. A Theory of Metallic Ferro- and Antiferromagnetism on Zener’s Model, Prog. Theor. Phys. 16, 45 (1956).10.1143/PTP.16.45CrossRefGoogle Scholar
[244]Yoshida, K., Magnetic Properties of Cu-Mn Alloys, Phys. Rev. 106, 893 (1957).10.1103/PhysRev.106.893CrossRefGoogle Scholar
[245]Cole, R. B., Sarkissian, B. V. B., Taylor, R. H., The Role of Finite Magnetic Clusters in Au-Fe Alloys Near the Percolation Concentration, Philos. Mag. B 37, 489498 (1978).Google Scholar
[246]Maletta, H. and Convert, P., Onset of Ferromagnetism in EuxSr1–x Near x = 0.5, Phys. Rev. Lett. 42, 108111 (1979).10.1103/PhysRevLett.42.108CrossRefGoogle Scholar
[247]Kasuya, T., Exchange Mechanisms in Europium Chalcogenides, IBM J. Res. Dev. 14, 214223 (1970).Google Scholar
[248]Börgermann, F. -J., Maletta, H., Zinn, W., EuxSr1–x Te: Spin-Glass Behavior in a Diluted Antiferromagnet, Phys. Rev. B 35, 8454–8461 (1986).Google Scholar
[249]Fischer, K. H. and Hertz, J. A., Spin Glasses, Cambridge University Press, Cambridge, 1991.10.1017/CBO9780511628771Google Scholar
[250]Nagata, S., Keesom, P. H., Harrison, H. R., Low-dc-field Susceptibility of CuMn Spin Glass, Phys. Rev. B 19, 16331638 (1979).10.1103/PhysRevB.19.1633CrossRefGoogle Scholar
[251]Suzuki, M., Phenomenological Theory of Spin-Glasses and Some Rigorous Results, Prog. Ther. Phys. 58, 11511165 (1981).Google Scholar
[252]Barbara, B., Malozernoff, A. I., and Imry, I., Scaling of Nonlinear Susceptibility in MnCu and GdAl Spin-Glasses, Phys. Rev. Lett. 47, 1852–1855 (1981).10.1103/PhysRevLett.47.1852CrossRefGoogle Scholar
[253]Mulder, C. A. M., van Duyneveldt, A. J., Mydosh, J. A., Susceptibility of the CuMn Spin-Glass: Frequency and Field Dependences, Phys. Rev. 23, 13841396 (1981).10.1103/PhysRevB.23.1384CrossRefGoogle Scholar
[254]Hohenberg, P. C. and Halperin, B. I., Theory of Dynamic Critical Phenomena, Rev. Mod. Phys. 49, 435479 (1977).10.1103/RevModPhys.49.435CrossRefGoogle Scholar
[255]Shtrikman, S. and Wohlfarth, E. P., The Theory of the Vogel-Fulcher Law of Spin Glasses, Phys. Lett. A 85, 467470 (1981).10.1016/0375-9601(81)90441-2CrossRefGoogle Scholar
[256]Bohn, H. G., Zinn, W., Dorner, D., and Kollmar, A., Neutron Scattering Study of Spin Waves and Exchange Interactions in Ferromagnetic EuS, Phys. Rev. B 22, 54475452 (1980).10.1103/PhysRevB.22.5447CrossRefGoogle Scholar
[257]Edwards, S. F. and Anderson, P. W., Theory of Spin Glasses, J. Phys. F: Metal Phys. 5, 965974 (1975).Google Scholar
[258]Nattermann, T., Theory of the Random Field Ising Model, in Spin Glasses and Random Fields, edited by Young, A. P., Series on Directions in Condensed Matter Physics, World Scientific, pp. 227–298 (1997).10.1142/9789812819437_0009CrossRefGoogle Scholar
[259]Southern, B. W., Effective-Field Approximations for Disordered Magnets, J. Phys. C: Solid Stat. Phys, 9, 40114020 (1975).Google Scholar
[260]Sherrington, D. and Kirkpatrick, S., Solvable Model of a Spin-Glass, Phys. Rev. Lett. 35, 17921796 (1975).10.1103/PhysRevLett.35.1792CrossRefGoogle Scholar
[261]de Almeida, J. R. L. and Thouless, D. J., Stability of the Sherrington-Kirkpatrick Solution of a Spin Glass Model, J. Phys. A: Math. Gen. 11, 983990 (1978).10.1088/0305-4470/11/5/028CrossRefGoogle Scholar
