Skip to main content Accessibility help
×
Hostname: page-component-54dcc4c588-r5qjk Total loading time: 0 Render date: 2025-10-12T01:08:52.099Z Has data issue: false hasContentIssue false

Chapter 4 - Neoplasms of Cutaneous Appendages

Published online by Cambridge University Press:  17 June 2025

Mai P. Hoang
Affiliation:
Harvard Medical School, Boston
Get access

Summary

Traditionally tumors derived from the cutaneous appendages are classified according to their lines of differentiation: either follicular, sebaceous, eccrine or apocrine. However, there are overlapping histologic features and the classification is far from being straight forward. Often a tumor would exhibit multiple lines of differentiation with features of both eccrine and apocrine and even sebaceous differentiation. In some instances, immunohistochemistry can be of help in distinguishing epidermal from adnexal origin, benign from malignant adnexal neoplasms, and primary adnexal carcinoma from cutaneous metastases.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Gibbs, DC, Yeung, H, Blalock, TW. Incidence and trends of cutaneous adnexal tumors in the United States in 2000–2018: a population-based study. J Am Acad Dermatol 2023; 88: 226–8.CrossRefGoogle ScholarPubMed
Battistella, M, Balme, B, Jullie, ML, et al. Impact of expert pathology review in skin adnexal carcinoma diagnosis: analysis of 2573 patients from the French CARADERM network. Eur J Cancer 2022; 163: 211–21.CrossRefGoogle ScholarPubMed
Wysong, A, Aasi, SZ, Tang, JY. Update on metastatic basal cell carcinoma: a summary of published cases from 1981 through 2011. JAMA Dermatol 2013; 149: 615–16.CrossRefGoogle ScholarPubMed
Beer, TW, Shepherd, P, Theaker, JM. BerEP4 and epithelial membrane antigen aid distinction of basal cell, squamous cell and basosquamous carcinomas of the skin. Histopathology 2000; 37: 218–23.CrossRefGoogle Scholar
Linskey, KR, Gimbel, DC, Zukerberg, LR, Duncan, LM, Sadow, PM, Nazarian, RM. BerEp4, cytokeratin 14, and cytokeratin 17 immunohistochemical staining aid in differentiation of basaloid squamous cell carcinoma from basal cell carcinoma with squamous metaplasia. Arch Pathol Lab Med 2013; 137: 1591–8.CrossRefGoogle ScholarPubMed
Kurzen, H, Esposito, L, Langbein, L, Hartschuh, W. Cytokeratins as markers of follicular differentiation: an immunohistochemical study of trichoblastoma and basal cell carcinoma. Am J Dermatopathol 2001; 23: 501–9.CrossRefGoogle ScholarPubMed
Evangelista, MT, North, JP. Comparative analysis of cytokeratin 15, TDAG51, cytokeratin 20 and androgen receptor in sclerosing adnexal neoplasms and variants of basal cell carcinoma. J Cutan Pathol 2015; 42: 824–31.CrossRefGoogle ScholarPubMed
Costache, M, Bresch, M, Boer, A. Desmoplastic trichoepithelioma versus morphoeic basal cell carcinoma: a critical reappraisal of histomorphological and immunohistochemical criteria for differentiation. Histopathology 2008; 52: 865–76.CrossRefGoogle ScholarPubMed
Katona, TM, Perkins, SM, Billings, SD. Does the panel of cytokeratin 20 and androgen receptor antibodies differentiate desmoplastic trichoepithelioma from morpheaform/infiltrative basal cell carcinoma? J Cutan Pathol 2008; 35: 174–9.CrossRefGoogle Scholar
Carrasquillo, OY, Cruzval-O’Reilly, E, Sanchez, JE, Valentin-Nogueras, SM. Differentiation of basal cell carcinoma and trichoepithelioma: an immunohistochemical study. Am J Dermatopathol 2021; 43: 191–7.CrossRefGoogle ScholarPubMed
Krahl, D, Sellheyer, K. p75 neurotrophin receptor differentiates between morphoeic basal cell carcinoma and desmoplastic trichoepithelioma: insights into the histogenesis of adnexal tumours based on embryology and hair follicle biology. Br J Dermatol 2010; 163: 138–45.CrossRefGoogle ScholarPubMed
Yeh, I, McCalmont, TH, LeBoit, PE. Differential expression of PHLDA1 (TDAG51) in basal cell carcinoma and trichoepithelioma. Br J Dermatol 2012; 167: 1106–10.CrossRefGoogle ScholarPubMed
Koga, K, Anan, T, Fukumoto, T, Fujimoto, M, Nabeshima, K. Ln-gamma 2 chain of laminin-332 is a useful marker in differentiating between benign and malignant sclerosing adnexal neoplasms. Histopathology 2022; 76: 318–24.Google Scholar
Pham, TTN, Selim, MA, Burchette, JL, Madden, J, Turner, J, Herman, C. CD10 expression in trichoepithelioma and basal cell carcinoma. J Cutan Pathol 2006; 33: 123–8.CrossRefGoogle ScholarPubMed
Illueca, C, Monteagudo, C, Revert, A, et al. Diagnostic value of CD34 immunostaining in desmoplastic trichilemmoma. J Cutan Pathol 1998; 25: 435–9.CrossRefGoogle ScholarPubMed
Dalton, SR, LeBoit, PE. Squamous cell carcinoma with clear cells: how often is there evidence of tricholemmal differentiation? Am J Dermatopathol 2008; 30: 333–9.CrossRefGoogle ScholarPubMed
Chaudet, KM, Stagner, AM, Nazarian, RM. Use of cytokeratin 17 in the differentiation between desmoplastic trichilemmoma and cutaneous basal cell carcinoma. Am J Dermatopathol 2022; 44: 886–90.CrossRefGoogle ScholarPubMed
Ferreira, I, Wiedemeyer, K, Demetter, P, Adams, DJ, Arends, MJ, Brenn, T. Update on pathology, genetics and somatic landscape of sebaceous tumours. Histopathology 2020; 76: 640–9.CrossRefGoogle ScholarPubMed
Cook, S, Pethick, J, Kibbi, N, et al. Sebaceous carcinoma epidemiology, associated malignancies and Lynch/Muir-Torre syndrome screening in England from 2008 to 2018. J Am Acad Dermatol 2023; S0190-9622(23)00536–4. doi: 10.1016/j.jaad.2023.03.046.CrossRefGoogle Scholar
Ariz, S, O’Sullivan, H, Heelan, K, Alam, A, McVeigh, TP. Characterization of sebaceous and non-sebaceous cutaneous manifestations in patients with lynch syndrome: a systematic review. Fam Cancer 2023; 22: 167–75.Google Scholar
