Published online by Cambridge University Press: 19 June 2025
The phenomenological theory proposed by Einstein for interpreting the phenomenon of Brownian motion is described in detail. The alternative approaches due to Langevin and Fokker–Planck are also illustrated. The theory of Markov chains is also reported as a basic mathematical approach to stochastic processes in discrete space and time; various of its applications, for example, the Monte Carlo method, are also illustrated. The theory of stochastic equations, as a representation of stochastic processes in continuous space–time, is discussed and used for obtaining a generalized, rigorous formulation of the Langevin and Fokker–Planck equations for generalized fluctuating observables. The Arrhenius formula as an example of the first exit-time problem is also derived.
To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.