[262]Parisi, G., Infinite Number of Order Parameters for Spin-Glasses, Phys. Rev. Lett. 43, 17541756 (1979).10.1103/PhysRevLett.43.1754CrossRefGoogle Scholar
[263]Kutnjak, Z., Pirc, R., Levstik, A., Levstik, I., Filipic, C., and Blinc, R., Observation of the Freezing Line in a Deuteron Glass, Phys. Rev. B 50, 12421–12428 (1994).10.1103/PhysRevB.50.12421CrossRefGoogle Scholar
[264]Pirc, R., Tadić, B., and Blinc, R., Random-Field Smearing of the Proton-Glass Transition, Phys. Rev. B. 36, 86078615 (1987).10.1103/PhysRevB.36.8607CrossRefGoogle ScholarPubMed
[265]Cowley, R. A., Gvasaliyac, S. N., Lushnikov, S. G., Roessli, B., and Rotaru, G. M., Relaxing with Relaxors: A Review of Relaxor Ferroelectrics, Adv. Phys. 60, 229327 (2011).10.1080/00018732.2011.555385CrossRefGoogle Scholar
[266]Cross, L. E., Relaxor Ferroelectrics, Ferroelectrics 76, 241267 (1987).10.1080/00150198708016945CrossRefGoogle Scholar
[267]Samara, G. A., Ferroelectricity Revisited – Advances in Materials and Physics, Sol. State Phys. 56, 239458 (2001).Google Scholar
[268]Westphal, V., Kleeman, W., and Glinchuk, M. D., Diffuse Phase Transitions and Random-Field-Induced Domain States of the “Relaxor” Ferroelectric PbMg1/3Nb2/3O3, Phys. Rev. Lett. 68, 847– (1992).Google Scholar
[269]Pirc, R. and Blinc, R., Spherical Random-Bond-Random-Field Model of Relaxor Ferroelectric, Phys. Rev. B 60, 13470–13478 (1999).10.1103/PhysRevB.60.13470CrossRefGoogle Scholar
[270]Kutnjak, Z., Filipič, C., Pirc, R., Levstik, A., Farhi, R., and El Marssi, M., Slow Dynamics and Ergodicity Breaking in a Lanthanum-Modified Lead Zirconate Titanate Relaxor System, Phys. Rev. B 59, 294301 (1999).10.1103/PhysRevB.59.294CrossRefGoogle Scholar
[271]Ren, X., Wang, Y., Zhou, Y., Zhang, Z., Wang, D., Fan, G., Otsuka, K., Suzuki, T., Ji, Y., Zhang, J., Tian, Y., Hou, S., and Ding, X., Strain Glass in Ferroelastic Systems: Premartensitic Tweed versus Strain Glass, Philos. Mag. 90, 141157 (2010).10.1080/14786430903074771CrossRefGoogle Scholar
[272]Lloveras, P., Castán, T., Porta, M., Planes, A., and Saxena, A., Influence of Anisotropy on Structural Nanoscale Textures, Phys. Rev. Lett. 100, 165707 (2008).10.1103/PhysRevLett.100.165707CrossRefGoogle ScholarPubMed
[273]Planes, A., Lloveras, P., Castán, T., Saxena, A., and Porta, M., Ginzburg-Landau Modelling of Precusror Nanoscale Textures in Ferroeleastic Materials, Continnum Mech. Thermodym. 24, 619–627 (2012).Google Scholar
[274]Vasseur, R. and Lookman, T., Effects of Disorder in Ferroelastics: A Spin Model for Strain Glass, Phys. Rev. B 81, 094107 (2010).10.1103/PhysRevB.81.094107CrossRefGoogle Scholar
[275]Chakrabarti, B. K. and Acharyya, M., Dynamic Transitions and Hysteresis, Rev. Mod. Phys. 71, 847859 (1999).10.1103/RevModPhys.71.847CrossRefGoogle Scholar
[276]Sethna, J. P., Dahmen, K. A., and Myers, C. R., Crackling Noise, Nature 410, 242250 (2001).10.1038/35065675CrossRefGoogle ScholarPubMed
[277]Koshelev, A. E. and Vinokur, V. M., Dynamic Melting of the Vortex Lattice, Phys. Rev. Lett. 73, 35803583 (1994).10.1103/PhysRevLett.73.3580CrossRefGoogle ScholarPubMed