Saliba, M, Shaheen, M, Hajj, RE, et al. Sebaceous neoplasms: prevalence of HPV infection and relation to immunohistochemical surrogate markers. Eur J Dermatol 2021; 31: 170–5.Google ScholarPubMed
Ansai, S, Arase, S, Kawana, S, Kimura, T. Immunohistochemical findings of sebaceous carcinoma and sebaceoma: retrieval of cytokeratin expression by a panel of anti-cytokeratin monoclonal antibodies. J Dermatol 2011; 38: 951–8.CrossRefGoogle ScholarPubMed
Boussahmain, C, Mochel, MC, Hoang, MP. Perilipin and adipophilin expression in sebaceous carcinoma and mimics. Hum Pathol 2013; 44: 1811–16.CrossRefGoogle ScholarPubMed
Li, FZ, Ye, Q, Ran, LW, Fang, S. Adipophilin expression in skin lesions with clear cell histology. J Clin Pathol 2022; 75: 627–31.CrossRefGoogle ScholarPubMed
Sramek, B, Lisle, A, Loy, T. Immunohistochemistry in ocular carcinomas. J Cutan Pathol 2008; 35: 641–6.CrossRefGoogle ScholarPubMed
Oules, B, Deschamps, L, Sohier, P, et al. Diagnostic accuracy of GATA6 immunostaining in sebaceous tumors of the skin. Mod Pathol 2023; 36: 100101. doi: 10.1016/j.modpat.2023.100101.CrossRefGoogle ScholarPubMed
Mittal, R, Araujo, I, Czanner, G, Coupland, SE. Perforin expression in eyelid sebaceous carcinomas: a useful and specific immunomarker for the differential diagnosis of eyelid carcinomas. Acta Opthalmol 2016; 94: e325-30. doi: 10.1111/aos.12972.CrossRefGoogle ScholarPubMed
Ng, JKM, Choi, PCL, Chow, C, et al. PRAME immunostain expression in sebaceous lesions, cutaneous carcinomas and adnexal structures. Pathology 2022; 54: 721–8.CrossRefGoogle ScholarPubMed
Gradecki, SE, Eid, MV, Pramoonjago, P, Wick, MR. Glioma-associated oncogene-1 expression in basal cell carcinoma and its histologic mimics. Am J Dermatopathol 2021; 43: 637–41.CrossRefGoogle ScholarPubMed
Ciarloni, L, Frouin, E, Bodin, F, Cribier, B. Syringoma: a clinicopathological study of 244 cases. Ann Dermatol Venereol 2016; 143: 521–8.CrossRefGoogle ScholarPubMed
Missall, TA, Burkemper, NM, Jensen, SL, Hurley, MY. Immunohistochemical differentiation of four benign eccrine tumors. J Cutan Pathol 2009; 36: 190–6.CrossRefGoogle ScholarPubMed
Kazakov, DV, Belousova, IE, Bisceglia, M, et al. Apocrine mixed tumor of the skin (“mixed tumor of the folliculosebaceous-apocrine complex”). Spectrum of differentiations and metaplastic changes in the epithelial, myoepithelial, and stromal components based on a histopathologic study of 244 cases. J Am Acad Dermatol 2007; 57: 467–83.CrossRefGoogle ScholarPubMed
Kazakov, DV, Kacerovska, D, Hantschke, M, et al. Cutaneous mixed tumor, eccrine variant: a clinicopathologic and immunohistochemical study of 50 cases, with emphasis on unusual histopathologic features. Am J Dermatopathol 2011; 33: 557–68.CrossRefGoogle ScholarPubMed
Bullerdiek, J, Wobst, G, Meyer-Bolte, K, et al. Cytogenetic subtyping of 220 salivary gland pleomorphic adenomas: correlation to occurrence, histological subtype, and in vitro cellular behavior. Cancer Genet Cytogenet 1993; 65: 2732.CrossRefGoogle ScholarPubMed
Stenman, G. Fusion oncogenes in salivary gland tumors: molecular and clinical consequences. Head Neck Pathol 2013; 7 Suppl: S12-9. doi: 10.1007/s12105-013-0462-z.CrossRefGoogle ScholarPubMed
Ma, S, Zhao, D, Liu, Y, et al. Some pleomorphic adenomas of the breast share PLAG1 rearrangements with the analogous tumour of the salivary glands. Histopathology 2021; 79: 1030–9.CrossRefGoogle ScholarPubMed
Asahina, M, Saito, T, Hayashi, T, Fukumura, Y, Mitani, K, Yao, T. Clinicopathological effect of PLAG1 fusion genes in pleomorphic adenoma and carcinoma ex pleomorphic adenoma with special emphasis on histological features. Histopathology 2019; 74: 514–25.CrossRefGoogle ScholarPubMed
Panagopoulos, I, Gorunova, L, Andersen, K, et al. NDRG1-PLAG1 and TRPS1-PLAG1 fusion genes in chondroid syringoma. Cancer Genomics Proteomics 2020; 17: 237–48.CrossRefGoogle ScholarPubMed
Kas, K, Voz, ML, Roijer, E, et al. Promoter swapping between the genes for a novel zinc finger protein and beta-catenin in pleiomorphic adenomas with t(3;8)(p21;q12) translocation. Nat Genet 1997; 15: 170–4.Google Scholar
Voz, ML, Astrom, AK, Kas, K, Mark, J, Stenman, G, van de Ven, WJ. The recurrent translocation t(5;8)(;13;q12) in pleomorphic adenomas results in upregulation of PLAG1 gene expression under control of the LIFR promoter. Oncogene 1998; 16: 1409–16.CrossRefGoogle Scholar
Astrom, AK, Voz, ML, Kas, K, et al. Conserved mechanism of PLAG1 activation in salivary gland tumors with and without chromosome 8q12 abnormalities: identification of SII as a new fusion partner gene. Cancer Res 1999; 59: 918–23.Google ScholarPubMed
Persson, F, Andren, Y, Winnes, M et al. High-resolution genomic profiling of adenomas and carcinomas of the salivary glands reveals amplification, rearrangement, and fusion of HMGA2. Genes Chromosom Cancer 2009; 48; 6982.CrossRefGoogle ScholarPubMed
Wasserman, JK, Dickson, BC, Smith, A, Swanson, D, Purgina, BM, Weinreb, I. Metastasizing pleomorphic adenoma: recurrent PLAG1/HMGA2 rearrangements and identification of a novel HMGA2-TMTC2 fusion. Am J Surg Pathol 2019; 43: 1145–51.CrossRefGoogle ScholarPubMed
Afshari, MK, Fehr, A, Nevado, PT, Andersson, MK, Stenman, G. Activation of PLAG1 and HMGA2 by gene fusions involving the transcriptional regulator gene NFIB. Genes Chromosomes Cancer 2020; 59: 652–60.CrossRefGoogle ScholarPubMed
Pei, J, Liu, JC, Ehya, H, et al. BOC-PLAG1, a new fusion gene of pleomorphic adenoma: Identified in a fine-needle aspirate by RNA next-generation sequencing. Diagn Cytopathol 2021; 49: 790–2.CrossRefGoogle Scholar
Agaimy, A, Ihrler, S, Baněčková, M, et al. HMGA2-WIF1 rearrangements characterize a distinctive subset of salivary pleomorphic adenomas with prominent trabecular (canalicular adenoma-like) morphology. Am J Surg Pathol 2022; 46: 190–9.CrossRefGoogle ScholarPubMed
