Skip to main content Accessibility help
×
Hostname: page-component-6bb9c88b65-6scc2 Total loading time: 0 Render date: 2025-07-27T18:13:55.610Z Has data issue: false hasContentIssue false

Appendix D - Gap Labeling by Claude Schochet

Published online by Cambridge University Press:  06 July 2010

Calvin C. Moore
Affiliation:
University of California, Berkeley
Claude L. Schochet
Affiliation:
Wayne State University, Detroit
Get access

Summary

This is a review of three articles: [Bellissard et al. 2005] (Jean Bel-lissard, Riccardo Benedetti and Jean-Marc Gambaudo, “Spaces of tilings, finite telescopic approximations, and gap-labeling”, to appear in Communications in Mathematical Physics), [Benameur and Oyono-Oyono 2003] (“Gap-labelling for quasi-crystals”, pp. 11–22 in Operator algebras and mathematical physics, Theta Foundation, Bucharest, 2003), and [Kaminker and Putnam 2003] (“A proof of the gap labeling conjecture”, Michigan Mathematical Journal 51 (2003), 537–546). It first appeared as a Featured Review in Mathematical Reviews, and is reprinted here by permission, with slight modifications. The three reviewed articles are herein referred to as BBG, BO and KP.

The Gap Labeling Theorem was originally conjectured in [Bellissard et al. 2000]. The problem arises in a mathematical version of solid state physics in the context of aperiodic tilings. Its three proofs, discovered independently by the authors above, all lie in K-theory. Here is the core result of these papers.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×