[278]Kes, P. H., Kokubo, N., and Besseling, R., Vortex Matter Driven through Mesoscopic Channels, Physica C 408410, 478 (2004).10.1016/j.physc.2004.03.182CrossRefGoogle Scholar
[279]Jiang, Q., Yang, H.-N., and Wang, G.-C., Scaling and Dynamics of Low-Frequency Hysteresis Loops in Ultrathin Co Films on a Cu(001) Surface, Phys. Rev. B 52, 14911 (1995).10.1103/PhysRevB.52.14911CrossRefGoogle ScholarPubMed
[280]Ogawa, N., Murakami, Y., and Miyano, K., Charge-Density-Wave Phase Reconstruction in the Photoinduced Dynamic Phase Transition in K0.3MoO3, Phys. Rev. B 65, 155107 (2002).10.1103/PhysRevB.65.155107CrossRefGoogle Scholar
[281]Geng, Z., Peters, K. J. H., Trichet, A. A. P., Malmir, K., Kolkowski, R., Smith, J. M., and Rodriguez, S. R. K., Universal Scaling in the Dynamic Hysteresis, and Non-Markovian Dynamics, of a Tunable Optical Cavity, Phys. Rev. Lett. 124, 153603 (2020).10.1103/PhysRevLett.124.153603CrossRefGoogle ScholarPubMed
[282]Tomé, T. and de Oliveira, M. J., Dynamic Phase Transition in the Kinetic Ising Model under a Time-Dependent Oscillating Field, Phys. Rev. A 41, 42514254 (1990).10.1103/PhysRevA.41.4251CrossRefGoogle Scholar
[283]Bader, S. D. and Moog, E. R., Magnetic Properties of Novel Epitaxial Films, J. Appl. Phys. 61, 3729 (1987).10.1063/1.338673CrossRefGoogle Scholar
[284]He, Y.-L. and Wang, G.-C., Observation of Dynamic Scaling of Magnetic Hysteresis in Ultrathin Ferromagnetic Fe/Au(001) Films, Phys. Rev. Lett. 70, 23362339 (1993).10.1103/PhysRevLett.70.2336CrossRefGoogle ScholarPubMed
[285]Suen, J.-S and Erskine, J. L., Magnetic Hysteresis Dynamics: Thin p(1×1) Fe Films on Flat and Stepped W(110), Phys. Rev. Lett. 78, 3567 (1997).10.1103/PhysRevLett.78.3567CrossRefGoogle Scholar
[286]Gallardo, R., Idigoras, O., Landeros, P., and Berger, A., Analytical Derivation of Critical Exponents of the Dynamic Phase Transition in the Mean-Field Approximation, Phys. Rev. E 86, 051101 (2012).10.1103/PhysRevE.86.051101CrossRefGoogle ScholarPubMed
[287]Sethna, J. P., Dahmen, K., Kartha, S., Krumhansl, J. A., Roberts, B. W., and Shore, J. D., Hysteresis and Hierarchies: Dynamics of Disorder-Driven First-Order Phase Transformations, Phys. Rev. Lett. 70, 33473350 (1993).10.1103/PhysRevLett.70.3347CrossRefGoogle ScholarPubMed
[288]Kumar, S. K., Biroli, G., and Tarjus, G., Spinodals with Disorder: From Avalanches in Random Magnets to Glassy Dynamics, Phys. Rev. Lett 116, 145701 (2016).Google Scholar
[289]McClure, J. C. and Schröder, K., The Magnetic Barkhausen Effect, Crit. Rev. Solid State Sci. 6, 4583 (1976).Google Scholar
[290]Durin, G. and Zapperi, S., The Role of Stationarity in Magnetic Crackling Noise, J. Stat. Mech.: Theory and Experiment 2006, P01002.10.1088/1742-5468/2006/01/P01002CrossRefGoogle Scholar
[291]Zapperi, S., Cizeau, P., Durin, G., and Stanley, H. E., Dynamics of a Ferromagnetic Domain Wall: Avalanches, Depinning Transition, and Barkhausen Effect, Phys. Rev. B 58, 63536366 (1998).10.1103/PhysRevB.58.6353CrossRefGoogle Scholar
[292]da Silveira, R., An Introduction to Breakdown Phenomena in Disorderd Systems, Am. J. Phys. 67, 11771188 (1999).10.1119/1.19104CrossRefGoogle Scholar