Geurts, JM, Schoenmakers, EF, R€oijer, E, Stenman, G, Van de Ven, WJ. Expression of reciprocal hybrid transcripts of HMGIC and FHIT in a pleomorphic adenoma of the parotid gland. Cancer Res 1997; 57; 1317.Google Scholar
Panagopoulos, I, Gorunova, L, Lund-Iversen, M, Bassarova, A, Heim, S. Fusion of the genes PHF1 and TFE3 in malignant chondroid syringoma. Cancer Genomics Proteomics 2019; 16: 345–51.CrossRefGoogle ScholarPubMed
Matsuyama, A, Hisaoka, M, Hashimoto, H. PLAG1 expression in cutaneous mixed tumors: an immunohistochemical and molecular genetic study. Virchows Arch 2011; 459: 539–45.CrossRefGoogle ScholarPubMed
Matsuyama, A, Hisaoka, M, Hashimoto, H. PLAG1 expression in mesenchymal tumors: an immunohistochemical study with special emphasis on the pathogenetical distinction between soft tissue myoepithelioma and pleomorphic adenoma of the salivary gland. Pathol Int 2012; 62: 17.CrossRefGoogle ScholarPubMed
Bahrami, A, Dalton, JD, Shivakumar, B, Krane, JF. PLAG1 alteration in carcinoma ex pleomorphic adenoma: immunohistochemical and fluorescence in situ hybridization studies of 22 cases. Head Neck Pathol 2012; 6: 328–35.CrossRefGoogle ScholarPubMed
Mendoza, PR, Jakobiec, FA, Krane, JF. Immunohistochemical features of lacrimal gland epithelial tumors. Am J Ophthalmol 2013; 156: 1147–58.CrossRefGoogle ScholarPubMed
Von Holstein, SL, Fehr, A, Persson, M, et al. Adenoid cystic carcinoma of the lacrimal gland: MYB gene activation, genomic imbalances, and clinical characteristics. Ophthalmology 2013; 210: 2130–8.Google Scholar
North, JP, McCalmont, TH, Fehr, A, van Zante, A, Stenman, G, LeBoit, PE. Detection of MYB alterations and other immunohistochemical markers in primary cutaneous adenoid cystic carcinoma. Am J Surg Pathol 2015; 39: 1347–56.CrossRefGoogle ScholarPubMed
Mitani, Y, Li, J, Rao, PH, Zhao, YJ, et al. Comprehensive analysis of the MYB-NFIB gene fusion in salivary adenoid cystic carcinoma: incidence, variability and clinicopathologic significance. Clin Cancer Res 2010; 16: 4722–31.CrossRefGoogle ScholarPubMed
West, RB, Kong, C, Clarke, N, et al. MYB expression and translocation in adenoid cystic carcinomas and other salivary gland tumors with clinicopathologic correlation. Am J Surg Pathol 2011; 35: 92–9.CrossRefGoogle ScholarPubMed
Weinreb, I, Rooper, LM, Dickson, BC, et al. Adenoid cystic carcinoma with striking tubular hypereosinophilia: a unique pattern associated with nonparotid location and both canonical and novel EWSR1::MYB and FUS::MYB fusions. Am J Surg Pathol 2023; 47: 497503.CrossRefGoogle ScholarPubMed
Bell, D, Roberts, D, Karpowicz, M, et al. Clinical significance of Myb protein and downstream target genes in salivary adenoid cystic carcinoma. Cancer Biol Ther 2011; 12: 569–73.CrossRefGoogle ScholarPubMed
Brill, LB, Kanner, WA, Fehr, A, et al. Analysis of MYB expression and MYB-NFIB gene fusions in adenoid cystic carcinoma and other salivary neoplasms. Mod Pathol 2011; 24: 1169–76.CrossRefGoogle ScholarPubMed
Tadi, S, Ka-Yan Cheung, V, Lee, CS, et al. MYB RNA detection by in situ hybridisation has high sensitivity and specificity for the diagnosis of adenoid cystic carcinoma. Pathology 2023: S0031-3025(23)00084–3. doi: 10.1016/j.pathol.2023.01.007.Google Scholar
Rütten, A, Kutzner, H, Mentzel, T, et al. Primary cutaneous cribriform apocrine carcinoma: a clinicopathologic and immunohistochemical study of 26 cases of an under-recognized cutaneous adnexal neoplasm. J Am Acad Dermatol 2009; 61: 644–51.CrossRefGoogle ScholarPubMed
Arps, DP, Chan, MP, Patel, RM, Andea, AA. Primary cutaneous cribriform carcinoma: report of six cases with clinicopathologic data and immunohistochemical profile. J Cutan Pathol 2015; 42: 379–87.CrossRefGoogle ScholarPubMed
Davis, A, Khachemoune, A. Reappraisal and literature review of primary cutaneous cribriform apocrine carcinoma. Arch Dermatol Res 2023; 315: 716.CrossRefGoogle ScholarPubMed
Agni, M, Raven, M, Bowen, RC, et al. An update on endocrine mucin-producing sweat gland carcinoma: clinicopathologic study of 63 cases and comparative analysis. Am J Surg Pathol 2020; 44: 1005–16.CrossRefGoogle ScholarPubMed
Hadi, R, Xu, H, Barber, BR, Shinohara, MM, Moshiri, AS. A case of endocrine mucin-producing sweat gland carcinoma with distant metastasis. J Cutan Pathol 2021; 48: 937–42.CrossRefGoogle ScholarPubMed
Zembowicz, A, Garcia, CF, Tannous, ZS, et al. Endocrine mucin-producing sweat gland carcinoma. Twelve new cases suggest that it is a precursor of some invasive mucinous carcinomas. Am J Surg Pathol 2005; 29: 1330–9.CrossRefGoogle ScholarPubMed
Rismiller, KP, Crowe, DR, Knackstedt, TJ. Prognostic factors, treatment, and survival in primary cutaneous mucinous carcinoma. A SEER database analysis. Dermatol Surg 2020; 46: 1141–7.CrossRefGoogle ScholarPubMed
Qureshi, HS, Salama, ME, Chitale, D, et al. Primary cutaneous mucinous carcinoma: presence of myoepithelial cells as a clue to the cutaneous origin. Am J Dermatopathol 2004; 26: 353–8.CrossRefGoogle Scholar
Levy, G, Finkelstein, A, McNiff, JM. Immunohistochemical techniques to compare primary vs. metastatic mucinous carcinoma of the skin. J Cutan Pathol 2010; 37: 411–15.CrossRefGoogle ScholarPubMed
Adkins, KE, Busam, K, Pulitzer, M. Cutaneous neuroendocrine mucinous carcinomas are low-grade but may be associated with other cancers. Am J Surg Pathol 2023; 47: 1186–91.CrossRefGoogle ScholarPubMed
Pardal, J, Sundram, U, Selim, MA, Hoang, MP. GATA3 and MYB expression in cutaneous adnexal neoplasms. Am J Dermatopathol 2017; 39: 279–86.CrossRefGoogle ScholarPubMed