[293]Perković, O., Dahmen, K., and Sethna, J. P., Avalanches, Barkhausen Noise, and Plain Old Criticality, Phys. Rev. Lett. 75, 45284531 (1995).10.1103/PhysRevLett.75.4528CrossRefGoogle ScholarPubMed
[294]Berger, A., Inomata, J. S., Jiang, J. S., Pearson, J. E., and Bader, S. D., Experimental Observation of Disorder-Driven Hysteresis-Loop Criticality, Phys. Rev. Lett. 85, 41764179 (2000).10.1103/PhysRevLett.85.4176CrossRefGoogle ScholarPubMed
[295]Marcos, J., Vives, E., Mañosa, L., Acet, M., Duman, E., Morin, M., Novák, V., and Planes, A., Disorder Induced Non-Equilibrium Phase Transition in Magnetically Glassy Cu-Al-Mn, Phys. Rev. B 67, 224406 (2003).10.1103/PhysRevB.67.224406CrossRefGoogle Scholar
[296]Pérez-Reche, F. J., Experimentos y modelos en sistemas que presentan transiciones de fase de primer orden con dinámica de avalanchas, PhD Thesis, University of Barcelona, 2005, http://hdl.handle.net/2445/35492.Google Scholar
[297]Lieneweg, U. and Grosse-Nobis, W., Distribution of Size and Duration of Barkhausen Pulses and Energy Spectrum of Barkhausen Noise Investigated on 81% Nickel-Iron after Heat Treatment, Int. J. Magn. 3, 11–16 (1972).Google Scholar
[298]Durin, G. and Zapperi, S., The Barkhausen Effect in The Science of Hysteresis Vol. II, Chap. 3, edited by Bertotti, G. and Mayergoyz, I., pp. 181–267, Academic Press, Oxford, 2006.Google Scholar
[299]Schwarz, A., Liebmann, M., Kaiser, U., Wiesendanger, R., Noh, T. W., and Kim, D. W., Visualization of the Barkhausen Effect by Magnetic Force Microscopy, Phys. Rev. Lett. 92, 077206 (2004).10.1103/PhysRevLett.92.077206CrossRefGoogle ScholarPubMed
[300]Perković, O., Dahmen, K., and Sethna, J. P. Disorder-Induced Critical Phenomena in Hysteresis: A Numerical Scaling Analysis, arXiv:cond-mat/9609072v1 6 Sep 1996, unpublished.Google Scholar
[301]Sethna, J. P., Dahmen, K., and Perković, Random-Field Ising Models of Hysteresis in The Science of Hysteresis Vol. II, Chap. 2, edited by Bertotti, G. and Mayergoyz, I., pp. 107–179, Academic Press, Oxford, 2006.10.1016/B978-012480874-4/50013-0CrossRefGoogle Scholar
[302]Tan, C. D., Flannigan, C., Gardner, J., Morrison, F. D., Salje, E. K. H., and Scott, J. F., Electrical Studies of Barkhausen Switching Noise in Ferroelectric PZT: Critical Exponents and Temperature Dependence, Phys. Rev. Mat. 3, 034402 (2019).Google Scholar
[303]Salje, E. K. H., Xue, D., Ding, D., Dahmen, K., and Scott, J. F., Ferroelectric Switching and Scale Invariant Avalanches in BaTiO3, Phys. Rev. Mat. 3, 014415 (2019).Google Scholar
[304]Pérez-Reche, F. J., Stipcich, M., Vives, E., Mañosa, L., Planes, A., and Morin, M., Kinetics of Martensitic Transitions in Cu-Al-Mn under Thermal Cycling: Analysis at Multiple Length Scales, Phys. Rev. B 69, 0641001 (2004).10.1103/PhysRevB.69.064101CrossRefGoogle Scholar
[305]Pérez-Reche, F. J., Truskinovsky, L., and Zanzotto, G., Training-Induced Criticality in Martensites, Phys. Rev. Lett. 99, 075501 (2006).10.1103/PhysRevLett.99.075501CrossRefGoogle Scholar
[306]Porta, M., Castán, T., Saxena, A., and Planes, A., Influence of the Number of Orientational Domains on Avalanche Criticality in Ferroelastic Transitions, Phys. Rev. E 100, 062115 (2019).10.1103/PhysRevE.100.062115CrossRefGoogle ScholarPubMed