Amin, SM, Beattie, A, Ling, X, Jennings, LJ, Guitart, J. Primary cutaneous mammary analog secretory carcinoma with ETV6-NTRK3 translocation. Am J Dermatopathol 2016; 38: 842–5.CrossRefGoogle ScholarPubMed
Skalova, A, Vanecek, T, Sima, R, et al. Mammary analogue secretory carcinoma of salivary glands, containing the ETV6-NTRK3 fusion gene: a hitherto undescribed salivary gland tumor entity. Am J Surg Pathol 2010; 34: 599608.CrossRefGoogle ScholarPubMed
Bishop, JA, Taube, JM, Su, A, et al. Secretory carcinoma of the skin harboring ETV6 gene fusions: a cutaneous analogue to secretory carcinomas of the breast and salivary glands. Am J Surg Pathol 2017; 41: 62–6.CrossRefGoogle ScholarPubMed
Huang, S, Liu, Y, Su, J, et al. “Secretory” carcinoma of the skin mimicking secretory carcinoma of the breast: case report and literature review. Am J Dermatopathol 2016; 38: 698703.CrossRefGoogle ScholarPubMed
Kastnerova, L, Luzar, B, Goto, K, et al. Secretory carcinoma of the skin: report of 6 cases, including a case with a novel NFIX-PKN1 translocation. Am J Surg Pathol 2019; 43: 1092–8.CrossRefGoogle ScholarPubMed
Skálová, A, Vanecek, T, Simpson, RH, et al. Mammary analogue secretory carcinoma of salivary glands: molecular analysis of 25 ETV6 gene rearranged tumors with lack of detection of classical ETV6-NTRK3 fusion transcript by standard RT-PCR: report of 4 cases harboring ETV6-X gene fusion. Am J Surg Pathol 2016; 40: 313.CrossRefGoogle ScholarPubMed
Ye, Q, Chen, H, Han, C, et al. Nuclear staining of pan-Trk by immunohistochemistry is highly specific for secretory carcinoma of breast: pant-Trk in various subtypes of breast carcinoma. J Clin Pathol 2023. Aug 16:jcp-2023–208989. doi: 10.1136/jcp-2023-208989.CrossRefGoogle Scholar
Ito, Y, Ishibashi, K, Masaki, A, et al. Mammary analogue secretory carcinoma of salivary glands: a clinicopathologic and molecular study including 2 cases harboring ETV6-X fusion. Am J Surg Pathol 2015; 39: 602–10.CrossRefGoogle ScholarPubMed
Rooper, LM, Karantanos, T, Ning, Y, Bishop, JA, Gordon, SW, Kang, H. Salivary secretory carcinoma with a novel ETV6-MET fusion: expanding the molecular spectrum of a recently described entity. Am J Surg Pathol 2018; 42: 1121–6.CrossRefGoogle ScholarPubMed
Skálová, A, Vanecek, T, Martinek, P, et al. Molecular profiling of mammary analog secretory carcinoma revealed a subset of tumors harboring a novel ETV6-RET translocation: report of 10 cases. Am J Surg Pathol 2018; 42: 234–46.Google ScholarPubMed
Skálová, A, Banečkova, M, Thompson, LDR, et al. Expanding the molecular spectrum of secretory carcinoma of salivary glands with a novel VIM-RET fusion. Am J Surg Pathol 2020; 44: 1295–307.CrossRefGoogle ScholarPubMed
Guilmette, J, Dias-Santagata, D, Nosé, V, Lennerz, JK, Sadow, PM. Novel gene fusions in secretory carcinoma of the salivary glands: enlarging the ETV6 family. Hum Pathol 2019; 83: 50–8.CrossRefGoogle ScholarPubMed
Nakayama, T, Miyabe, S, Okabe, M, et al. Clinicopathological significance of the CRTC3-MAML2 fusion transcript in mucoepidermoid carcinoma. Mod Pathol 2009; 22: 1575–81.CrossRefGoogle ScholarPubMed
Chenevert, J, Duvvuri, U, Chiosea, S, et al. DOG1: a novel marker of salivary acinar and intercalated duct differentiation. Mod Pathol 2012; 25: 919–29.CrossRefGoogle ScholarPubMed
Bishop, JA, Weinreb, I, Swanson, D, et al. Microsecretory adenocarcinoma: a novel salivary gland tumor characterized by a recurrent MEF2C-SS18 fusion. Am J Surg Pathol 2019; 43: 1023–32.CrossRefGoogle ScholarPubMed
Bishop, JA, Williams, EA, McLean, AC, et al. Microsecretory adenocarcinoma of the skin harboring recurrent SS18 fusions: a cutaneous analog to a newly described salivary gland tumor. J Cutan Pathol 2022; 50: 134–9.Google ScholarPubMed
Panse, G. Microsecretory adenocarcinoma: cutaneous counterpart of a newly described salivary gland tumor with recurrent MEF2C::SS18 fusion. J Cutan Pathol 2023; 50: 188–90.CrossRefGoogle ScholarPubMed
Dibbern, ME, Gru, AA, Stelow, EB. Microsecretory adenocarcinoma of the external ear canal. J Cutan Pathol 2023; 50: 106–9.CrossRefGoogle ScholarPubMed
Skalova, A, Vanecek, T, Sima, R, et al. Mammary analogue secretory carcinoma of salivary glands, containing the ETV6-NTRK3 fusion gene: a hitherto undescribed salivary gland tumor entity. Am J Surg Pathol 2010; 34: 599608.CrossRefGoogle ScholarPubMed
Kazakov, DV, Zelger, B, Rütten, A, et al. Morphologic diversity of malignant neoplasms arising in preexisting spiradenoma, cylindroma, and spiradenocylindroma based on the study of 24 cases, sporadic or occurring in the setting of Brooke-Spiegler syndrome. Am J Surg Pathol 2009; 33: 705–19.CrossRefGoogle ScholarPubMed
van der Horst, MP, Marusic, Z, Hornick, JL, Luzar, B, Brenn, T. Morphologically low-grade spiradenocarcinoma: a clinicopathologic study of 19 cases with emphasis on outcome and MYB expression. Mod Pathol 2015; 28: 944–53.CrossRefGoogle Scholar
Kazakov, DV, Grossmann, P, Spagnolo, DV, et al. Expression of p53 and TP53 mutational analysis in malignant neoplasms arising in preexisting spiradenoma, cylindroma, and spiradenocylindroma, sporadic or associated with Brooke-Spiegler syndrome. Am J Dermatopathol 2010; 32: 215–21.CrossRefGoogle ScholarPubMed
Moran, JMT, DeSimone, MS, Mariño-Enríquez, A, et al. Malignant proliferating pilar tumor. Clinicopathologic, immunohistochemical, and molecular study of 17 cases. Am J Surg Pathol 2023; 47: 1151–9.CrossRefGoogle ScholarPubMed
Moran, JMT, Hoang, MP, Mariño-Enríquez, A, DeSimone, MS. Malignant proliferating pilar tumor with sarcomatous transformation (“carcinosarcoma”): case report with molecular profile. Am J Dermatopathol 2025; 47:65-69.CrossRefGoogle Scholar