[307]Xu, Y., Xue, D., Zhou, Y., Su, T., Ding, X., Sun, J., and Salje, E. K. H., Avalanche Dynamics of Ferroelectric Phase Transitions in BaTiO3 and 0.7Pb(Mg2/3Nb1/3)O3-0.3PbTiO3 Single Crystals, Appl. Phys. Lett. 115, 022901 (2019).10.1063/1.5099212CrossRefGoogle Scholar
[308]Bonnot, E., Mañosa, L., Planes, A., Soto-Parra, D., and Vives, E., Acoustic Emission in the fcc-fct Martensitic Transition of Fe68.8Pd31.2, Phys. Rev. B 78, 184103 (2008).10.1103/PhysRevB.78.184103CrossRefGoogle Scholar
[309]Bertotti, G., Hysteresis in Magnetism, Academic Press, San Diego, 1998.Google Scholar
[310]Barker, J. A., Schreiber, D. E., Huth, B. G., and Everett, D. H., Magnetic Hysteresis and Minor Loops: Models and Experiments, Proc. R. Soc. Lond. A 386, 251–261 (1983).Google Scholar
[311]Gutenberg, R. and Richter, C. F., Seismicity of the Earth and Associated Phenomena, Princeton University Press, Princeton, NJ, 1949.Google Scholar
[312]Baró, J., Corral, A., Illa, X., Planes, A., Salje, E. K. H., Schranz, W., Soto-Parra, E., and Vives, E., Statistical Similarity between the Compression of a Porous Material and Earthquakes, Phys. Rev. Lett. 110, 088702 (2013).10.1103/PhysRevLett.110.088702CrossRefGoogle ScholarPubMed
[313]Bonamy, D. and Bouchaud, E., Failure of Heterogeneous Materials: A Dynamic Phase Transition?, Phys. Rep. 498, 144 (2011).10.1016/j.physrep.2010.07.006CrossRefGoogle Scholar
[314]Van Delft, D. and Kes, P., The Discovery of Superconductivity, Phys. Today 63, 3842 (2010).10.1063/1.3490499CrossRefGoogle Scholar
[315]Drude, P., Zur Elektronentheorie der Metalle, Annalen der Physik 306, 566613 (1900).10.1002/andp.19003060312CrossRefGoogle Scholar
[316]Kamerlingh Onnes, H., The Resistance of Pure Mercury at Liquid Helium, Commun. Phys. Lab. Univ. Leiden, 120b, 1479–1481 (1911); The Disappearence of the Resistance of Mercury, ibid., 122b, 81–83 (2011); On the Sudden Change in the Rate at Which the Resistance of Mercury Disappears, ibid., 124c, 799–801 (2011).Google Scholar
[317]Meissner, W. and Ochsenfeld, R., Ein neuer Effekt bei Eintritt der Supraleitfähigkeit, Naturwissenschaften 21, 787788 (1933).10.1007/BF01504252CrossRefGoogle Scholar
[318]McMillan, W. L., Transition Temperature of Strong-Coupled Superconductors, Phys. Rev. 167, 331344 (1968).10.1103/PhysRev.167.331CrossRefGoogle Scholar
[319]Bednorz, J. G. and Müller, K. A., Possible High Tc Superconductivity in the Ba-La-Cu-O System, Z. Phys. B 64, 189–193 (1986).Google Scholar
[320]Kleinert, H., Order of Superconductive Phase Transition, Condensed Matter Phys. 8, 7586 (2005).Google Scholar
[321]Gottlieb, U., Lasjaunias, J. C., Tholence, J. L., Laborde, O., Thomas, O., and Madar, R., Superconductivity in TaSi2 Single Crystals, Phys. Rev. B 45, 48034806 (1992).10.1103/PhysRevB.45.4803CrossRefGoogle ScholarPubMed
[322]London, F. and London, H., The Electromagnetic Equations of the Supraconductor, Proc. Roy. Soc. A 149, 71–88 (1935).Google Scholar
[323]Abrikosov, A. A., On the Magnetic Properties of Superconductors of the Second Group. J. Phys. Chem. Solids 5, 11741182 (1957).Google Scholar