Chaichamnan, K, Satayasoontorn, K, Puttanupaab, S, Attainsee, A. Malignant proliferating trichilemmal tumors with CD34 expression. J Med Assoc Thai 2010; 93 Suppl 6: S2834.Google ScholarPubMed
Haas, N, Audring, H, Sterry, W. Carcinoma arising in a proliferating trichilemmal cyst expresses fetal and trichilemmal hair phenotype. Am J Dermatopathol 2002; 24: 340–4.CrossRefGoogle Scholar
Goto, K, Kukita, Y, Honma, K, et al. Sweat-gland carcinoma with neuroendocrine differentiation (SCAND): a clinicopathologic study of 13 cases with genetic analysis. Mod Pathol 2022; 35: 3343.CrossRefGoogle ScholarPubMed
Chiller, K, Passaro, D, Scheuller, M, Singer, M, McCalmont, T, Grekin, RC. Microcystic adnexal carcinoma: forty-eight cases, their treatment, and their outcome. Arch Dermatol 2000; 136: 1355–9.CrossRefGoogle ScholarPubMed
Llamas-Velasco, M, Perez-Gonzalez, YC, Bosch-Princep, R, Fernandez-Figueras, MT, Rutten, A. Solid carcinoma is a variant of microcystic adnexal carcinoma: a 14-case series. J Cutan Pathol 2018; 45: 897904.CrossRefGoogle ScholarPubMed
Tse, JY, Nguyen, AT, Le, LP, Hoang, MP. Microcystic adnexal carcinoma versus desmoplastic trichoepithelioma: a comparative study. Am J Dermatopathol 2013; 35: 50–5.CrossRefGoogle ScholarPubMed
Hoang, MP, Dresser, KA, Kapur, P, High, WA, Mahalingam, M. Microcystic adnexal carcinoma: an immunohistochemical reappraisal. Mod Pathol 2008; 21: 178–85.CrossRefGoogle ScholarPubMed
Vidal, CI, Goldberg, M, Burstein, DE, Emanuel, HJ, Emanuel, PO. P63 immunohistochemistry is a useful adjunct in distinguishing sclerosing cutaneous tumors. Am J Dermatopathol 2010; 32: 257–61.CrossRefGoogle ScholarPubMed
Jedrych, J, McNiff, JM. Expression of p75 neurotrophin receptor in desmoplastic trichoepithelioma, infiltrative basal cell carcinoma, and microcystic adnexal carcinoma. Am J Dermatopathol 2013; 35: 308–15.CrossRefGoogle ScholarPubMed
Mohanty, SK, Sardana, R, McFall, M, et al. Does immunohistochemistry add to morphology in differentiating trichoepithelioma, desmoplastic trichoepithelioma, morpheaform basal cell carcinoma, and microcystic adnexal carcinoma? Appl Immunohistochem Mol Morphol 2022; 30: 273–7.CrossRefGoogle ScholarPubMed
Koga, K, Anan, T, Fukumoto, T, Fujimoto, M, Nabeshima, K. Ln-gamma 2 chain of laminin-332 is a useful marker in differentiating between benign and malignant sclerosing adnexal neoplasms. Histopathology 2020; 76: 318–24.CrossRefGoogle ScholarPubMed
Menge, TD, Durgin, JS, Hrycaj, SM, et al. Utility of GLI1 RNA chromogenic in situ hybridization in distinguishing basal cell carcinoma from histopathologic mimics. Mod Pathol 2023; 36: 100265. doi: 10.1016/j.modpat.2023.100265.CrossRefGoogle ScholarPubMed
Regmi, A, Zelman, B, Mudaliar, KM, Speiser, JJ. Solitary vulvar syringoma with deep extension; potential for misdiagnosis as the microcystic adnexal carcinoma (MAC). Am J Dermatopathol 2023; 45: 180–4.CrossRefGoogle Scholar
Van der Horst, M, Garcia-Herrera, A, Markiewicz, D, Martin, B, Eduardo, C, Brenn, T. Squamoid eccrine ductal carcinoma: a clinicopathologic study of 30 cases. Am J Surg Pathol 2016; 40: 755–60.CrossRefGoogle ScholarPubMed
Wong, TY, Suster, S, Mihm, MC. Squamoid eccrine ductal carcinoma. Histopathology 1997; 30: 288–93.CrossRefGoogle ScholarPubMed
Mckissack, SS, Wohltmann, W, Dalton, SR, Miletta, NR. Squamoid eccrine ductal carcinoma: an aggressive mimicker of squamous cell carcinoma. Am J Dermatopathol 2019; 41: 140–3.CrossRefGoogle ScholarPubMed
Lim, MM, Macdonald, JA. Squamoid eccrine ductal carcinoma: treatment and outcomes. Am J Dermatopathol 2022; 44: 249–53.CrossRefGoogle ScholarPubMed
Sekine, S, Kiyono, T, Ryo, E, et al. Recurrent YAP1-MAML2 and YAP1-NUTM1 fusions in poroma and porocarcinoma. J Clin Invest 2019; 129: 3827–32.CrossRefGoogle ScholarPubMed
Russell-Goldman, E, Hornick, JL, Hanna, J. Utility of YAP1 and NUT immunohistochemistry in the diagnosis of porocarcinoma. J Cutan Pathol 2021; 48; 403–10.CrossRefGoogle ScholarPubMed
Robson, A, Lazar, AJ, Ben Nagi, J, et al. Primary cutaneous apocrine carcinoma: a clinicopathologic analysis of 24 cases. Am J Surg Pathol 2008; 32: 682–90.CrossRefGoogle ScholarPubMed
Niemeier, LA, Dabbs, DJ, Beriwal, S, Striebel, JM, Bhargava, R. Androgen receptor in breast cancer: expression in estrogen receptor-positive tumors and in estrogen receptor-negative tumors with apocrine differentiation. Mod Pathol 2010; 23: 205–12.CrossRefGoogle ScholarPubMed
Le, LP, Dias-Santagata, D, Pawlak, AC, et al. Apocrine-eccrine carcinomas: molecular and immunohistochemical analyses. PLoS One 2012; 7: e47290. doi: 10.1371/journal.pone.0047290.CrossRefGoogle ScholarPubMed
Piris, A, Peng, Y, Boussahmain, C, Essary, LR, Gudewicz, TM, Hoang, MP. Cutaneous and mammary apocrine carcinomas have different immunoprofiles. Hum Pathol 2014; 45: 320–6.CrossRefGoogle ScholarPubMed
Plumb, SJ, Argenyi, ZB, Stone, MS, De Young, BR. Cytokeratin 5/6 immunostaining in cutaneous adnexal neoplasms and metastatic adenocarcinoma. Am J Dermatopathol 2004; 26: 447–51.CrossRefGoogle ScholarPubMed
Weingertner, N, Gressel, A, Battistella, M, Cribier, B. Aggressive digital papillary adenocarcinoma: a clinicopathological study of 19 cases. J Am Acad Dermatol 2017; 77: 549–58.CrossRefGoogle ScholarPubMed
Kervarrec, T, Imbeaud, S, Veyer, D, et al. Digital papillary adenocarcinoma in nonacral skin: clinicopathologic and genetic characterization of 5 cases. Am J Surg Pathol 2023; 47: 1077–84.CrossRefGoogle ScholarPubMed
Xavier-Junior, JCC, Camilo-Junior, DJ, Carneiro Dias, AL, et al. Value of immunohistochemistry to differentiate digital papillary adenocarcinoma from acral hidradenoma with papillary structures. Am J Dermatopathol 2022; 44: 843–5.CrossRefGoogle ScholarPubMed