[324]Abramowitz, M. and Stegun, I. A., eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Mathematical Series, Washington DC, 1964.Google Scholar
[325]Phillips, N. E., Heat Capacity of Aluminum between 0.l°K and 4.0°K, Phys. Rev. 114, 676685 (1959).10.1103/PhysRev.114.676CrossRefGoogle Scholar
[326]Ginzburg, V. L. and Landau, L. D., On the Theory of Superconductivity, Zh. Eksp. Teor. Fiz. 20, 1064–1082 (1950). English translation in: Landau, L. D Collected Papers, edited by Ter Haar, D., Press, Pergamon, Oxford, 1965,p. 546–568.Google Scholar
[327]Annett, J. F., Superconductivity, Superfluids and Condensates, Oxford University Press, Oxford, 2004.10.1093/oso/9780198507550.001.0001CrossRefGoogle Scholar
[328]Abrikosov, A. A., On the Magnetic Properties of Superconductors of Second Group, Sov. Phys. JEPT 5, 1174–1182 (1957).Google Scholar
[329]Hess, H. F., Robinson, R. B., Dynes, R. C., Valles, Jr., J. M., and Waszczak,J. V., Scanning-Tunneling-Microscope Observation of the Abrikosov Flux Lattice and the Density of States near and inside a Fluxoid, Phys. Rev. Lett. 62, 214216 (1989).10.1103/PhysRevLett.62.214CrossRefGoogle Scholar
[330]Riseman, T. M., Kealey, P. G., Forgan, E. M., Mackenzie, A. P., Galvin, L. M., Tyler, A. W., Lee, L. S., Ager, C., McK. Paul, D., Aegerter, C. M., Cubittk, R., Mao, Z. Q., Akima, T., and Maeno, Y., Observation of a Square Flux-Line Lattice in the Unconventional Superconductor Sr2RuO4, Nature 396, 242245 (1998).10.1038/24335Google Scholar
[331]Altshuler,. E. and Johansen, T. H., Colloquium: Experiments in Vortex Avalanches, Rev. Mod. Phys. 76, 471–487 (2004).Google Scholar
[332]Field, S., Witt, J., Nori, F., and Ling, X., Superconducting Vortex Avalanches, Phys. Rev. Lett. 74, 12061209 (1995).10.1103/PhysRevLett.74.1206CrossRefGoogle ScholarPubMed
[333]de Gennes, P. G., An Analogy between Superconductors and Smectics A, Solid State Comm. 10, 753–756 (1972).Google Scholar
[334]Renn, S. R. and Lubensky, T., Abrikosov Dislocation Lattice in a Model of the Cholesteric–to–Smectic-A Transition, Phys. Rev. A 38, 21322147 (1988).10.1103/PhysRevA.38.2132CrossRefGoogle Scholar
[335]Goodby, J. W., Waugh, M. A., Stein, S. M., Chin, E., Pindak, R., and Patel, J. S., Characterization of a New Helical Smectic Liquid Crystal, Nature, 337, 449452 (1989).10.1038/337449a0CrossRefGoogle Scholar
[336]Bardeen, J., Cooper, L. N., and Schrieffer, J. R., Microscopic Theory of Superconductivity, Phys. Rev. 106, 162164 (1957).10.1103/PhysRev.106.162CrossRefGoogle Scholar
[337]Cooper, L, Bound Electron Pairs in a Degenerate Fermi Gas, Phys. Rev. 104, 11891190 (1956).10.1103/PhysRev.104.1189Google Scholar
[338]Giaever, I. and Megerle, K., Study of Superconductors by Electron Tunneling, Phys. Rev. 122, 11011111 (1961).10.1103/PhysRev.122.1101Google Scholar
[339]Gor’kov, L. P., Microscopic Derivation of the Ginzburg-Landau Equations in the Theory of Superconductivity, Sov. Phys. JETP 36, 1364–1367 (1959).Google Scholar
[340]de Gennes, P. G., Role of Double Exchange in Copper Oxides of Mixed Valency, Comptes Rendus Acad. Sci. (Paris) 305, 345–348 (1987).Google Scholar
[341]O’Mahony, S. M., Ren, W., Chen, W., and Séamus Davis, J. C., On the Electron Pairing Mechanism of Copper-Oxide High Temperature Superconductivity, PNAS 119, e2207449119 (2022).10.1073/pnas.2207449119Google Scholar