Winnes, M, Mölne, L, Suurküla, M, et al. Frequent fusion of the CRTC1 and MAML2 genes in clear cell variants of cutaneous hidradenomas. Genes Chromosomes Cancer 2007; 46: 559–63.CrossRefGoogle ScholarPubMed
Vanderbilt, C, Brenn, T, Mo, AP, et al. Association of HPV42 with digital papillary adenocarcinoma and the use of in situ hybridization for its distinction from acral hidradenoma and diagnosis at non-acral sites. Mod Pathol 2022; 35: 1405–10.CrossRefGoogle ScholarPubMed
Bui, CM, Pukhalskaya, T, Smoller, BR, et al. Two distinct pathways of digital papillary adenocarcinoma – BRAF mutation or low-risk HPV infection. J Cutan Pathol 2023; 50: 568–76.CrossRefGoogle ScholarPubMed
Simonds, RM, Segal, RJ, Sharma, A. Extramammary Paget’s disease: a review of the literature. Int J Dermatol 2019; 58: 871–9.CrossRefGoogle ScholarPubMed
Kim, SJ, Thompson, AK, Zubair, AS, et al. Surgical treatment and outcomes of patients with extramammary Paget disease: a cohort study. Dermatol Surg 2017; 43: 708–14.CrossRefGoogle ScholarPubMed
Inui, S, Fukuhara, S, Asada, H, et al. Double involvement of extramammary Paget’s disease in the genitalia and axilla. J Dermatol 2000; 27: 409–12.CrossRefGoogle ScholarPubMed
Chanda, JJ. Extramammary Paget’s disease: prognosis and relationship to internal malignancy. J Am Acad Dermatol 1985; 13: 1009–14.CrossRefGoogle ScholarPubMed
Goldblum, JR, Hart, WR. Perianal Paget’s disease: a histologic and immunohistochemical study of 11 cases with and without associated rectal adenocarcinoma. Am J Surg Pathol 1998; 22: 170–9.CrossRefGoogle ScholarPubMed
Perrotto, J, Abbott, JJ, Ceilley, RI, Ahmed, I. The role of immunohistochemistry in discriminating primary from secondary extramammary Paget’s disease. Am J Dermatopathol 2010; 32: 137–43.CrossRefGoogle Scholar
Plaza, JA, Torres-Cabala, C, Ivan, D, Prieto, VG. HER-2/neu expression in extramammary Paget disease: a clinicopathologic and immunohistochemistry study of 47 cases with and without underlying malignancy. J Cutan Pathol 2009; 36: 729–33.CrossRefGoogle ScholarPubMed
Liegl, B, Horn, HC. Moinfar, F. Androgen receptors are frequently expressed in mammary and extramammary Paget’s disease. Mod Pathol 2005; 18: 1283–8.CrossRefGoogle ScholarPubMed
Hikita, T, Ohtsuki, Y, Maeda, T, Furihata, M. Immunohistochemical and fluorescence studies on noninvasive and invasive extramammary Paget’s disease. Int J Surg Pathol 2012; 20: 441–8.CrossRefGoogle ScholarPubMed
Kuan, S-F, Montag, AG, Hart, J, Krausz, T, Recant, W. Differential expression of mucin genes in mammary and extramammary Paget’s disease. Am J Surg Pathol 2001; 25: 1469–77.CrossRefGoogle ScholarPubMed
Shaco-Levy, R, Bean, SM, Vollmer, RT, et al. Paget disease of the vulva: a histologic study of 56 cases correlating pathologic features and disease course. Int J Gynecol Pathol 2010; 29: 6978.CrossRefGoogle ScholarPubMed
Wieland, R, Adhikari, P, North, J. The utility of p63, CK7, and CAM5.2 staining in differentiating pagetoid intraepidermal carcinomas. J Cutan Pathol 2023; 50: 1110–15.CrossRefGoogle ScholarPubMed
Cook, EE, Harrison, BT, Hirsch, MS. TRPS1 expression is sensitive and specific for primary extramammary Paget disease. Histopathology 2023; 83: 104–8.CrossRefGoogle ScholarPubMed
Plaza, JA, Wakely, P, Roman, J, et al. Low-grade hidradenocarcinomas: a clinicopathologic study of an unusual carcinoma that can mimic its benign counterpart. Am J Surg Pathol 2023; 47: 907–14.CrossRefGoogle ScholarPubMed
Hernandez-Parez, E, Cestoni-Parducci, R. Nodular hidradenoma and hidradenocarcinoma. A 10-year review. J Am Acad Dermatol 1985; 12: 1520.CrossRefGoogle Scholar
Nazarian, RM, Kapur, P, Rakheja, D, et al. Atypical and malignant hidradenomas: a histologic and immunohistochemical study. Mod Pathol 2009; 22: 600–10.CrossRefGoogle ScholarPubMed
Russell-Goldman, E, Hanna, J. MAML2 gene rearrangement occurs in nearly all hidradenomas: a reappraisal in a series of 20 cases. Am J Dermatopathol 2022; 44: 806–11.CrossRefGoogle Scholar
Winnes, M, Molne, L, Suurkula, M, et al. Frequent fusion of the CRTC1 and MAML2 genes in clear cell variants of cutaneous hidradenomas. Genes Chromosomes Cancer 2007; 46: 559–63.CrossRefGoogle ScholarPubMed
Behboudi, A, Winnes, M, Gorunova, L, et al. Clear cell hidradenoma of the skin–a third tumor type with a t(11;19)-associated TORC1-MAML2 gene fusion: Genes Chromosomes Cancer 2005; 43: 202–5.CrossRefGoogle Scholar
Kuma, Y, Yamada, Y, Yamamoto, H, et al. A novel fusion gene CRTC3-MAML2 in hidradenoma: histopathological significance. Hum Pathol 2017; 70: 5561.CrossRefGoogle ScholarPubMed
Kyrpychova, L, Kacerovska, D, Vanecek, T, et al. Cutaneous hidradenoma: a study of 21 neoplasms revealing neither correlation between the cellular composition and CRTC1-MAML2 fusions nor presence of CRTC3-MAML2 fusions. Ann Diagn Pathol 2016; 23: 813.CrossRefGoogle ScholarPubMed
Moller, E, Stenman, G, Mandahl, N, et al. POU5F1, encoding a key regulator of stem cell pluripotency, is fused to EWSR1 in hidradenoma of the skin and mucoepidermoid carcinoma of the salivary glands. J Pathol 2008; 215: 7886.CrossRefGoogle ScholarPubMed
Salih, AM, Kakamad, FH, Baba, HO, et al. Porocarcinoma: presentation and management, a meta-analysis of 453 cases. Ann Med Surg 2017; 20: 74–9.CrossRefGoogle ScholarPubMed
Robson, A, Greene, J, Ansari, N, et al. Eccrine porocarcinoma (malignant eccrine poroma): a clinicopathologic study of 69 cases. Am J Surg Pathol 2001; 25: 710–20.CrossRefGoogle ScholarPubMed
Mahalingam, M, Richards, JE, Selim, MA, Muzikansky, A, Hoang, MP. An immunohistochemical comparison of cytokeratin 7, cytokeratin 15, cytokeratin 19, CAM5.2, carcinoembryonic antigen, and nestin in differentiating porocarcinoma from squamous cell carcinoma. Hum Pathol 2012; 43: 1265–72.CrossRefGoogle Scholar
Mahomed, F, Blok, J, Grayson, W. The squamous variant of eccrine porocarcinoma: a clinicopathological study of 21 cases. J Clin Pathol 2008; 61: 361–5.CrossRefGoogle ScholarPubMed
Heyderman, E, Graham, RM, Chapman, DV, Richardson, TC, McKee, PH. Epithelial markers in primary skin cancer: an immunoperoxidase study of the distribution of epithelial membrane antigen (EMA) and carcinoembryonic antigen (CEA) in 65 primary skin carcinomas. Histopathology 1984; 8: 423–34.CrossRefGoogle ScholarPubMed
Miura, K, Akashi, T, Namiki, T, et al. Engrailed homeobox 1 and cytokeratin 19 are independent diagnostic markers of eccrine porocarcinoma and distinguish it from squamous cell carcinoma. Am J Clin Pathol 2020; 154: 499509.CrossRefGoogle ScholarPubMed
Goto, K, Ishikawa, M, Hamada, K, et al. Comparison of immunohistochemical expression of cytokeratin 19, c-KIT, BerEP4, GATA3, and NUTM1 between porocarcinoma and squamous cell carcinoma. Am J Dermatopathol 2021; 43: 781–7.CrossRefGoogle ScholarPubMed
Stevens, TM, Morlote, D, Xiu, J, et al. NUTM1-rearranged neoplasia: a multi-institution experience yields novel fusion partners and expands the histologic spectrum. Mod Pathol 2019; 32: 764–73.CrossRefGoogle ScholarPubMed
McEvoy, CR, Fox, SB, Prall, OWJ. Emerging entities in NUTM1-rearranged neoplasms. Genes Chromosomes Cancer 2020; 59: 375–85.CrossRefGoogle ScholarPubMed
Goto, K, Kukita, Y, Honma, K, et al. Signet-ring cell/histiocytoid carcinoma of the axilla: a clinicopathological and genetic analysis of 11 cases, review of the literature, and comparison with potentially related tumours. Histopathology 2021; 79: 926–39.CrossRefGoogle ScholarPubMed
Philips, R, Langston, L, Hwang, H, et al. Primary cutaneous histiocytoid carcinoma with distant metastasis. J Cutan Pathol 2017; 44: 376–80.CrossRefGoogle ScholarPubMed
Requena, L, Prieto, VG, Requena, C, et al. Primary signet-ring cell/histiocytoid carcinoma of the eyelid: a clinicopathologic study of 5 cases and review of the literature. Am J Surg Pathol 2011; 35: 378–91.CrossRefGoogle ScholarPubMed
Raghavan, SS, Clark, M, Louie, CY, et al. Molecular profiling of a primary cutaneous signet-ring cell/histiocytoid carcinoma of the eyelid. J Cutan Pathol 2020; 47: 860–4.CrossRefGoogle ScholarPubMed
Konstantinova, AM, Kacerovska, D, Stewart, CJR, et al. Syringocystadenocarcinoma papilliferum in situ-like changes in extramammary Paget disease: a report of 11 cases. Am J Dermatopathol 2016; 38: 882–6.CrossRefGoogle ScholarPubMed
Cornejo, KM, Hutchinson, L, O’Donnell, P, et al. Molecular profiling of syringocystadenocarcinoma papilliferum reveals RAS-activating mutations. Arch Pathol Lab Med 2024; 148: 215–22.CrossRefGoogle ScholarPubMed
Lee, JJ, Mochel, MC, Piris, A, Boussahmain, C, Mahalingam, M, Hoang, MP. p40 exhibits better specificity than p63 in distinguishing primary skin adnexal carcinomas from cutaneous metastases. Hum Pathol 2014; 45: 1078–83.CrossRefGoogle ScholarPubMed
Mahalingam, M, Nguyen, LP, Richards, JE, Muzikansky, A, Hoang, MP. The diagnostic utility of immunohistochemistry in distinguishing primary skin adnexal carcinomas from metastatic adenocarcinoma to skin: an immunohistochemical reappraisal using cytokeratin 15, nestin, p63, D2-40, and calretinin. Mod Pathol 2010; 23: 713–19.CrossRefGoogle ScholarPubMed
Rollins-Raval, M, Chivukula, M, Tseng, GC, Jukic, D, Dabbs, DJ. An immunohistochemical panel to differentiate metastatic breast carcinoma to skin from primary sweat gland carcinomas with a review of the literature. Arch Pathol Lab Med 2011; 135: 975–83.CrossRefGoogle ScholarPubMed
Macagno, N, Sohier, P, Kervarrec, T, et al. Recent advances on immunohistochemistry and molecular biology for the diagnosis of adnexal sweat gland tumors. Cancers 2022; 14: 476. doi: 10.3390/cancers14030476.CrossRefGoogle ScholarPubMed
Agaimy, A. Fusion-positive skin/adnexal carcinomas. Genes Chromosomes Cancer 2022; 61: 274–84.CrossRefGoogle ScholarPubMed
Behboudi, A, Enlund, F, Winnes, M, et al. Molecular classification of mucoepidermoid carcinomas-prognostic significance of the MECT1-MAML2 fusion oncogene. Genes Chromosomes Cancer 2006; 45: 470–81.CrossRefGoogle ScholarPubMed
Riedlinger, W, Hurley, M, Dehner, L, Lind, A. Mucoepidermoid carcinoma of the skin: a distinct entity from adenosquamous carcinoma: a case study with a review of the literature. Am J Surg Pathology 2005; 29: 131–5.CrossRefGoogle ScholarPubMed
Mirza, FN, Yumeen, S, Zogg, CK, Mirza, HN, Leventhal, JS. Epidemiology, treatment, survival, and prognostic factors of cutaneous mucoepidermoid carcinoma: a distinct entity with an indolent clinical course. J Am Acad Dermatol 2020; 83: 1827–30.CrossRefGoogle ScholarPubMed
Lennerz, JK, Perry, A, Dehner, LP, et al. CRTC1 rearrangements in the absence of t(11;19) in primary cutaneous mucoepidermoid carcinoma. Br J Dermatol 2009; 161: 925–9.CrossRefGoogle ScholarPubMed
Ohtomo, R, Mori, T, Shibata, S, et al. Sox10 is a novel marker of acinus and intercalated duct differentiation in salivary gland tumors: a clue to the histogenesis for tumor diagnosis. Mod Pathol 2013; 26: 1041–50.CrossRefGoogle Scholar
Nakayama, T, Miyabe, S, Okabe, M, et al. Clinicopathological significance of the CRTC3-MAML2 fusion transcript in mucoepidermoid carcinoma. Mod Pathol 2009; 22: 1575–81.CrossRefGoogle ScholarPubMed
Möller, E, Stenman, G, Mandahl, N, et al. POU5F1, encoding a key regulator of stem cell pluripotency, is fused to EWSR1 in hidradenoma of the skin and mucoepidermoid carcinoma of the salivary glands. J Pathol 2008; 215: 7886.CrossRefGoogle ScholarPubMed