[342]Moriya, T. and Ueda, K., Spin Fluctuations and High Temperature Superconductivity, Adv. Phys. 49, 555606 (2010).10.1080/000187300412248CrossRefGoogle Scholar
[343]Hattori, T., Ihara, Y., Nakai, Y., Ishida, K., Tada, Y., Fujimoto, S., Kawakami, N., Osaki, E., Deguchi, K., Sato, N. K., and Satoh, I., Superconductivity Induced by Longitudinal Ferromagnetic Fluctuations in UCoGe, Phys. Rev. Lett. 108, 066403 (2012).10.1103/PhysRevLett.108.066403Google ScholarPubMed
[344]Gorter, C. J. and Casimir, H. G. B., On Supraconductivity I, Physica 1, 306–320 (1934); Gorter, C. J., The Two Fluid Model for Superconductors and Helium II, in Progress in Low Temperature Physics, Vol. I, edited by Gorter, C. J., North-Hollad Publishing Company, Amsterdam, 1955, pp. 1–16.Google Scholar
[345]Sachdev, S., Quantum Phase Transitions, Phys. World, 12, 33–38 (1999); Sachdev, S. and Keimer, B., Quantum Criticality, Phys. Today, 64, 29–35 (2011).Google Scholar
[346]Hertz, J. A., Quantum Critical Phenomena, Phys. Rev. B 14, 11661184 (1976).10.1103/PhysRevB.14.1165Google Scholar
[347]Sondhi, S. L., Girvin, S. M., Carin, J. P., and Shahar, D., Continuous Quantum Phase Transitions, Rev. Mod. Phys. 69, 315333 (1997).10.1103/RevModPhys.69.315CrossRefGoogle Scholar
[348]Vojta, M., Quantum Phase Transitions, Rep. Prog. Phys. 66, 20692110 (2003).Google Scholar
[349]Bitko, D., Rosenbaum, T. F., and Aeppli, G., Quantum Critical Behavior for a Model Magnet, Phys. Rev. Lett. 77, 940943 (1996).10.1103/PhysRevLett.77.940Google ScholarPubMed
[350]Coldea, R., Tennant, D. A., Wheeler, E. M., Wawrzynska, E., Prabhakaran, D., Telling, M., Habicht, K., Smeibidl, P., and Kiefe, K., Quantum Criticality in an Ising Chain: Experimental Evidence for Emergent E8 Symmetry, Science 327, 177180 (2010).10.1126/science.1180085CrossRefGoogle Scholar
[351]Rüegg, C., Furrer, A., Sheptyakov, D., Strässle, T., Krämer, K. W., Güdel, H. -U., and Mélési, Pressure-Induced Quantum Phase Transition in the Spin-Liquid TlCuCl, Phys. Rev. Lett. 93, 257201 (2004).10.1103/PhysRevLett.93.257201Google Scholar
[352]Rüegg, C., Normand, B., Matsumoto, M., Furrer, A., McMorrow, D. F., Krämer, K. W., Güdel, H. -U., Gvasaliya, S. N., Mutka, H., and Boehm, M., Quantum Magnets under Pressure: Controlling Elementary Excitations in TlCuCl3, Phys. Rev. Lett. 100, 205701 (2008).10.1103/PhysRevLett.100.205701CrossRefGoogle Scholar
[353]Ando, Y., Komiya, S., Segawa, K., Ono, S., and Kurita, Y., Electronic Phase Diagram of High-Tc Cuprate Superconductors from a Mapping of the In-Plane Resistivity Curvature, Phys. Rev. Lett. 93, 267001 (2004).10.1103/PhysRevLett.93.267001CrossRefGoogle ScholarPubMed
[354]Armitage, N. P., Fournier, P., and Green, R. L., Progress and Perspectives on Electron-Doped Cuprates, Rev. Mod. Phys. 82, 24212487 (2010).10.1103/RevModPhys.82.2421CrossRefGoogle Scholar
[355]Kasahara, S., Shibauchi, T., Hashimoto, K., Ikada, K., Tonegawa, S., Okazaki, R., Shishido, H., Ikeda, H., Takeya, H., Hirata, K., Terashima, and T., Matsuda, Y., Evolution from Non-Fermi- to Fermi-Liquid Transport via Isovalent Doping in BaFe2(As1–xPx)2 Superconductors, Phys. Rev. B 81, 184519 (2010).10.1103/PhysRevB.81.184519CrossRefGoogle Scholar