Okabe, M, Miyabe, S, Nagatsuka, H, et al. MECT1-MAML2 fusion transcript defines a favorable subset of mucoepidermoid carcinoma. Clin Cancer Res 2006; 12: 3902–7.CrossRefGoogle ScholarPubMed
Okorie, CL, Yan, S, Kerr, DA, Tafe, LJ, Sriharan, A. Cutaneous myoepithelioma with EWSR1 gene rearrangement and its differentials: A diagnostic challenge. J Cutan Pathol 2023; 50: 632–6.CrossRefGoogle ScholarPubMed
Mentzel, T, Requena, L, Kaddu, S, et al. Cutaneous myoepithelial neoplasms: clinicopathologic and immunohistochemical study of 20 cases suggesting a continuous spectrum ranging from benign mixed tumor of the skin to cutaneous myoepithelioma and myoepithelial carcinoma. J Cutan Pathol 2003; 30: 294302.CrossRefGoogle ScholarPubMed
Jo, VY, Antonescu, CR, Zhang, L, Dal Cin, P, Hornick, JL, Fletcher, CD. Cutaneous syncytial myoepithelioma: clinicopathologic characterization in a series of 38 cases. Am J Surg Pathol 2013; 37: 710–18.CrossRefGoogle Scholar
Plaza, JA, Brenn, T, Chung, S, et al. Histomorphological and immunophenotypical spectrum of cutaneous myoepitheliomas: a series of 35 cases. J Cutan Pathol 2021; 48: 847–55.CrossRefGoogle ScholarPubMed
Miettinen, M, McCue, PA, Sarlomo-Rikala, M, et al. SOX10—a marker for not only schwannian and melanocytic neoplasms but also myoepithelial cell tumors of soft tissue: a systematic analysis of 5134 tumors. Am J Surg Pathol 2015; 39: 826–35.CrossRefGoogle ScholarPubMed
Le Loarer, F, Zhang, L, Fletcher, CD, et al. Consistent SMARCB1 homozygous deletions in epithelioid sarcoma and in a subset of myoepithelial carcinomas can be reliably detected by FISH in archival material. Genes Chromosomes Cancer 2014; 53: 475–86.CrossRefGoogle Scholar
Mehta, A, Davey, J, Gharpuray-Pandit, D, et al. Cutaneous myoepithelial neoplasms on acral sites show distinctive and reproducible histopathologic and immunohistochemical features. Am J Surg Pathol 2022; 46: 1241–9.CrossRefGoogle ScholarPubMed
Agaram, NP, Chen, HW, Zhang, L, et al. EWSR1-PBX3: a novel gene fusion in myoepithelial tumors. Genes Chromosomes Cancer 2015; 54: 6371.CrossRefGoogle ScholarPubMed
Brandal, P, Panagopoulos, I, Bjerkehagen, B, et al. Detection of a t(1;22)(q23;q12) translocation leading to an EWSR1-PBX1 fusion gene in a myoepithelioma. Genes Chromosomes Cancer 2008; 47: 558–64.CrossRefGoogle Scholar
Jo, VY, Antonescu, CR, Dickson, BC, et al. Cutaneous syncytial myoepithelioma is characterized by recurrent EWSR1-PBX3 fusions. Am J Surg Pathol 2019; 43: 1349–54.CrossRefGoogle ScholarPubMed
Brandal, P, Panagopoulos, I, Bjerkehagen, B, Heim, S. t(19;22)(q13;q12) Translocation leading to the novel fusion gene EWSR1-ZNF444 in soft tissue myoepithelial carcinoma. Genes Chromosomes Cancer 2009; 48: 1051–6.CrossRefGoogle Scholar
Flucke, U, Mentzel, T, Verdijk, MA, et al. EWSR1-ATF1 chimeric transcript in a myoepithelial tumor of soft tissue: a case report. Hum Pathol 2012; 43: 764–8.CrossRefGoogle Scholar
Antonescu, CR, Zhang, L, Chang, NE, et al. EWSR1-POU5F1 fusion in soft tissue myoepithelial tumors. A molecular analysis of sixty-six cases, including soft tissue, bone, and visceral lesions, showing common involvement of the EWSR1 gene. Genes Chromosomes Cancer 2010; 49: 1114–24.CrossRefGoogle ScholarPubMed
Huang, SC, Chen, HW, Zhang, L, et al. Novel FUS-KLF17 and EWSR1-KLF17 fusions in myoepithelial tumors. Genes Chromosomes Cancer 2015; 54: 267–75.CrossRefGoogle ScholarPubMed
Bodis, S, Kroiss, S, Tchinda, J, Fritz, C, Wagner, U, Bode, PK. Myoepithelial carcinoma of soft tissue with an EWSR1-KLF15 gene fusion in an infant. Pediatr Dev Pathol 2021; 24: 371–7.CrossRefGoogle ScholarPubMed
Yoshida, A, Yoshida, H, Yoshida, M, et al. Myoepithelioma-like tumors of the vulvar region: a distinctive group of SMARCB1-deficient neoplasms. Am J Surg Pathol 2015; 39: 1102–13.CrossRefGoogle ScholarPubMed
French, CA, Rahman, S, Walsh, EM, et al. NSD3-NUT fusion oncoprotein in NUT midline carcinoma: implications for a novel oncogenic mechanism. Cancer Discov 2014; 4: 928–41.CrossRefGoogle ScholarPubMed
Schaefer, IM, Dal Cin, P, Landry, LM, Fletcher, CDM, Hanna, GJ, French, CA. CIC-NUTM1 fusion: a case which expands the spectrum of NUT-rearranged epithelioid malignancies. Genes Chromosomes Cancer 2018; 57: 446–51.CrossRefGoogle ScholarPubMed
Tamura, R, Nakaoka, H, Yoshihara, K, et al. Novel MXD4-NUTM1 fusion transcript identified in primary ovarian undifferentiated small round cell sarcoma. Genes Chromosomes Cancer 2018; 57: 557–63.CrossRefGoogle ScholarPubMed
Diolaiti, D, Dela Cruz, FS, Gundem, G, et al. A recurrent novel MGA-NUTM1 fusionidentifies a new subtype of high-grade spindle cell sarcoma. Cold Spring Harb Mol Case Stud 2018; 4: a003194.CrossRefGoogle ScholarPubMed
Rubio Gonzalez, B, Ortiz, MV, Ross, DS, Busam, KJ. Skin adnexal carcinoma with BRD3-NUTM2B fusion. J Cutan Pathol 2021; 48: 1508–13.CrossRefGoogle ScholarPubMed
Haack, H, Johnson, LA, Fry, CJ, et al. Diagnosis of NUT midline carcinoma using a NUT-specific monoclonal antibody. Am J Surg Pathol 2009; 33: 984–91.CrossRefGoogle ScholarPubMed
Bigby, SM, Charlton, A, Miller, MV, et al. Biphasic sarcomatoid basal cell carcinoma (carcinosarcoma): four cases with immunohistochemistry and review of the literature. J Cutan Pathol 2005; 32: 141–7.CrossRefGoogle ScholarPubMed
Boyd, AS, Rapini, RP. Cutaneous collision tumors: an analysis of 69 cases and review of the literature. Am J Dermatopathol 1994; 16: 253–7.CrossRefGoogle ScholarPubMed
Erickson, LA, Myers, JL, Mihm, MC, Markovic, SN, Pittelkow, MR. Malignant basomelanocytic tumor manifesting as metastatic melanoma. Am J Surg Pathol 2004; 28: 1393–6.CrossRefGoogle ScholarPubMed

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×