[356]Sachdev, S., Where Is the Quantum Critical Point in the Cuprate Superconductors?, Phys. Stat. Sol. B 247, 537–543 (2010).Google Scholar
[357]Thompson, C. J., Classical Equilibrium Statistical Mechanics, Clarendon Press, Oxford, 1988.Google Scholar
[358]International Tables for Crystallography, Vols. A to I, Wiley, 2019 (online version available at, https://it.iucr.org/).Google Scholar
[359]Hatch, D. M., Lookman, T., Saxena, A., and Shenoy, S. R., Proper Ferroelastic Transitions in Two Dimensions: Anisotropic Long-Range Kernels, Domain Wall Orientations, and Microstructure, Phys. Rev. B 68, 104105 (2003).10.1103/PhysRevB.68.104105CrossRefGoogle Scholar
[360]Stokes, H. T. and Hatch, D. M., Isotropy Subgroups of the 230 Crystallographic Space Groups, World Scientific, Singapore, 1988. The software package ISOTROPY is available at www.physics.byu.edu/stokesh/isotropy.html.Google Scholar
[361]Bilbao Crystallographic Server: www.cryst.ehu.es/.Google Scholar
[362]Hu, H. L. and Chen, L. Q., Computer Simulation of 90° Ferroelectric Domain Formation in Two-Dimensions, Mater. Sci. Eng. A 238, 182191 (1997).10.1016/S0921-5093(97)00453-XCrossRefGoogle Scholar
[363]Ahluwalia, R. and Cao, W., Influence of Dipolar Defects on Switching Behavior in Ferroelectrics, Phys. Rev. B 63, 012103 (2001).10.1103/PhysRevB.63.012103CrossRefGoogle Scholar
[364]Saxena, A., Barsch, G. R., and Hatch, D. M., Lattice Dynamics Representation Theory versus Isotropy Subgroup Method with Application to M-5 Mode Instability in CsCl Structure, Phase Trans. 46, 89–142 (1994).Google Scholar
[365]Saxena, A. and Lookman, T., Magnetic Symmetry of Low-Dimensional Multiferroics and Ferroelastics, Phase Trans. 84, 421–437 (2011).Google Scholar
[366]Birss, R. R., Symmetry and Magnetism, North-Holland, Amsterdam, 1964.Google Scholar
[367]Srinivasan, S. G., Hatch, D. M., Stokes, H. T., Saxena, A., Albers, R. C., and Lookman, T., Mechanism for BCC to HCP Transformation: Generalization of the Burgers Model, arXiv:cond-mat/0209530.Google Scholar
[368]Hatch, D. M., Lookman, T., Saxena, A., and Stokes, H. T., Systematics of Group-Nonsubgroup Transitions: Square to Triangle Transition, Phys. Rev. B 64, 060104 (2001).10.1103/PhysRevB.64.060104CrossRefGoogle Scholar

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Antoni Planes, University of Barcelona, Avadh Saxena, Los Alamos National Laboratory
  • Book: Phase Transitions
  • Online publication: 01 May 2025
  • Chapter DOI: https://doi.org/10.1017/9781009549776.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Antoni Planes, University of Barcelona, Avadh Saxena, Los Alamos National Laboratory
  • Book: Phase Transitions
  • Online publication: 01 May 2025
  • Chapter DOI: https://doi.org/10.1017/9781009549776.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Antoni Planes, University of Barcelona, Avadh Saxena, Los Alamos National Laboratory
  • Book: Phase Transitions
  • Online publication: 01 May 2025
  • Chapter DOI: https://doi.org/10.1017/9781009549776.014
Available formats
×